
IRF7341TRPBF-HX P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY				
Vos (V)	Id (A)			
60	0.040 at Vgs = - 10 V	7		
	0.055 at Vgs = 4.5 V	1		

FEATURES

- TrenchFET® Power MOSFET
- 100 % R_g Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	60	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _A =25°C	D	4.5		
Current AF	T _A =70°C	טו	3.6	Α	
Pulsed Drain Current ^B		I _{DM}	20		
	T _A =25°C	Po	2	W	
Power Dissipation	T _A =70°C	ı D	1.28	VV	
Avalanche Current ^B		$I_{AR,}I_{AS}$	19	А	
Repetitive avalanche energy 0.1mH ^B		E _{AR} , E _{AS}	18	mJ	
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 150	°C	

Thermal Characteristics					
Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	48	62.5	°C/W
Maximum Junction-to-Ambient A	Steady-State	- AJA	74	110	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	35	60	°C/W

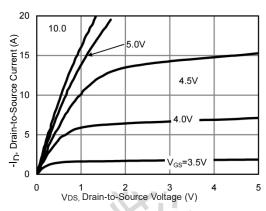
Version 1.0 - 1 - Date: Jan. 2022

Flectrical Characteristics (T.I=25° C unless otherwise noted)							
Symbol	Parameter	Conditions	Min	Tvp	Max	Units	
STATIC F	STATIC PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA,V _{GS} =0V	60			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =60V,V _{GS} =0V			1	^	
DSS	Zero Gate Voltage Drain Current	Tյ=55°C			5	μΑ	
I_{GSS}	Gate-Body leakage current	V _{DS} =0V,V _{GS} =±20V			100	nΑ	
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} I _D =250μA	1	2.1	3	V	
I _{D(ON)}	On state drain current	V _{GS} =10V,V _{DS} =5V	20			Α	
		V _{GS} =10V,I _D =4.5A		46	56	m()	
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125°C		80	100	mΩ	
, ,		V _{GS} =4.5V,I _D =3A		64	77	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5 V , I_{D} =4.5 A		11		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.74	1	V	
Is	Maximum Body-Diode Continuous Current				3	Α	
I_{SM}	Pulsed Body Diode Current ^B				20	Α	
DYNAMIO	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V,		450	540	pF	
C_{oss}	Output Capacitance	V _{DS} =30V,		60		pF	
C_{rss}	Reverse Transfer Capacitance	f=1MHz		25		pF	
R_g	Gate resistance	V _{GS} =0V,V _{DS} =0V,f=1MHz	1.3	1.65	2	Ω	
SWITCHI	SWITCHING PARAMETERS						
Q _q (10V)	Total Gate Charge	V 40V		8.5	10.5	nC	
Qg(4.5V)	Total Gate Charge	V _{GS} =10V,		4.3	5.5	nC	
Q_{as}	Gate Source Charge	V _{DS} =30V,		1.6		nC	
Q_{ad}	Gate Drain Charge	150 001,		2.2		nC	
t _{D(on)}	Turn-On DelayTime	V _{GS} =10V,		4.7		ns	
t _r	Turn-On Rise Time	V _{DS} =30V,	7	2.3		ns	
t _{D(off)}	Turn-Off DelayTime	R _L =6.7Ω,		15.7		ns	
t _f	Turn-Off Fall Time	Rom=30		1.9		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =4.5A,dI/dt=100A/μs		27.5	35	ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =4.5A,dI/dt=100A/μs		32		nC	

NOTE

- 2 -Version 1.0 Date: Jan. 2022

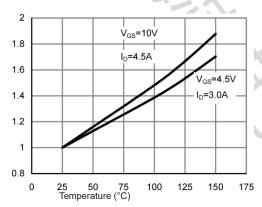
A.The value of R $_{\text{MA}}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{\text{A}}$ =25°C. The value in any given application depends on the user's specific board design. B.Repetitive rating, pulse width limited by junction temperature. C.The R $_{\text{MA}}$ is the sum of the thermal impedence from junction to lead R $_{\text{ML}}$ and lead to ambient.


D. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

E.These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T _A=25°C. The SQA curve provides a single pulse rating.

F.The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

ZHHXDZ 珠海海芯电子有限公司


www.haixindianzi.com

15
(¥) tue 10
2 2.5 3 3.5 4 4.5 5
VGS, Gate-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 2. Typical Transfer Characteristics

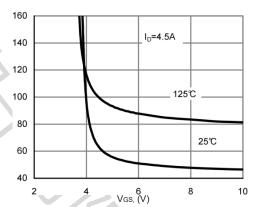
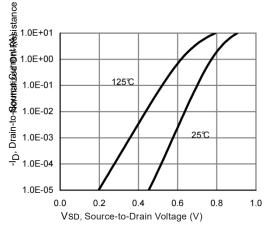



Fig 3.On-Resistance vs. Junction Temperature

Fig 4. On-Resistance vs. Gate-Source Voltage

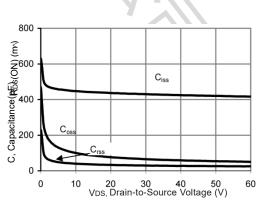


Fig 5. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Capacitance Vs.

Drain-to-Source Voltage

Version 1.0 - 3 - Date: Jan. 2022

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

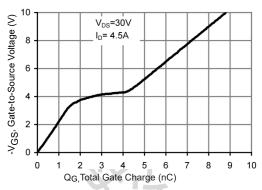


Fig 7. Gate Charge Characteristics

Fig 8.Maximum Safe Operating Area(Note E)

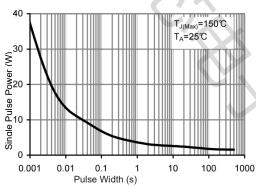


Fig 9. Single Pulse Power Rating Junction-to- Ambient (Note E)

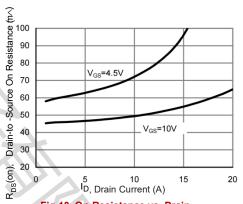
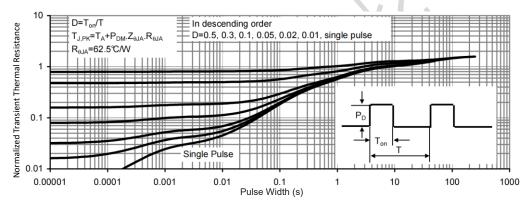
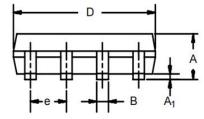
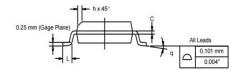


Fig 10. On-Resistance vs. Drain Current and Gate Voltage

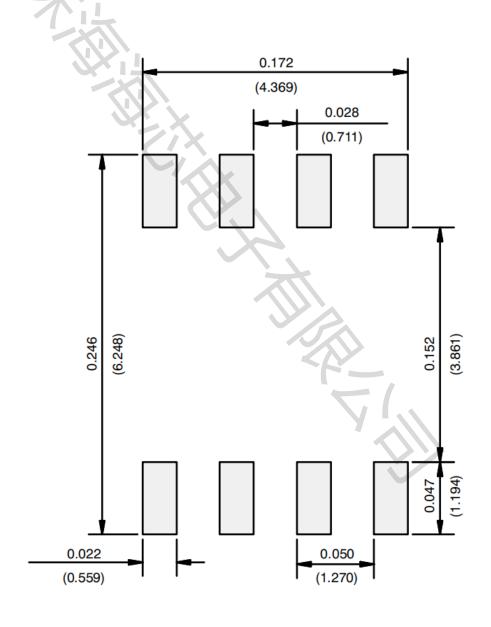




Fig 11. Normalized Maximum Transient Thermal Impedance

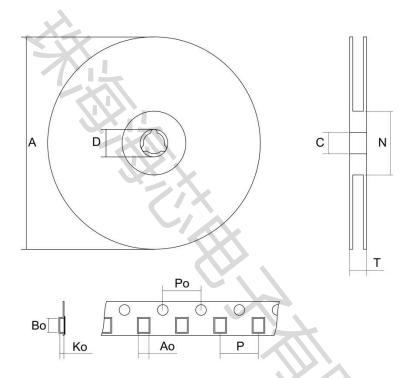

Version 1.0 - 4 - Date: Jan. 2022

SOP-8 Package Outline

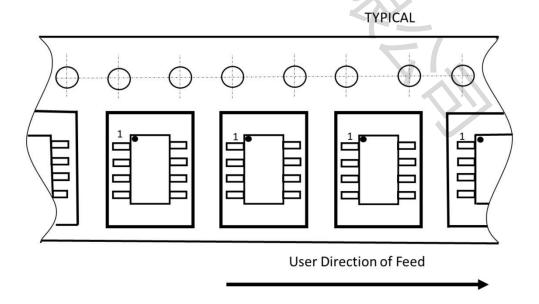
Dimensions are shown in millimeters (inches)



	MILLII	METERS		INCHES	
DIM	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A1	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.007 5	0.010	
D	4.80	5.00	0.189	0.196	
Е	3.80	4.00	0.150	0.157	
е	1.27 BSC		0.050 BSC		
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	


Version 1.0 -5 - Date: Jan. 2022

RECOMMENDED MINIMUM PADS FOR SOP-8



SOP-8 packing information

SOP-8 tape and reel

Tape orientation

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product. (www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Version 1.0 -8 - Date: Jan. 2022