
AO4800-HX Dual N-Channel 30-V (D-S) MOSFET

							
	PRODUCT SUMMARY						
VDS (V)	RDS(on) (Ω)	Qg (Typ.)	ID (A)				
20	0.022 at Vgs = 10 V	15nC	6.8				
30	0.026 at Vgs = 4.5 V	15nC	6.0				

Version 1.0 - 1 - Date: Jan. 2022

MAXIMUM RATINGS (TJ = 25° C unless otherwise stated)						
Rating			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	30	V	
Gate-to-Source Voltage			V_{GS}	±20	V	
Continuous Drain Current R _{0JA} (Note 1)		T _A = 25°C	- I _D	5.5	Α	
Continuous Drain Current (100A (Note 1)		T _A = 70°C		4.4		
Power Dissipation R _{0JA} (Note 1)	Power Dissipation R _{0JA} (Note 1) T _A = 25°C			1.14	W	
Continuous Drain Current Ray (Note 2)		T _A = 25°C	- I _D	4.5	Α	
Continuous Drain Current R _{0JA} (Note 2)		T _A = 70°C		3.5		
Power Dissipation R _{0JA} (Note 2)		T _A = 25°C	PD	0.68	W	
Continuous Drain Current R _{0JA} t < 10 s	Steady	T _A = 25°C	lD	7.5	Α	
(Note 1)	State	T _A = 70°C		6.0		
Power Dissipation R _{0JA} t < 10 s (Note 1)		T _A = 25°C	PD	1.95	W	
Pulsed Drain Current	TA	= 25°C,t _p = 10 μs	I _{DM}	30	Α	
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to,+150	°C	
Source Current (Body Diode)			ls	2.0	Α	
Single Pulse Drain-to-Source Avalanche Energy T _J = 25°C, V _{DD} =			EAS	28	mJ	
30 V, V _{GS} = 10 V, I _L = 7.5 A _{pk} , L = 1.0 mH, R _G = 25 fi						
Lead Temperature for Soldering Purposes (1.	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C	
THERMAL RESISTANCE RATINGS						
Rating			Symbol	Max	Unit	
Junction-to-Ambient - Steady State (Note 1)			R _{0JA}	110		
Junction-to-Ambient – t≤10 s (Note 1)			R _{0JA}	64	°C/W	
Junction-to-FOOT (Drain)	R _{0JF}	40	- C/VV			
Junction-to-Ambient - Steady State (Note 2)			R _{0JA}	183.5		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1.Surface mounted on FR4 board using 1 inch sq pad size, 1 oz Cu.
- ${\it 2.Surface-mounted}\ on\ {\it FR4}\ board\ using\ the\ minimum\ recommended\ pad\ size.$

Version 1.0 - 2 - Date: Jan. 2022

ELECTRICAL CHARACTERISTICS (TJ = 25° C u	nless otherwise n	oted)				
Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		30			V
Drain-to-Source Breakdown Voltage Tem- perature Coefficient	V _{(BR)DSS} /T _J				18		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C T _J = 100°C			1.0	μА
	1	V _{DS} = 24 V				10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{G}$				±100	nA
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS}	s, I _D = 250 µA	1.5		3.0	V
Negative Threshold Temperature	V _{GS(TH)} /T _J				6.0		mV/°C
Drain-to-Source On Resistance	D	V _{GS} =10 V	I _D = 6.9 A		16	24	mfi
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} =4.5V	I _D = 5.0 A		26	36	'''''
Forward Transconductance	9FS	V _{DS} = 1.5	V, I _D = 6.9 A		15		S
CHARGES, CAPACITANCES AND GA	TE RESISTA	NCE					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz,			520		
Output Capacitance	C _{OSS}				140		pF
Reverse Transfer Capacitance	C _{RSS}	V _{DS} = 15 V			70		
Total Gate Charge	Q _{G(TOT)}	-V _{GS} = 4.5 V,V _{DS} = 15 V,I _D = 6.9 A			4.8		
Threshold Gate Charge	Q _{G(TH)}				1.1		
Gate-to-Source Charge	Q _{GS}				2.1		nC
Gate-to-Drain Charge	Q_{GD}		151		1.9		1
Total Gate Charge	$Q_{G(TOT)}$	V _{GS} = 10 V, V _{DS} =	15 V, I _D =6.9A		9.5		nC
SWITCHING CHARACTERISTICS (No	ote 4)						
Turn-On Delay Time	t _{d(ON)}	V _{GS} = 10 \	/,		7.6		
Rise Time	t _r	V _{DD} = 15 \	<i>I</i> ,	y	5.0		
Turn-Off Delay Time	t _{d(OFF)}	I _D = 1.0 A,			17		ns
Fall Time	t _f	R _G = 3.0 fi			3.0		=
DRAIN-TO-SOURCE CHARACTERI	STICS						
Forward Diode Voltage	V_{SD}	V _{GS} =0V I _D =2.0A	T _J = 25°C T _J = 125°C		0.76 0.58	1.0	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V$,			12.5		1
Charge Time	Та				7.3		ns
Discharge Time	T _b				5.2		1
Discharge Time	۱þ				J.Z		

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

Reverse Recovery Time	Q _{RR}	Is = 2.0 A		6.0		nC
PACKAGE PARASITIC VALUES						
Source Inductance	L _S			0.66		nH
Drain Inductance	L _D	T _A = 25°C		0.20		nH
Gate Inductance	L _G	T _A = 25°C		1.50		nH
Gate Resistance	R _G	1A - 25 C		2.0	3.0	fi

3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.



Fig 1. Typical Output Characteristics

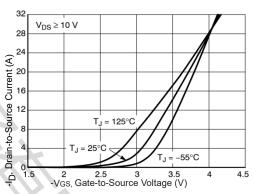


Fig 2. Typical Transfer Characteristics

4. Switching characteristics are independent of operating junction te

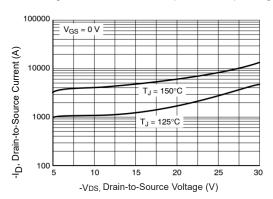
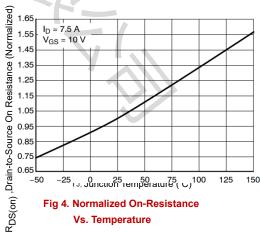
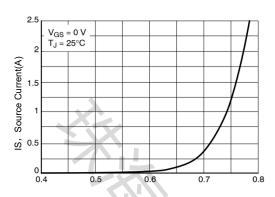



Fig 3. Typical Output Characteristics



Vs. Temperature

Version 1.0 - 4 -Date: Jan. 2022

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

-VSD, Source-to-Drain Voltage (V)

Fig 5. Typical Source-Drain Diode **Forward Voltage**

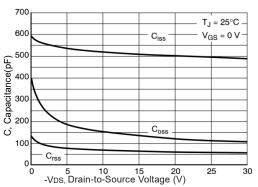


Fig 6. Typical Capacitance Vs. **Drain-to-Source Voltage**

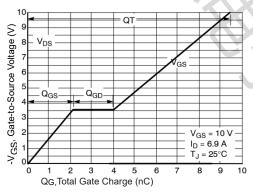


Fig 7. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

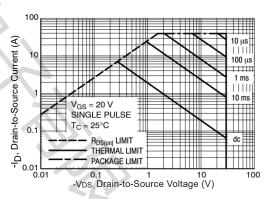


Fig 8.Maximum Safe Operating Area

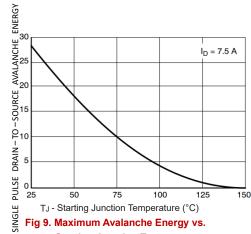


Fig 9. Maximum Avalanche Energy vs. **Starting Junction Temperature**

EAS,

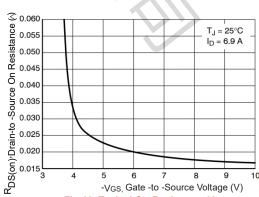


Fig 10. Typical On-Resistance Vs. **Gate Voltage**

Version 1.0 - 5 -Date: Jan. 2022

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

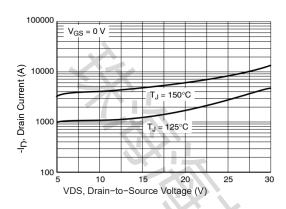


Fig 11. Drain-to-Source Leakage Current vs. Voltage

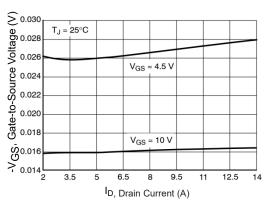
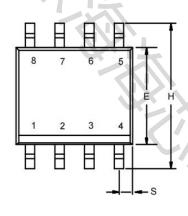
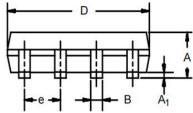
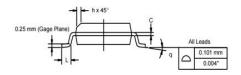


Fig 12. Typical On-Resistance Vs.

Drain Current

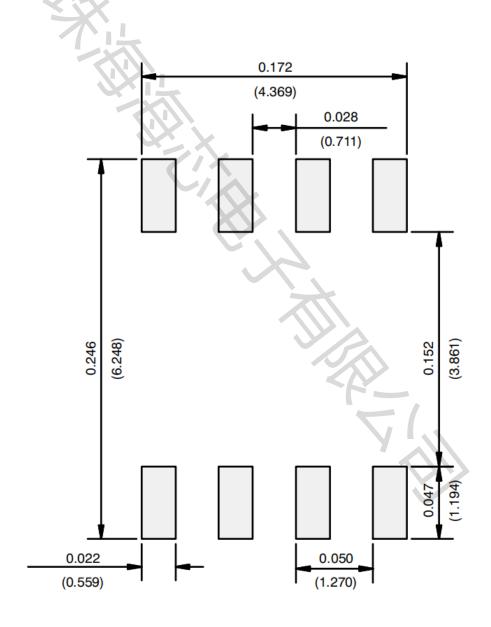



Fig 13. Resistive Switching Time Variation vs. Gate Resistance


Version 1.0 - 6 - Date: Jan. 2022

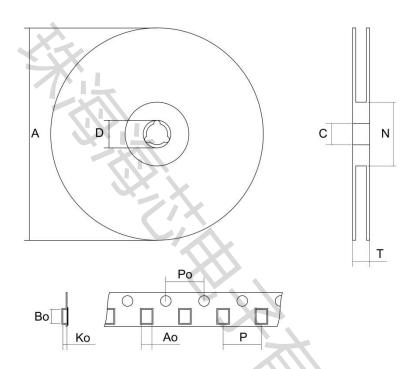
SOP-8 Package Outline

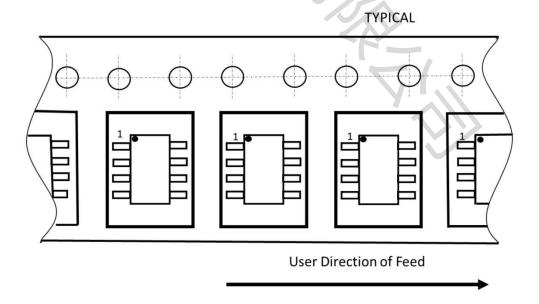
Dimensions are shown in millimeters (inches)



	MILLII	METERS		INCHES
DIM	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A 1	0.10	0.20	0.004	0.008
В	0.35	0.51	0.014	0.020
С	0.19	0.25	0.007 5	0.010
D	4.80	5.00	0.189	0.196
E	3.80	4.00	0.150	0.157
е	1	.27 BSC		0.050 BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.020
L	0.50	0.93	0.020	0.037
q	0°	8°	0°	8°
S	0.44	0.64	0.018	0.026

Version 1.0 -7 - Date: Jan. 2022


RECOMMENDED MINIMUM PADS FOR SOP-8


Version 1.0 -8 - Date: Jan. 2022

SOP-8 packing information

SOP-8 tape and reel

Tape orientation

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product. (www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Version 1.0 - 10 Date: Jan. 2022