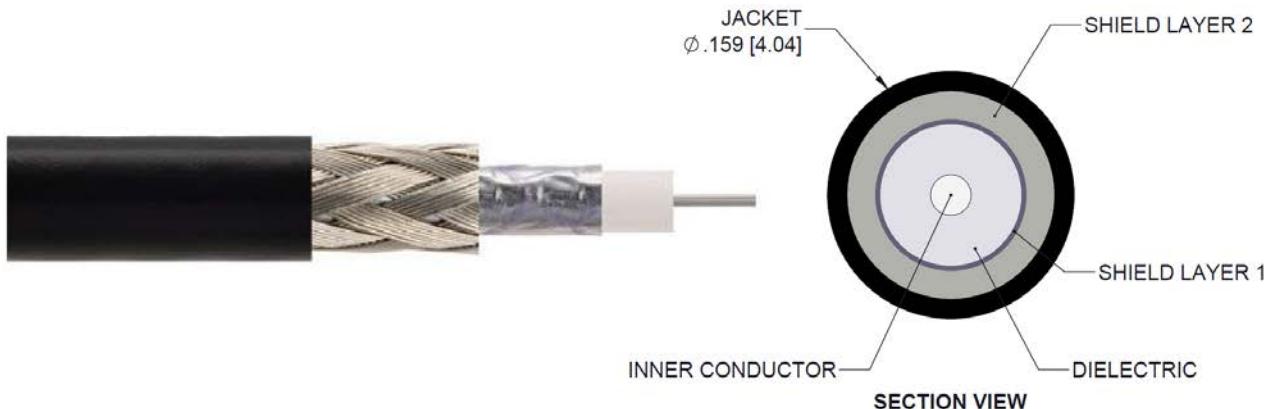


75 Ohm 12G SDI BNC Male to BNC Male Cable
Assembly using 4855R-BK Coax, 1 FT

LCCA30733/BK-FT1

Configuration


- Connector 1: BNC Male
- Connector 2: BNC Male
- Cable Type: Belden 4855R-BK

Features

- Meets SMPTE ST 2082-1
- Backwards Compatible with 2081-1
- 12Gb/s Transmission
- Cost Effective

Applications

- 12G-SDI, Video, and Broadband UHDTV
- Broadband Internet Delivery
- Broadcast A/V
- 4K/8K Video Equipment
- Medical Equipment Requiring High Speed Video
- HD Cameras

Description

L-com's LCCA30733/BK-FT1 is a 75 Ohm 12G SDI BNC male to BNC male cable assembly using 4855R-BK coax, 1 FT and ships same-day. These flexible RF cable assemblies are ideal for applications where flexure is required. Our L-com BNC to BNC cable assembly has a male to male gender configuration with 75 Ohm flexible Belden 4855R-BK series coax and operates to 12 GHz and enables 12Gb/s data transfer rates for high resolution uncompressed video signal transmission. These products offer 4K and Ultra-HD quality signals that meet SMPTE Standard 2082-1. The shielding of this BNC cable is comprised of aluminum polyester.

Custom versions of this BNC male to BNC male cable, along with the rest of L-com's other RF assemblies, can also be built and shipped same day. Other available RF cable assembly value added services from L-com include connector orientation or clocking, heat shrink booting and custom labeling. RF testing can also be performed to document the electrical performance of your cable assembly. Contact a sales representative for testing or custom RF cable quotes. Part number LCCA30733/BK-FT1 L-com 75 Ohm 12G SDI BNC Male to BNC Male Cable Assembly using 4855R-BK Coax, 1 FT data sheet PDF includes details of the RF product specifications, CAD drawing(s) and dimensions below.

Electrical Specifications

Description	Minimum	Typical	Maximum	Units
-------------	---------	---------	---------	-------

75 Ohm 12G SDI BNC Male to BNC Male Cable
Assembly using 4855R-BK Coax, 1 FT

LCCA30733/BK-FT1

Frequency Range	DC	12	GHz
VSWR		1.5:1	
Velocity of Propagation	82		%
Group Delay	1.2 [3.94]		ns/ft [ns/m]
Capacitance	16.3 [53.48]		pF/ft [pF/m]
Inductance	0.107 [0.35]		uH/ft [uH/m]
DC Resistance Inner Conductor	19.7 [64.63]		Ohms/1000ft [Ohms/Km]
DC Resistance Outer Conductor	3.9 [12.8]		Ohms/1000ft [Ohms/Km]
Operating Voltage (AC)		300	Vrms

Specifications by Frequency

Description	F1	F2	F3	F4	F5	Units
Frequency	0.5	1	2.5	5	12	GHz
Insertion Loss (Typ.)	0.28	0.31	0.38	0.45	0.62	dB

Electrical Specification Notes:

The Insertion Loss data above is based on the performance specifications of the coax and connectors used in this assembly. The Insertion Loss includes an estimated insertion loss of 0.1 dB per connector.

Mechanical Specifications

Cable Assembly

Length	12 in [304.8 mm]
Diameter	0.5 in [12.7 mm]
Weight	0.1 lbs [45.36 g]

Cable

Cable Type	Belden 4855R-BK
Impedance	75 Ohms
Inner Conductor Type	Solid
Inner Conductor Material and Plating	Copper, Silver
Dielectric Type	HDPE
Number of Shields	1
Shield Layer 1	Aluminum Polyester
Shield Layer 2	Tinned Copper
Jacket Material	PVC, Black
Jacket Diameter	0.159 in [4.04 mm]

75 Ohm 12G SDI BNC Male to BNC Male Cable
Assembly using 4855R-BK Coax, 1 FT

LCCA30733/BK-FT1

Connectors

Description	Connector 1	Connector 2
Type	BNC Male	BNC Male
Impedance	75 Ohms	75 Ohms
Contact Material and Plating	Brass, Gold	Brass, Gold
Contact Plating Specification	10 μ in minimum	10 μ in minimum
Dielectric Type	PTFE	PTFE
Outer Conductor Material and Plating	Brass, Nickel	Brass, Nickel
Outer Conductor Plating Specification	50 μ in minimum	50 μ in minimum
Body Material and Plating	Brass, Nickel	Brass, Nickel
Body Plating Specification	100 μ in minimum	100 μ in minimum

Environmental Specifications

Temperature

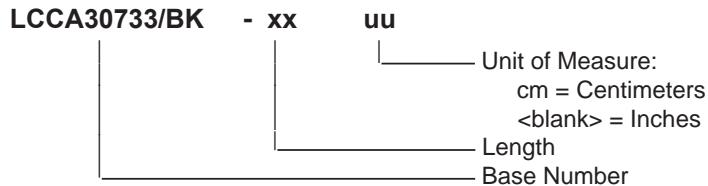
Operating Range -30 to +75 deg C

Compliance Certifications (see [product page](#) for current document)

Plotted and Other Data

Notes:

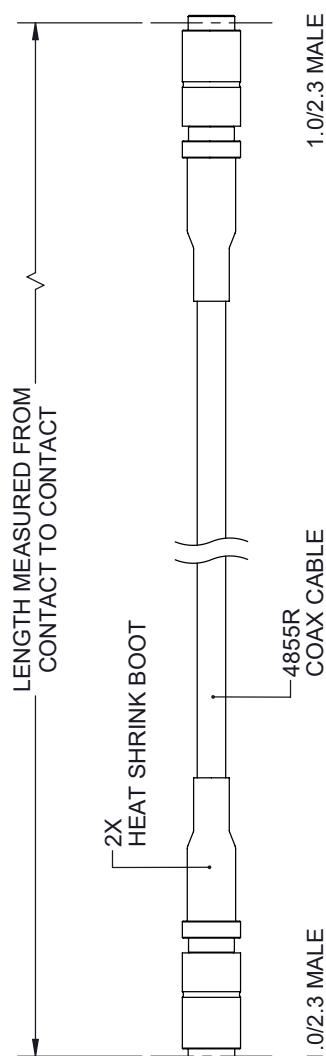
- Values at 25°C, sea level.


75 Ohm 12G SDI BNC Male to BNC Male Cable
Assembly using 4855R-BK Coax, 1 FT

LCCA30733/BK-FT1

How to Order

Part Number Configuration:



Example: LCCA30733/BK-12 = 12 inches long cable
LCCA30733/BK-100cm = 100 cm long cable

75 Ohm 12G SDI BNC Male to BNC Male Cable Assembly using 4855R-BK Coax, 1 FT from L-com has same day shipment for domestic and International orders. L-com is a leading manufacturer of wired and wireless connectivity products and committed to in-stock availability and same day shipping. Our portfolio includes coaxial cable assemblies, connectors, adapters and custom products as well as lightning and surge protectors, NEMA rated enclosures, and an RF product line which includes antennas, amplifiers, passive, and active components.

The information contained within this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part in order to implement improvements. L-com reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. L-com does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and L-com does not assume liability arising out of the use of any part or document contained within this document is accurate to the best of our knowledge and representative of the part described herein. It may be necessary to make modifications to the part and/or the documentation of the part in order to implement improvements. L-com reserves the right to make such changes as required. Unless otherwise stated, all specifications are nominal. L-com does not make any representation or warranty regarding the suitability of the part described herein for any particular purpose, and L-com does not assume liability arising out of the use of any part or document.

L-com CAD Drawing

REV.		DESCRIPTION		DATE	APPROVED																			
A		INITIAL RELEASE		5/2/22	AGANWANI																			
REVISIONS																								
 an INFINITE brand 50 High Street, West Mill, 3rd Floor, Suite #30 North Andover, MA 01845 USA Phone: 1.800.341.5266 978.682.6936 Fax: 1.978.689.9484 Website: www.L-com.com E-mail: CustomerService@L-com.com																								
 THE INFORMATION AND DESIGN IN THIS DOCUMENT IS THE PROPERTY OF L-COM GLOBAL. ALL RIGHTS RESERVED. SHEET 1 OF 1 SCALE N/A ITEM NO. LCCA30733/ZZ DRAWN BY HBAKKE REV A																								
<p>UNLESS OTHERWISE SPECIFIED LEADING DIMENSIONS ARE IN INCHES DIMENSIONS IN [] ARE MILLIMETERS</p> <p><u>TOLERANCES:</u></p> <table border="1"> <tr> <td>$X = \pm .2$</td> <td>$[5.08]$</td> <td><u>FRACTIONS</u></td> </tr> <tr> <td>$XX = \pm .02$</td> <td>$[.51]$</td> <td>$\pm .32$</td> </tr> <tr> <td>$XXX = \pm .005$</td> <td>$[.13]$</td> <td><u>ANGLES $\pm 1^\circ$</u></td> </tr> </table> <p><u>CABLE LENGTH (L) TOLERANCES:</u></p> <table border="1"> <tr> <td>$L \leq 12 [305]$</td> <td>$= +1 [25] / -0$</td> </tr> <tr> <td>$60 [1524]$</td> <td>$< L \leq 60 [1524] = +2 [51] / -0$</td> </tr> <tr> <td>$120 [3048]$</td> <td>$< L \leq 120 [3048] = +4 [102] / -0$</td> </tr> <tr> <td>$300 [7620]$</td> <td>$= +6 [152] / -0$</td> </tr> <tr> <td>$300 [7620]$</td> <td>$< L = +5\% L / -0$</td> </tr> </table> <p>ALL DIMENSIONS SHOWN ARE FOR REFERENCE ONLY.</p> <p>THESE COMMODITIES, TECHNOLOGY OR SOFTWARE WERE EXPORTED FROM THE UNITED STATES IN ACCORDANCE WITH THE EXPORT ADMINISTRATION REGULATIONS. DIVERSION CONTRARY TO U.S. LAW PROHIBITED.</p> <p>T.Rev.D</p>						$X = \pm .2$	$[5.08]$	<u>FRACTIONS</u>	$XX = \pm .02$	$[.51]$	$\pm .32$	$XXX = \pm .005$	$[.13]$	<u>ANGLES $\pm 1^\circ$</u>	$L \leq 12 [305]$	$= +1 [25] / -0$	$60 [1524]$	$< L \leq 60 [1524] = +2 [51] / -0$	$120 [3048]$	$< L \leq 120 [3048] = +4 [102] / -0$	$300 [7620]$	$= +6 [152] / -0$	$300 [7620]$	$< L = +5\% L / -0$
$X = \pm .2$	$[5.08]$	<u>FRACTIONS</u>																						
$XX = \pm .02$	$[.51]$	$\pm .32$																						
$XXX = \pm .005$	$[.13]$	<u>ANGLES $\pm 1^\circ$</u>																						
$L \leq 12 [305]$	$= +1 [25] / -0$																							
$60 [1524]$	$< L \leq 60 [1524] = +2 [51] / -0$																							
$120 [3048]$	$< L \leq 120 [3048] = +4 [102] / -0$																							
$300 [7620]$	$= +6 [152] / -0$																							
$300 [7620]$	$< L = +5\% L / -0$																							