
AO4419-HX P-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V) R _{DS(on)} (Ω) Qg (Typ.) I _D (A)				
-30	0.018 at Vgs = - 10 V	12mC	-9.0	
	0.024 at Vgs = - 4.5 V	13nC	-7.8	

Top View

FEATURES

- TrenchFET® Power MOSFET
- 100 % R_q Tested

APPLICATIONS

- Load Switch
- Battery Switch

Absolute Maximum Ratings						
	Parameter	Max.	Units			
VDS	Drain-to-Source Voltage	-30	.,,			
Vgs	Gate-to-Source Voltage	± 20	V			
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	-9.2				
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	-7.3	Α			
IDM	Pulsed Drain Current ①	-75				
PD @T _A = 25°C	Power Dissipation ④	2.5	10/			
P _D @T _A = 70°C	Power Dissipation ④	1.6	W			
	Linear Derating Factor	0.02	W/°C			
TJ	Operating Junction and	-55 to + 150				
Тѕтс	Storage Temperature Range	33 10 1 130	°C			

Version 1.0 - 1 - Date: Jan. 2022

Static @ TJ = 25°C (unless otherwise specified)							
	Parameter	Min.	Тур.	Max.	Units	Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_{D} = -250\mu A$	
ΔBVpss/ΔTJ	Breakdown Voltage Temp. Coefficient		0.019		V/°C	Reference to 25°C, I _D = -1mA	
RDS(on)			15.6	19.4		V _{GS} = -10V, I _D = -9.2A ③	
	Static Drain-to-Source On-Resistance		25.6	32.5	mΩ	V_{GS} = -4.5V, I_{D} = -7.5A \odot	
VGS(th)	Gate Threshold Voltage	-1.3	-1.8	-2.4	V	N/ N/ 1 05 A	
ΔV GS(th)	Gate Threshold Voltage Coefficient		-5.7		mV/°C	$V_{DS} = V_{GS}$, $I_D = -25\mu A$	
IDSS	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V, V_{GS} = 0V$	
	- X			-150	μA	V _{DS} = -24V, V _{GS} = 0V, T _J = 125°C	
Igss	Gate-to-Source Forward Leakage			-100		V _{GS} = -20V	
	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V	
gfs	Forward Transconductance	13			S	V _{DS} = -10V, I _D = -7.5A	
Q_g	Total Gate Charge ®		14		nC	V_{DS} = -15V, V_{GS} = -4.5V, I_{D} = -7.5A	
Q_g	Total Gate Charge ®		25	38		V _{GS} = -10V	
Q_{gs}	Gate-to-Source Charge ®		3.5		nC	V _{DS} = -15V	
Q_{gd}	Gate-to-Drain Charge ⑥		6.4			$I_D = -7.5A$	
R_G	Gate Resistance ®		15		Ω		
td(on)	Turn-On Delay Time		16			V _{DD} = -15V, V _{GS} = -4.5V ③	
t _r	Rise Time		44			I _D = -1.0A	
td(off)	Turn-Off Delay Time		55		ns	$R_G = 6.8\Omega$	
t _f	Fall Time		49			See Figs. 20a &20b	
C _{iss}	Input Capacitance		1110			V _{GS} = 0V	
Coss	Output Capacitance		230		pF	$V_{DS} = -25V$ f = 1.0MHz	
C _{rss}	Reverse Transfer Capacitance		160				

Avalanche Characteristics					
	Parameter	Тур.	Max.	Units	
Eas	Single Pulse Avalanche Energy ②		100	mJ	
lar	Avalanche Current ①		-7.5	А	

Dio	Diode Characteristics						
	Parameter	Min.	Тур.	Max.	Unit	Conditions	
Is	Continuous Source Current (Body Diode)			-2.5			
Isм	Pulsed Source Current (Body Diode) ①			-75	Α		
VsD	Diode Forward Voltage			-1.2	V	T _J = 25°C, I _S = -2.5A, V _G S = 0V ③	
trr	Reverse Recovery Time		24	36		T _J = 25°C, I _F = -2.5A, V _{DD} = -24V	
Q _{rr}	Reverse Recovery Charge		15	23	nC	di/dt = 100A/µs ③	

Thermal Resistance					
	Parameter	Тур.	Max.	Units	
Rejl	Junction-to-Drain Lead ⑤		20	0000	
Reja	Junction-to-Ambient ④		50	°C/W	

Notes

- Repetitive rating; pulse width limited by max. junction temperature.
 Starting TJ = 25°C, L = 3.5mH, RG = 25Ω, IAS = -7.5A.
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
 When mounted on 1 inch square copper board.
 Rθ is measured at TJ of approximately 90°C.
 For DESIGN AID ONLY, not subject to production testing.

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

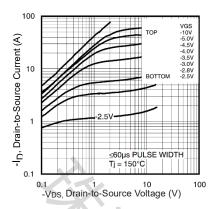


Fig 1. Typical Output Characteristics

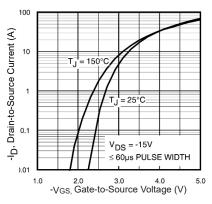


Fig 2. Typical Transfer Characteristics

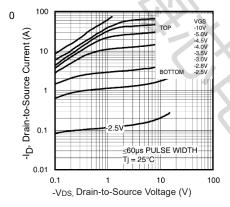


Fig 3. Typical Output Characteristics

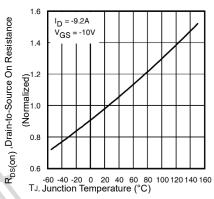


Fig 4. Normalized On-Resistance vs. Temperature

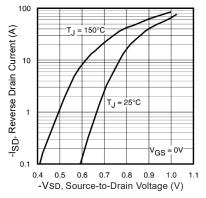


Fig 5. Typical Source-Drain Diode Forward Voltage

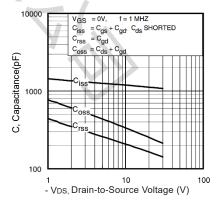


Fig 6. Typical Capacitance Vs.

Drain-to-Source Voltage

Version 1.0 - 3 - Date: Jan. 2022

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

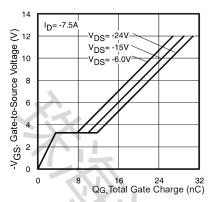


Fig 7. Typical Gate Charge vs.Gate-to-Source Voltage

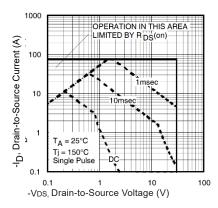


Fig 8.Maximum Safe Operating Area

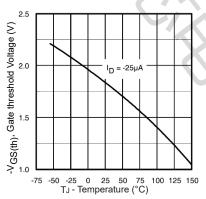


Fig 9. Threshold Voltage vs. Temperature

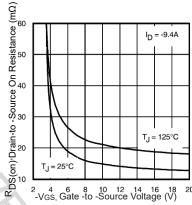


Fig 10. On-Resistance vs. Gate Voltage

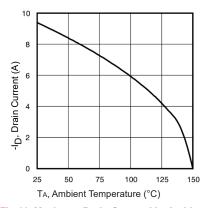


Fig 11. Maximum Drain Current Vs. Ambient Temperature

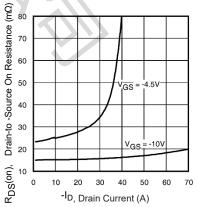


Fig 12. Typical On-Resistance Vs. Drain Current

Version 1.0 - 4 - Date: Jan. 2022

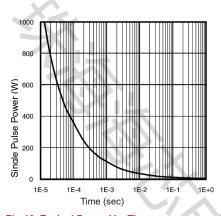
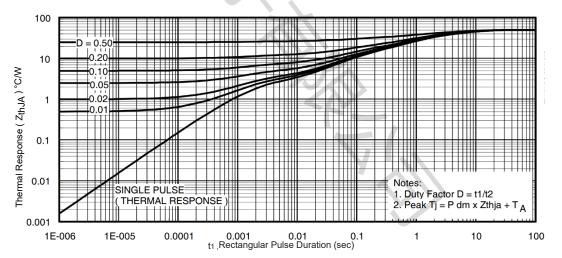
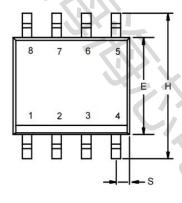
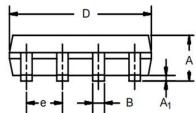
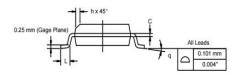


Fig 13. Typical Power Vs. Time

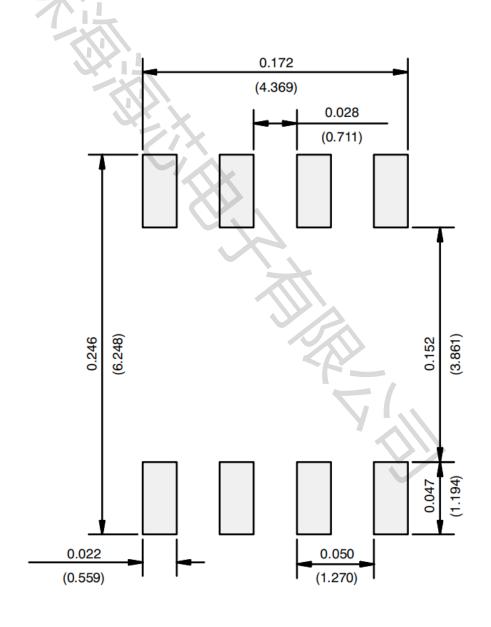




Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

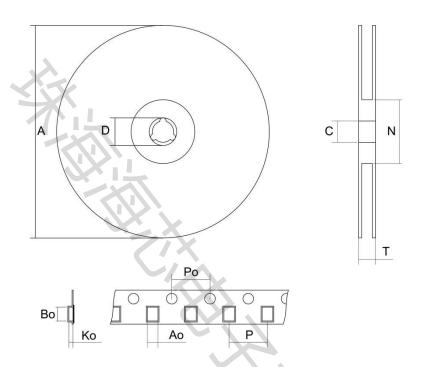

Version 1.0 -5 - Date: Jan. 2022

SOP-8 Package Outline

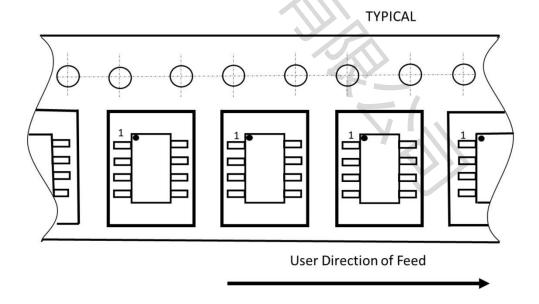
Dimensions are shown in millimeters (inches)



	MILLI	METERS	INCHE		
DIM	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A 1	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
X	0.19	0.25	0.007	0.040	
С		0.25	5	0.010	
D	4.80	5.00	0.189	0.196	
E	3.80	4.00	0.150	0.157	
е	1.27 BSC		0.050 BSC		
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	


Version 1.0 - 6 - Date: Jan. 2022

RECOMMENDED MINIMUM PADS FOR SOP-8



SOP-8 packing information

SO-8 tape and reel

Tape orientation

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product. (www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Version 1.0 - 9 - Date: Jan. 2022