
APM4953-HX Dual P-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY					
VDS (V)	RDS(on) (Ω)	Qg (Typ.)	ID (A)		
-30	0.018 at Vgs = - 10 V	17nC	-7.3		
	0.018 at Vos = -0.45 V	17nC	-6.3		

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter			Maximum	Units	
Drain-Source Voltage		V _{DS}	-30	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current	T _A =25°C		-7.1	Α	
Continuous Diain Current	T _A =70°C	lσ	-5.6		
Pulsed Drain Current ^C		Ірм	-40		
Avalanche Current ^C		las, lar	-27	Α	
Avalanche energy L=0.1mH ^C		Eas, Ear	36	mJ	
	T _A =25°C	1	2	10/	
Power Dissipation ^B	T _A =70°C	P _D	1.3	W	
Junction and Storage Temperature Range			-55 to 150	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient ^A	t ≤10s	Б	48	62.5	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	Rөja	74	90	°C/W	
Maximum Junction-to-Lead	Steady-State	Rejl	32	40	°C/W	

Version 1.0 - 1 - Date: Jan. 2022

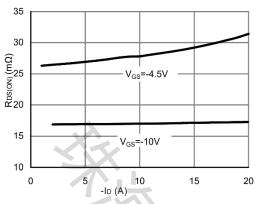
Symbol	Parameter	Conditions	Min	Тур	Ма	Unit	
STATIC PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V	-30			V	
		V _{DS} =-30V, V _{GS} =0V			-1		
loss	Zero Gate Voltage Drain Current	TJ=55°C			-5	μΑ	
Igss	Gate-Body leakage current	V _{DS} =0V, V _{GS} = ±20V			±10	nA	
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} I _D =-250µA	-1.5	-2.0	-2.5	V	
ID(ON)	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-40			Α	
		V _{GS} =-10V, I _D =-7.1A		17	25	mΩ	
RDS(ON)	Static Drain-Source On-Resistance	T _J =125°C		24	33		
		V _{GS} =-4.5V, I _D =-5.6A		27	40	mΩ	
g FS	Forward Transconductance	V _{DS} =-5V, I _D =-7.1A		24		S	
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.7	-1	V	
ls	Maximum Body-Diode Con	tinuous Current			-2.5	Α	
DYNAMIC PARAMETERS							
C_{iss}	Input Capacitance	V _{GS} =0V,		104	125	pF	
C_{oss}	Output Capacitance	V _{DS} =-15V,		180		pF	
C_{rss}	Reverse Transfer Capacitance	f=1MHz		125	175	pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	2	4	6	Ω	
SWITC	CHING PARAMETERS						
Q _g (10V)	Total Gate Charge			19		nC	
Q _g (4.5V)	Total Gate Charge	V _{GS} =-10V,		9.6		nC	
Q_{gs}	Gate Source Charge	V _{DS} =-15V, I _D =-7.1A		3.6		nC	
Q_{gd}	Gate Drain Charge			4.6		nC	
t _{D(on)}	Turn-On DelayTime	V _{GS} =-10V,		10		ns	
t _r	Turn-On Rise Time	V _{DS} =-15V,		5.5		ns	
t _{D(off)}	Turn-Off DelayTime	R_L =2.2 Ω ,		26		ns	
t _f	Turn-Off Fall Time	$R_{GEN}=3\Omega$		9		ns	
trr	Body Diode Reverse Recovery Time	I _F =-7.1A, dI/dt=500A/μs		11.		ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-7.1A, dI/dt=500A/μs		25		nC	

Notes

A. The value of R_{BJA} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

Version 1.0 - 2 - Date: Jan. 2022

B. The power dissipation PD is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.


C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_{J}=25$ °C.

D. The R_{BJA} is the sum of the thermal impedence from junction to lead R_{BJL} and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using.

ZHHXDZ 珠海海芯电子有限公司

www.haixindianzi.com

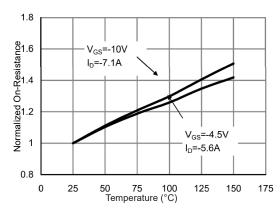


Fig 1. On-Resistance vs. Drain Current and Gate Voltage Fig 2. On-Resistance vs. Junction Temperature

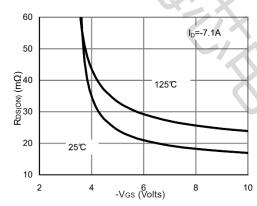


Fig 3. On-Resistance vs. Gate-Source Voltage

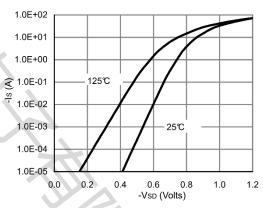


Fig 4. Body-Diode Characteristics

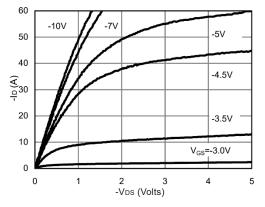


Fig 5. On-Region Characteristics

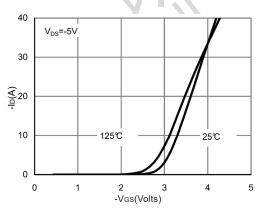


Fig 6. Transfer Characteristics

- 3 -Version 1.0 Date: Jan. 2022

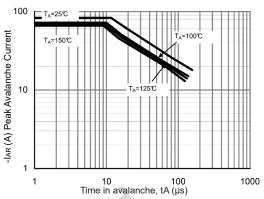
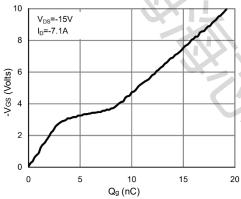



Fig 7. Single Pulse Avalanche capability

Fig 8. Maximum Forward Biased Safe Operating Area

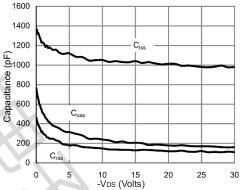


Fig 10. Capacitance Characteristics

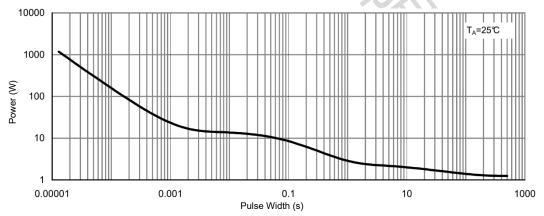


Fig 11. Single Pulse Power Rating Junction-to-Ambient

Version 1.0 - 4 - Date: Jan. 2022

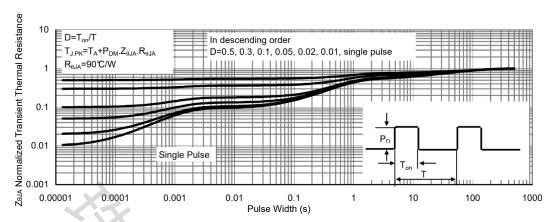
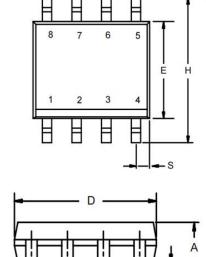
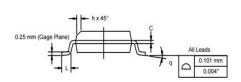
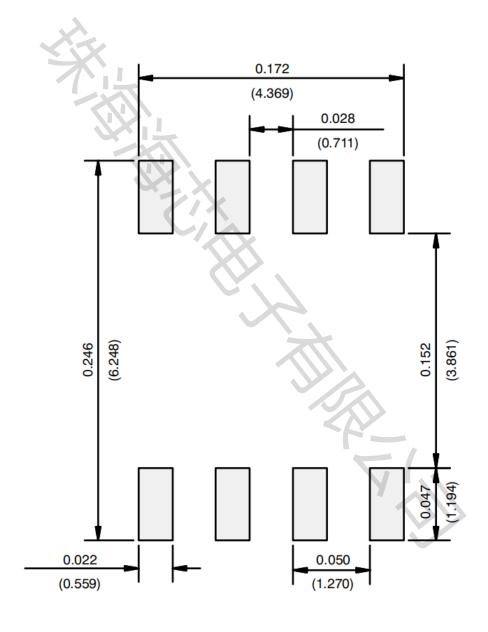




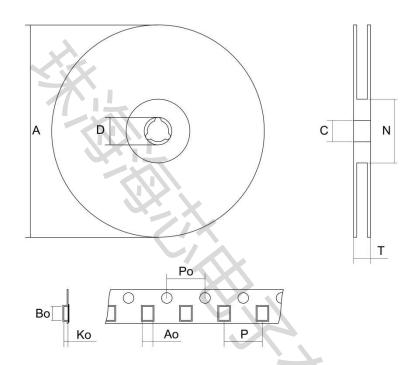
Fig 12. Normalized Maximum Transient Thermal Impedance

SOP-8 Package Outline

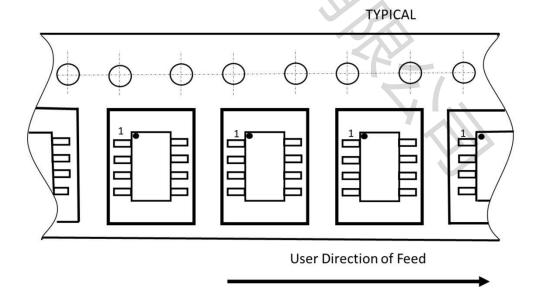
Dimensions are shown in millimeters (inches)



	MILLI	METERS	INCHES		
DIM	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A1	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.007 5	0.010	
D	4.80	5.00	0.189	0.196	
Е	3.80	4.00	0.150	0.157	
е	1	.27 BSC	0.050 BSC		
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	


Version 1.0 -5- Date: Jan. 2022

RECOMMENDED MINIMUM PADS FOR SOP-8



SOP-8 packing information

SOP-8 tape and reel

Tape orientation

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product. (www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty berein

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Version 1.0 - 8 - Date: Jan. 2022