

Spec No. :DS70-2019-0095 Effective Date: 07/11/2019 Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

Photocouplers LTV-331J series

LTV-331J series

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated (V_{CE}) Desaturation Detection, UVLO Fault Status Feedback and Active Miller Clamping

1. DESCRIPTION

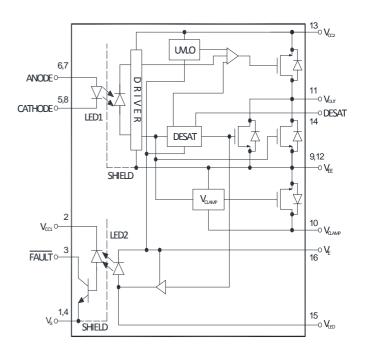
The LTV-331J is an advanced 2.5 A output current, easy-to-use, intelligent gate driver which makes IGBT V_{CE} fault protection compact, affordable, and easy-to implement. Features such as integrated V_{CE} detection, under voltage lockout (UVLO), "soft" IGBT trun-off, isolated open collector fault feedback and active Miller clamping provide maximum design flexibility and circuit protection.

The LTV-331J contains an AlGaAs LED. The LED is optically coupled to an integrated circuit with a power output stage. LTV-331J is ideally suited for driving power IGBTs and MOSFET used in motor control inverter applications. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to 1200 V and 150 A. For IGBTs with higher ratings, the LTV-331J can be used to drive a discrete power stage which drives the IGBTs gate. The LTV-331J has an insulation voltage of V_{IORM} = 1414 V_{PEAK} .

The Optocoupler operational parameters are guaranteed over the temperature range from -40°C ~ +105°C.

1.1 Features

- Under Voltage Lock-Out Protection (UVLO) with Hysteresis
- Desaturation Detection
- Miller Clamping
- Open Collector Isolated fault feedback
- "Soft" IGBT Turn-off
- Fault Reset by next LED turn-on (low to high) after fault mute period


1.2 Specifications

- 2.5 A maximum peak output current
- 250 ns maximum propagation delay
- 100 ns maximum pulse width distortion (PWD)
- 50 kV/us minimum Common Mode Rejection (CMR) at V_{CM} = 1500 V
- I_{CC} = 4.5 mA maximum supply current
- Wide V_{CC} operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature -40°C ~ +105°C.
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 5000 V_{RMS}/1 min (To be continued)
- IEC/EN/DIN EN 60747-5-5 V_{IORM} = 1414 Vpeak(To be continued)

1.2 Applications

- Isolated IGBT/MOSFET gate drive
- Industrial inverters and Uninterruptible power supply (UPS)
- AC and Brushless DC motor drives

1.3 Functional Diagram

1/19

Photocouplers LTV-331J series

1.4 Pin description

1	V _s V _E	16
2	V _{CC1} V _{LED}	15
3	FAULT DESAT	14
4	Vs V _{cc2}	13
5	CATHODE V _{EE}	12
6	ANODE Vout	11
7	ANODE V _{CLAMP}	10
8	CATHODE V _{EE}	9
	1	

Pin	Symbol	Description
1	Vs	Input Ground
2	V _{CC1}	Positive input supply voltage (3.3 V to 5.5 V)
3	FAULT	Fault output. FAULT changes from a high impedance state to a logic low output within 5 µs of the voltage on the DESAT pin exceeding an internal reference voltage of 7 V. FAULT output is an open collector which allows the FAULT outputs from all LTV-333J in a circuit to be connected together in a "wired OR" forming a single fault bus for interfacing directly to the micro-controller.
4	Vs	Input Ground
5	CATHODE	Cathode
6	ANODE	Anode
7	ANODE	Anode
8	CATHODE	Cathode
9	V _{EE}	Output supply voltage
10	V _{CLAMP}	Miller clamp
11	V _{OUT}	Gate drive voltage output
12	V _{EE}	Output supply voltage
13	V _{CC2}	Positive output supply voltage
14	DESAT	Desaturation voltage input. When the voltage on DESAT exceeds an internal reference voltage of 6.5 V while the IGBT is on, FAULT output is changed from a high impedance state to a logic low state within 5 µs.
15	V _{LED}	LED anode. This pin must be left unconnected for guaranteed data sheet performance. (For optical coupling testing only)
16	VE	Common (IGBT emitter) output supply voltage

1.5 True table

lF	UVLO(Vcc-V _E)	Vcc-VE) DESAT Function		Vout
ON	Active	Not Active	High	Low
ON	Not Active	Active(with DESAT fault)	Low(Fault)	Low
ON	Not Active	Active(no DESAT fault)	High(or no fault)	High
OFF	Active	Not Active	High	Low
OFF	Not Active	Not Active	High	Low

Photocouplers LTV-331J series

1.6 Ordering Information

LTV-331J is UL Recognized with 5000 Vrms for 1 minute per UL1577.

Part number	Package	Option	Tape &	IEC/EN/DIN/EN 60747-5-5	Quantity	Others
		Name	Reel	(V _{PR} method b)	Quantity	Others
		-			45 per tube	
	V-331J SOP-16	-V		•	45 per tube	
LTV-331J		-TP1	•			Location at
		TP1-V	●	•	850 per reel	upper right of tape

To order, choose a part number from the part number column and combine with the desired option from the option column to form an

order entry.

Example 1:

LTV331J-V to order product of SOP-16 Surface Mount package in Tube packaging(Quantity: 45pcs per tube) with IEC/EN/DIN EN

60747-5-5 Safety Approval (V_{PR} method b).

Example 2:

LTV331JTP1-V to order product of SOP-16 Surface Mount package in tape& reel packaging with IEC/EN/DIN EN

60747-5-5 Safety Approval (V_{PR} method b).

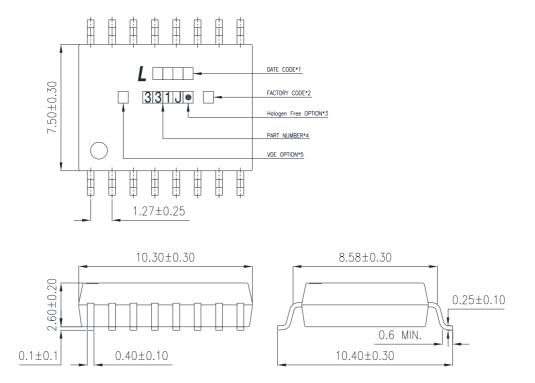
Above option datasheets are available. Please contact your LITEON sales representative or authorized distributor for information.

Example 3:

LTV-331J-TP1 to order product of SOP-16 Surface Mount package in tape& reel packaging with IEC/EN/DIN EN

60747-5-5 Safety Approval (Without V_{PR} method b).

Above option datasheets are available. Please contact your LITEON sales representative or authorized distributor for information.



Photocouplers LTV-331J series

2. PACKAGE DIMENSIONS

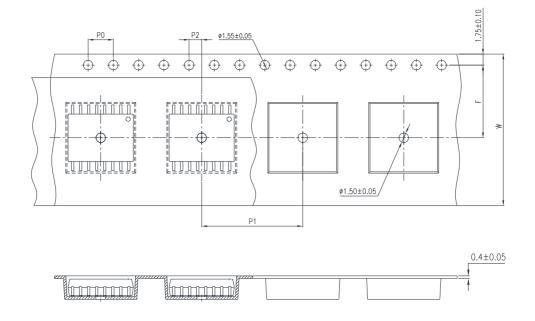
2.1 LTV-331J

Notes :

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark

(Y: Thailand).

Dimensions are in Millimeters and (Inches).


4/

Photocouplers LTV-331J series

3. TAPING DIMENSIONS

3.1 LTV-331J-TP1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	24±0.3 (0.94)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	11.5±0.1 (0.452)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	16±0.1 (0.63)

3.3 Quantities Per Reel

Package Type	LTV-331J
Quantities (pcs)	850

5/19

Photocouplers LTV-331J series

4. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in

application.

Description	Symbol	Characteri- stics	Unit
Installation classification per DIN VDE 0110/39, Table 1 for rated mains voltage \leq 150 V _{rms} for rated mains voltage \leq 300 V _{rms} for rated mains voltage \leq 600 V _{rms} for rated mains voltage \leq 1000 V _{rms}		I - IV I - IV I - IV I - III	
Climatic Classification		40/100/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	VIORM	1414	V _{peak}
Input-to-Output Test Voltage, Method b *a, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with t _m = 1 sec, Partial Discharge < 5 pC	V _{PR}	2651	V _{peak}
Input-to-Output Test Voltage, Method a *a, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test, t _m = 10 sec, Partial Discharge < 5 pC	V _{PR}	2262	V _{peak}
Highest Allowable Overvoltage (Transient Overvoltage, $t_{ini} = 60$ sec)	VIOTM	8000	V _{peak}
Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current *b Output Power *b	Ts I _{S, INPUT} P _{S, OUTPUT}	175 400 1200	°C mA mW
Insulation Resistance at T_S , V_{IO} = 500 V	Rs	≥ 10 ⁹	Ω

*a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN

60747-5-5, for a detailed description.

*b. Ratings apply to all devices except otherwise noted in the Package column.

6/19

Photocouplers LTV-331J series

5. Insulation and Safety Related Specifications

Part number	Symol	LTV-331J	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	8.3	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	8.3	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.5	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Tracking Resistance (Comparative Tracking Index)	СТІ	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Photocouplers LTV-331J series

6. RATING AND CHARACTERISTICS

6.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit	Note
Storage Temperature	T _{stg}	-55	+125	°C	—
Operating Temperature	T_{opr}	-40	+105	°C	—
Output IC Junction Temperature	TJ	—	125	°C	—
Average Forward Input Current	I _F	—	25	mA	3
Reverse Input Voltage	V _R	—	5	V	—
Peak Transient Input Current	I _{F(TRAN)}	—	1	А	1
"High" Peak Output Current	I _{OH(PEAK)}	—	2.5	А	2
"Low" Peak Output Current	I _{OL(PEAK)}	—	2.5	А	2
Positive Input Supply Voltage	V _{CC1}	-0.5	7	V	
FAULT Output Current	I _{FAULT}		8	mA	
FAULT Pin Voltage	V _{FAULT}	-0.5	V _{CC1}	V	
Total Output Supply Voltage	$(V_{CC2} - V_{EE})$	-0.5	35	V	—
Negative Output Supply Voltage	$(V_{E}-V_{EE})$	-0.5	15	V	
Positive Output Supply Voltage	(V _{CC2} –V _E)	-0.5	35-(V _E -V _{EE})	V	
Output Voltage	V _{O(PEAK)}	-0.5	35	V	—
Peak Clamping Sinking Current	I _{Clamp}	—	1.7	А	
Miller Clamping Pin Voltage	V _{Clamp}	-0.5	V _{CC2}	V	
DESAT Voltage	V _{DESAT}	V _E	V _E +10	V	
Power Dissipation	Pı		150	mW	—
Output Power Dissipation	Po	—	600	mW	—
Lead Solder Temperature (10s)	T _{sol}	—	260	°C	—

Note: Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

8/19

Photocouplers LTV-331J series

6.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	105	°C
Total Output Supply Voltage	$(V_{CC2}-V_{EE})$	15	30	V
Negative Output Supply Voltage	$(V_{E}-V_{EE})$	0(-0.5)	15	V
Positive Output Supply Voltage	(V _{CC2} -V _E) 15(-0.5)		30- (V _E -V _{EE})	V
Input Current (ON)	I _{FL(ON)}	8	12	mA
Input Voltage (OFF)	V _{F(OFF)}	-3.6(0)	0.8	V

6.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symb	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
	Input Forward Voltage	VF	1.2	1.37	1.8	V	I _F = 10mA		
	Input Forward Voltage	ΔV_{F}		-1.237		mV/⁰C	I _F = 10mA		
	Temperature Coefficient	ΔΤ		-1.237		mv/ C			
	Input Reverse Voltage	BV_R	5			V	I _R = 10μΑ		
Input	Input Threshold Current	IELH		2	5	mA	I _O = 0 A , V _O > 5V		
	(Low to High)	.LU		_	Ŭ		10 - 071, 107 01		
	Input Threshold Voltage	V_{FHL}	0.8	1.26		V			
	(High to Low)					-			
	Input Capacitance	C _{IN}		33		pF	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$		
		V _{FAULT}			0.4	V	$I_{FAULT} = 1.1 \text{ mA}, V_{CC1}$		
	FAULT Logic Low Output				0.4	V	= 5.5 V		
	Voltage						I _{FAULT} = 1.1 mA, V _{CC1}		
					0.4	V	= 3.3 V		
							V _{FAULT} = 5.5 V, V _{CC1} =		
Output	FAULT Logic High Output				0.5	μA	5.5 V		
	Current	I _{FAULT}					V _{FAULT} = 3.3 V, V _{CC1} =		
					0.3	μA	3.3 V		
	High Level Supply						Output Open,		8
	Current	I _{CC2H}		2.4	4.5	mA	$I_F = 7$ to 16 mA		

9/19

Photocouplers LTV-331J series

Low Level Supply Current	I _{CC2L}		2.5	4.5	mA	Output Open, V _F = 0 to +0.8 V		
High Level Output				-1.0		$V_{\rm O} = V_{\rm CC2} - 1.5 \text{ V}$	40	4
Current	I _{OH}			-2.5	A	$V_o = V_{CC2} - 4 V$	19	2
Low Level Output Current	1	1.0			A	$V_{O} = V_{EE}$ + 1.5 V	20	4
Low Level Output Current	I _{OL}	2.5			A	$V_{O} = V_{EE} + 4 V$	20	2
High Level Output Voltage	V _{он}	V _{CC2} _ 0.8	V _{CC2 -} 1.1		V	I _O = -100 mA , I _F = 10 mA	17	5
Low Level Output Voltage	V _{OL}		0.1	0.25	V	I _O = 100 mA , I _F = 0 mA	18	6,7,8, 22
Clamp Low Level Sinking Current	I _{CL}	0.5	1.1		A	V_{tClamp} = 2.0 V		
Blanking Capacitor Charging Current	I _{CHG}	-0.13	-0.24	-0.33	mA	V _{DESAT} = 2 V		8.9
Blanking Capacitor Discharge Current	I _{DSCHG}	10	30		mA	V _{DESAT} = 7 V		
DESAT Threshold	V _{DESAT}	6	6.5	7.5	V	$V_{CC2} - V_E > V_{UVLO}$		7
Clamp Pin Threshold Voltage	V _{tClamp}		2.0		V			
UVLO Threshold	V _{UVLO+}	10.5	11.6	12.5	V	V _O > 5V, I _F = 10 mA		6,8,10
	V _{UVLO-}	9.2	10.3	11.1	V	$V_{\rm O}$ < 5V, I _F = 10 mA	22	,11
UVLO Hysteresis	UVLO		1.3		V	(V _{UVLO+} - V _{UVLO-})		

Photocouplers LTV-331J series

6.4 SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to High Output Level	t _{РLН}	100		250			23	12,14
Propagation Delay Time to Low Output Level	t _{РНL}	100		250		R _g = 10 Ω,		
Pulse Width Distortion	PWD	-80		80		C _g = 10 nF,		13,16
Propagation delay difference between any two parts or channels	PDD	-100		100	ns	f = 10 kHz, Duty Cycle = 50% $I_F = 10 \text{ mA},$		15,16
Output Rise Time (10 to 90%)	Tr		50			V _{CC2} = 30V	23	
Output Fall Time (90 to 10%)	Tf		50					
DESAT Sense to 90%VO Delay	tdesat(90%)			0.5	μs	C _{DESAT} = 100 pF, Rg =10 Ω, Cg = 10 nF, V _{CC2} = 30 V		
DESAT Sense to 10%VO Delay	tdesat(10%)			3	μs	C _{DESAT} = 100 pF, Rg =10 Ω, Cg = 10 nF, V _{CC2} = 30 V		
DESAT Sense to Low Level FAULT Signal Delay	t _{DESAT} (FAULT)			0.5	μs	$C_{DESAT} = 100 \text{pF}, \text{R}_{\text{F}} = 2.1 \text{ k}\Omega,$ $C_{\text{F}} = 1 \text{ nF}, \text{Rg} = 10 \Omega,$ $Cg = 10 \text{ nF}, \text{V}_{CC2} = 30 \text{ V}$		17
DESAT Sense to DESAT Low Propagation Delay	t _{desat(Low)}		0.25		μs	$C_{DESAT} = 100 \text{ pF}, R_F = 2.1 \text{ k}\Omega,$ $Rg = 10 \Omega, Cg = 10 \text{ nF},$ $V_{CC2} = 30 \text{ V}$		18

11/19 4

Photocouplers LTV-331J series

DESAT Input Mute	t _{DESAT(MUTE)}	5		μs			19
RESET to High Level FAULT Signal Delay	t _{RESET(FAULT)}	0.3	2	μs	$C_{DESAT} = 100 \text{pF}, \text{R}_{\text{F}} = 2.1 \text{ k}\Omega,$ Rg =10 Ω,Cg =10nF,		
Common mode transient immunity at high level output		15		$\begin{array}{l} T_{A}=25^{\circ}C,\ I_{F}=10\ mA,\\ kV/\mu s & V_{CM}=1500\ V,\ V_{CC2}=30\ V,\\ R_{F}=2.1\ k\Omega,\ C_{F}=15\ pF \end{array}$			
	CMH	50		kV/µs	$T_{A} = 25^{\circ}C, I_{F} = 10 \text{ mA},$ $V_{CM} = 1500 \text{ V}, V_{CC2} = 30 \text{ V},$ $R_{F} = 2.1 \text{ k}\Omega, C_{F} = 1 \text{ nF}$		20,23
Common mode transient immunity at low level output	CML	15		kV/µs	$\begin{split} T_{A} &= 25^{\circ}C, \ V_{F} = 0 \ V, \\ V_{CM} &= 1500 \ V, \ V_{CC2} = 30 \ V, \\ R_{F} &= 2.1 \ k\Omega, \ C_{F} = 15 \ pF \end{split}$	21	21
		50		kV/µs	$T_{A} = 25^{\circ}C, V_{F} = 0 V,$ $V_{CM} = 1500 V, V_{CC2} = 30 V,$ $R_{F} = 2.1 \text{ k}\Omega, C_{F} = 1 \text{ nF}$		21

1. All Typical values at TA = 25° C and VCC – VEE = 30 V, VE – VEE = 0V; unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

2. Maximum pulse width = 10 $\mu s.$

This value is intended to allow for component tolerances for designs with I_0 peak minimum = 1.0 A.

3. This supply is optional. Required only when negative gate drive is implemented.

4. Maximum pulse width = 50 μ s.

5. See the Slow IGBT Gate Discharge During Fault Condition section in the applications notes at the end of this data sheet for further details.

6. 15 V is the recommended minimum operating positive supply voltage ($V_{CC2} - V_E$) to ensure adequate margin in excess of the maximum V_{UVLO+} threshold of 12.5V. For High Level Output Voltage testing, VOH is measured with a dc load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero units.

7. Maximum pulse width = 1.0 ms.

8. Once V_O of the LTV-331J is allowed to go high (V_{CC2} - V_E > V_{UVLO+}), the DESAT detection feature of the LTV-331J will be the primary source of IGBT protection. UVLO is needed to ensure DESAT is functional. Once V_{CC2} is increased from 0 V to above

Photocouplers LTV-331J series

 V_{UVLO+} , DESAT will remain functional until V_{CC2} is decreased below V_{UVLO-} . Thus, the DESAT detection and UVLO features of the LTV-331J work in conjunction to ensure constant IGBT protection.

9. See the DESAT fault detection blanking time section in the applications notes at the end of this data sheet for further details.

10. This is the "increasing" (i.e. turn-on or "positive going" direction) of V_{CC2} - V_E

11. This is the "decreasing" (i.e. turn-off or "negative going" direction) of V_{CC2} - V_E

12. This load condition approximates the gate load of a 1200 V/150A IGBT.

13. Pulse Width Distortion (PWD) is defined as |t_{PHL} - t_{PLH}| for any given unit.

14. As measured from I_{F} to $V_{\text{O}}.$

15. The difference between t_{PHL} and t_{PLH} between any two LTV-331J parts under the same test conditions.

16. As measured from ANODE, CATHODE of LED to VOUT

17. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes low.

18. This is the amount of time the DESAT threshold must be exceeded before V_{OUT} begins to go low, and the FAULT output to go low. This is supply voltage dependent.

19. Auto Reset: This is the amount of time when V_{OUT} will be asserted low after DESAT threshold is exceeded. See the Description of Operation (Auto Reset) topic in the application information section.

20. Common mode transient immunity in the high state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to

assure that the output will remain in the high state (i.e., $V_0 > 15$ V or FAULT > 2 V).

21. Common mode transient immunity in the low state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in a low state (i.e., $V_0 < 1.0$ V or FAULT < 0.8 V).

22. To clamp the output voltage at V_{CC} - 3 V_{BE} , a pull-down resistor between the output and V_{EE} is recommended to sink a static current of 650 µA while the output is high. See the Output Pull-Down Resistor section in the application notes at the end of this data sheet if an output pull-down resistor is not used.

23. Split resistors network with a ratio of 1:1 is needed at input LED1. See Figure 13. together.

Photocouplers LTV-331J series

	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Note
Withstand Insulation Test	M	5000			V	RH ≤ 40-60%,	1, 2
Voltage	V _{ISO}	5000	_	_	v	t = 1min, $T_A = 25^{\circ}C$,	
Input-Output Resistance	R _{I-O}	—	10 ⁹	—	Ω	V _{I-O} = 500 V DC	1
Input-Output Capacitance	C _{I-O}	_	1.3		pF	f = 1MHz, T _A = 25°C	1

6.5 PACKAGE CHARACTERISTICS

Note.1. According to UL1577, each Photocoupler is tested by applying an insulation test voltage $6000V_{RMS}$ for 1 second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge

Note.2. This is a two-terminal measurement: pins 1-8 are shorted together and pins 9-16 are shorted together.

Photocouplers LTV-331J series

7. TYPICAL TEST CIRCUITS

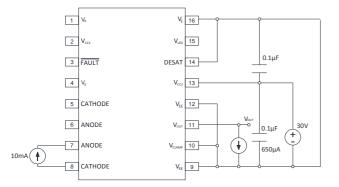
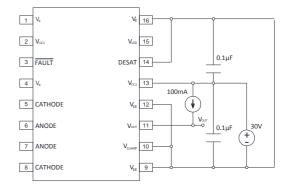



Figure 1 : Von Test Circuit

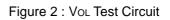


Figure 3 : IOH Test Circuit

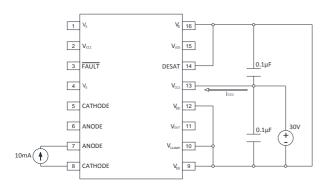
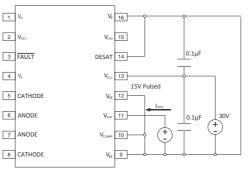
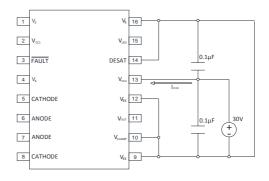
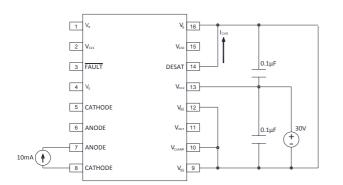
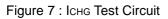
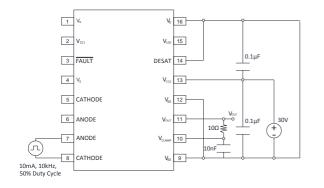



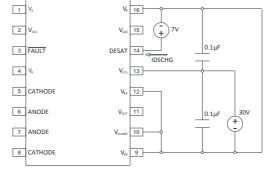
Figure 5 : ICC2H Test Circuit

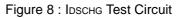



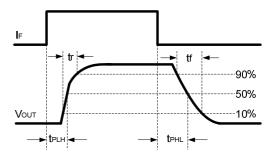

Figure 6 : Icc2L Test Circuit


15/19

Photocouplers LTV-331J series







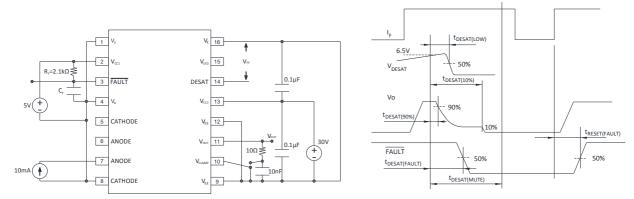

(f =10k HZ,duty = 50%,tr = tf = 5ns or less)

Figure 9 : tPLH , tPHL , tr , tr Test Circuit

I_F = 10 mA

(f =10k HZ,duty = 50%,tr = tf = 5ns or less)

16/19

Photocouplers LTV-331J series

Figure 10 : tDESAT fault Test Circuit

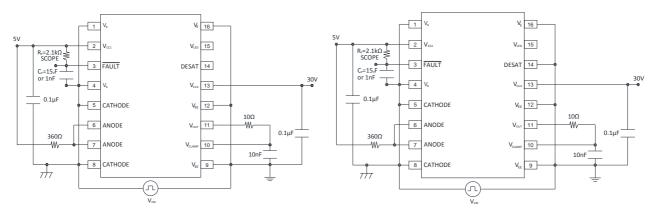
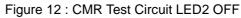
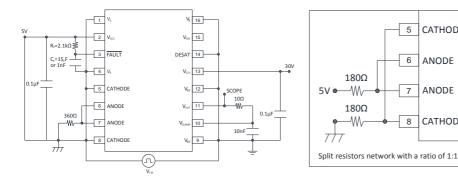
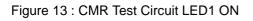



Figure 11 : CMR Test Circuit LED2 ON

5 CATHODE


6 ANODE


7

8

ANODE

CATHODE

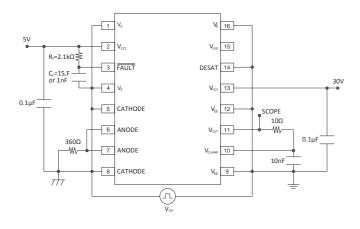
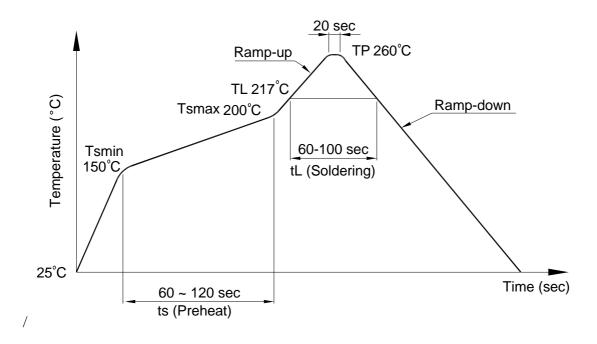


Figure 14 : CMR Test Circuit LED1 OFF

 $17/^{\prime}$


Photocouplers LTV-331J series

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

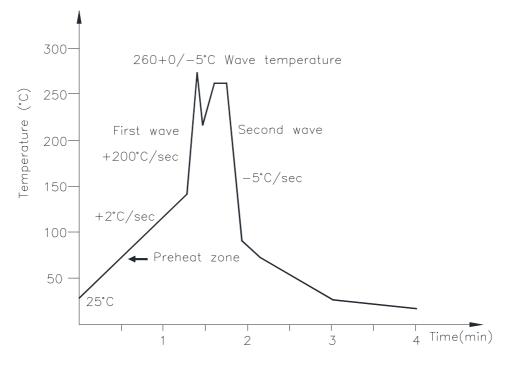
One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions				
Preheat					
- Temperature Min (T _{Smin})	150°C				
- Temperature Max (T _{Smax})	200°C				
- Time (min to max) (ts)	90±30 sec				
Soldering zone					
- Temperature (T_L)	217°C				
- Time (t _L)	60 ~ 100 sec				
Peak Temperature (T _P)	260°C				
Ramp-up rate	3°C / sec max.				
Ramp-down rate	3~6°C / sec				

18/19

Photocouplers LTV-331J series

8.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

9. Notes:

Specifications of the products displayed herein are subject to change without notice.

The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.

19/19