
FDS6675BZ-HX P-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY				
VDS (V)	RDS(on) (Ω)	Qg (Typ.)	ID (A)d	
-30	0.0125 at VGS = - 10 V	2250	- 11.6	
	0.0180 at Vgs = - 4.5 V	22nC	- 10	

Top View

FEATURES

- TrenchFET® Power MOSFET
- 100 % R_q Tested

APPLICATIONS

- Load Switches Notebook PCs
 - Desktop PCs

MAXIMUM RATINGS (TA = 25 ° C unless otherwise noted)					
Symbol	Parameter	Ratings	Unit		
VDS	Drain to Source Voltage	-30	V		
Vgs	Gate to Source Voltage	±25	V		
ID	Drain Current - Continuous	- 11	Α		
	- Pulsed	-55			
PD	Power Dissipation for Single Operation	2.5	W		
	Y	1.2			
		1.0			
ТЈ, Tsтg	Operating and Storage Junction Temperature Range	-55 to +150	° C		

THERMAL CHARACTERISTICS					
Symbol	Parameter	Ratings	Unit		
Rojc	Thermal Resistance, Junction to Case	25	° C/W		
Roja	Thermal Resistance, Junction to Ambient	50			

Version 1.0 - 1 - Date: Jan. 2022

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

ELECTRICAL CHARACTERISTICS (TA= 25°C)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
BVDSS	Drain to Source Breakdown Voltage	ID = −250 μ A, VGS = 0 V	-30			V	
ΔBVDSS	Breakdown Voltage Temperature	ID = −250 μ A,		-20		mV/°C	
ΔΤͿ	Coefficient	referenced to 25°C					
IDSS	Zero Gate Voltage Drain Current	VDS = −24 V, VGS = 0 V			- 1	μ А	
IGSS	Gate to Source Leakage Current	VGS = ±25 V, VDS = 0 V			± 10	μА	
	ON CHAR	ACTERISTICS					
VGS(th)	Gate to Source Threshold Voltage	VGS = VDS , ID = -250 μ A	- 1	-2	-3	V	
ΔV GS(th)	Gate to Source Threshold Voltage	ID = −250 μ A,		15.7		mV/°C	
$\Delta T_{\rm J}$	Temperature Coefficient	referenced to 25°C					
RDS(on)	Static Drain to Source On Resistance	VGS = -10 V, ID = - 11 A		10.8	13.0	mQ	
	7/X	VGS = -4.5 V, ID = -9 A		17.4	21.8		
		VGS = -10 V, ID = -11 A,		15.0	18.8		
		TJ = 125°C					
gFS	Forward Transconductance	VDS = −5 V, ID = − 11 A		34		S	
	DYNAMIC CH	ARACTERISTICS					
Ciss	Input Capacitance	VDS = -15 V, VGS = 0 V,		1855	2470	pF	
Coss	Output Capacitance	f = 1 MHz		335	450	pF	
Crss	Reverse Transfer Capacitance			330	500	pF	
	SWITCHING C	HARACTERISTICS					
td(on)	Turn-On Delay Time	VDD = - 15 V,		3.0	10	ns	
tr	Rise Time	ID = - 11 A,		7.8	16	ns	
td(off)	Turn-Off Delay Time	VGS = - 10 V,		120	200	ns	
tf	Fall Time	RGS = 6 Q		60	100	ns	
Qg	Total Gate Charge	VDS = - 15 V,		44	62	nC	
		VGS = - 10 V, ID = - 11 A					
Qg	Total Gate Charge	VDS = - 15 V,		25	35	nC	
Qgs	Gate to Source Charge	VGS = -5 V, ID = - 11 A	V	7.2		nC	
Qgd	Gate to Drain "Miller" Charge			11.4		nC	
DRAIN-SOURCE DIODE CHARACTERISTICS							
VSD	Source to Drain Diode Forward Voltage	VGS = 0V, IS = −2.1 A		-0.7	- 1.2	V	
trr	Reverse Recovery Time	IF = −11 A,			42	ns	
		di/dt = 100 A/ μ s					
Qrr	Reverse Recovery Charge	IF = −11 A,			30	nC	
		di/dt = 100 A/ μ s					

Notes:

Version 1.0 - 2 - Date: Jan. 2022

a. R0JA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R0JC is guaranteed by design while R0CA is determined by the user's board design. b. Pulse Test: Pulse Width < 300s, Duty cycle < 2.0%.

c. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

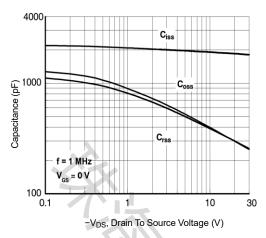


Fig 1. Capacitance vs Drain to Source Voltage

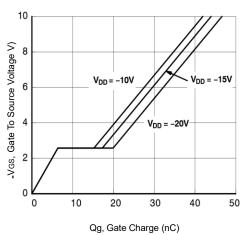


Fig 2. Gate Charge Characteristics

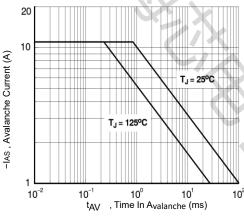


Fig 3. Unclamped Inductive Switching Capability

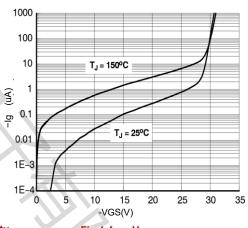


Fig 4. Igvs V_{GS}

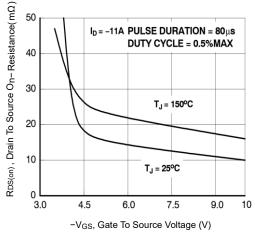


Fig 5. On-Resistance vs Gate to Source Voltage

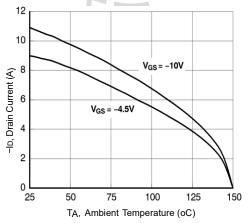


Fig 6. Maximum Continuous Drain Current
vs Ambient Temperature

Version 1.0 - 3 - Date: Jan. 2022

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

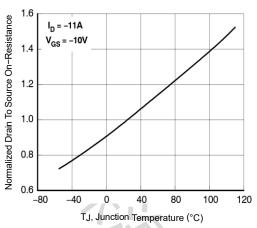


Fig 7. Normalized On – Resistance vs Junction Temperature

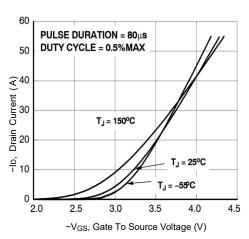


Fig 8. Transfer Characteristics

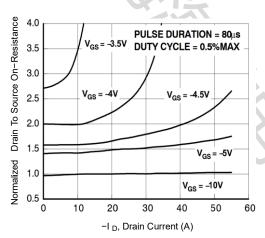
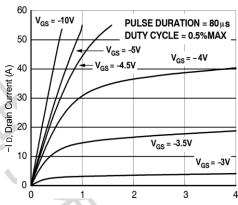



Fig 9. Normalized On-Resistance vs Drain Current and Gate Voltage

-VDS, Drain To Source Voltage (V)
Fig 10.On-Region Characteristics



Fig 11. Source to Drain Diode Forward

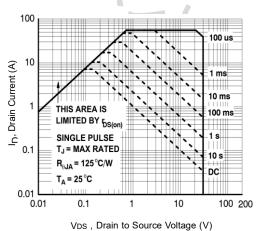


Fig 12. Forward Bias Safe Operating Area

Voltage vs Source Current

- 4 -

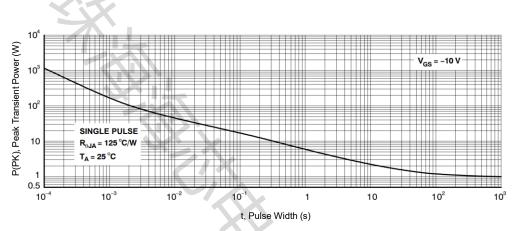
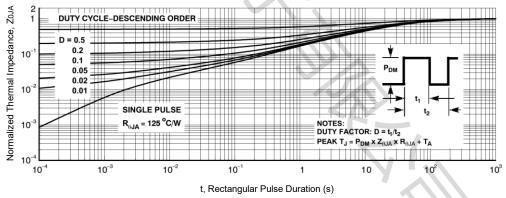
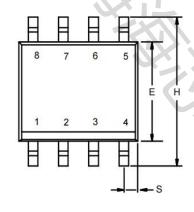
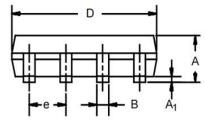
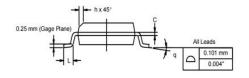


Fig 13. Single Pulse Maximum Power Dissipation

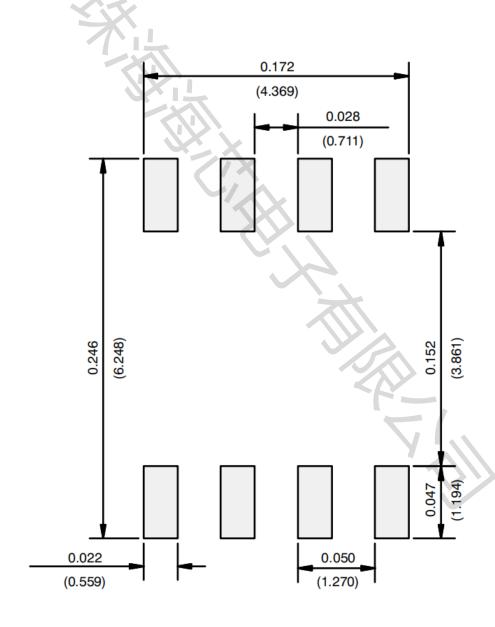




Fig 14. Junction To Ambient Transient Thermal Response Curve

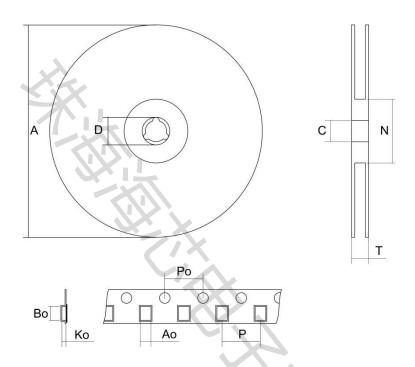

Version 1.0 -5 - Date: Jan. 2022

SOP-8 Package Outline

Dimensions are shown in millimeters (inches)



DIM	MILLIMETERS		INCHES		
	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A1	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.0075	0.010	
D	4.80	5.00	0.189	0.196	
E	3.80	4.00	0.150	0.157	
е	1.27 BSC		0.050 BSC		
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	


Version 1.0 - 6 - Date: Jan. 2022

RECOMMENDED MINIMUM PADS FOR SOP-8

SOP-8 packing information

SOP-8 tape and reel

Tape orientation

User Direction of Feed

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product. (www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Version 1.0 - 9 - Date: Jan. 2022