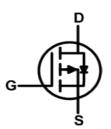


- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Description

The 10P06 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The 10P06 meet the RoHS and Green Product, requirement 100% EAS guaranteed with full function reliability approved.


Product Summary

BVDSS	RDSON	ID	
-60V	100 m Ω	-10A	

TO252 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	-60	V
V _G s	Gate-Source Voltage	±20	V
lp@Tc=25°C	Continuous Drain Current, V _{GS} @ -10V ¹	-10	Α
lp@Tc=100°C	Continuous Drain Current, V _{GS} @ -10V ¹	-7.8	Α
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ -10V ¹	-3.5	Α
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ -10V ¹	-2.8	Α
Ірм	Pulsed Drain Current ²	-25	Α
EAS	Single Pulse Avalanche Energy ³	20	mJ
las	Avalanche Current	-20	Α
Pp@Tc=25°C	Total Power Dissipation ⁴	25	W
PD@Ta=25°C	Total Power Dissipation ⁴	2	W
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
Tu	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
RөJA	Thermal Resistance Junction-Ambient ¹		62	°C/W
Rejc	Thermal Resistance Junction-Case ¹		5	°C/W

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVpss	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-60			V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25°C , lo=-1mA	-	-0.049		V/°C	
Rds(on)	Static Drain-Source On-Resistance ²	Vgs=-10V, lp=-8A	-	100	140	$m\Omega$	
I/D9(ON)		V _{GS} =-4.5V , I _D =-6A	115 190		11177		
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1		-2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID230UA		5.42		mV/°C	
lpss	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =25°C			1		
1055	Diam-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =150°C			5	uA	
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-5A		5.8		S	
Qg	Total Gate Charge (-4.5V)			5.85			
Qgs	Gate-Source Charge	V _{DS} =-20V , V _{GS} =-4.5V , I _D =-5A		2.9		nC	
Qgd	Gate-Drain Charge			1.8			
Td(on)	Turn-On Delay Time			10			
Tr	Rise Time	 VDD=-12V , VGS=-10V , RG=3.3Ω, ID=-5A		17		no	
Td(off)	Turn-Off Delay Time	VDD12V, VGS10V, NG-3.322, ID3A		22		ns	
Tf	Fall Time			21			
Ciss	Input Capacitance			715			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , F=1MHz		51		pF	
Crss	Reverse Transfer Capacitance			34			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-9.5	Α
Ism	Pulsed Source Current ^{2,5}	VG-VD-OV, FOICE CUITEIN			-24	Α
VsD	Diode Forward Voltage ²	V _G s=0V , Is=-1A , T _J =25°C			-1.2	V
trr	Reverse Recovery Time	 IF=-8A , dl/dt=100A/µs , Tյ=25°C		10.2		nS
Qrr	Reverse Recovery Charge	11οA , αναι- 100A/μs , 13-25 C		5.4		nC

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating. The test condition is VDD=-25V,VGS=-10V,L=0.1mH,IAS=-15A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

P-Channel Typical Characteristics

Figure 1: Output Characteristics

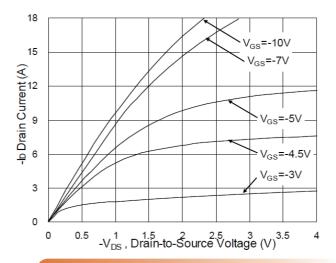


Figure 3:Forward Characteristics Of Rev

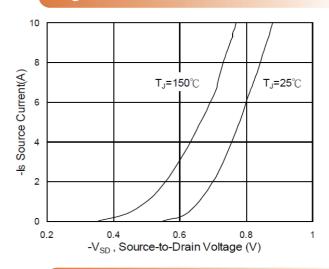


Figure 5: Normalized VGS(th) vs. TJ

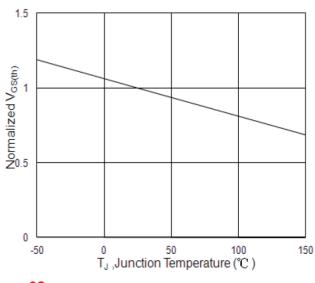


Figure 2: On-Resistance vs. G-S Voltage

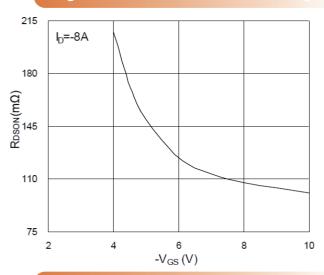


Figure 4: Gate-Charge Characteristics

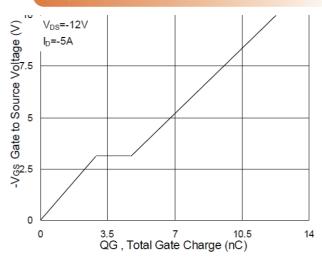
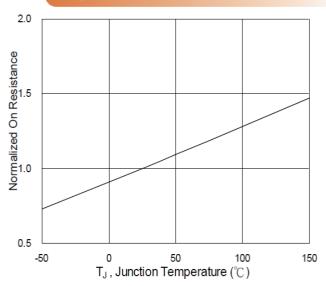



Figure 6: Normalized RDSON vs. TJ

Typical Performance Characteristics

Figure 7: Capacitance

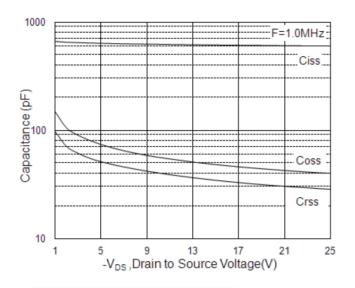


Figure 8: Safe Operating Area

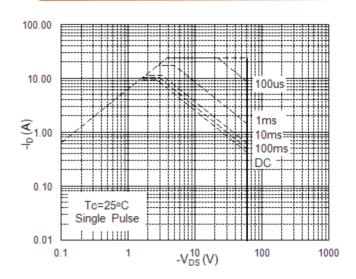


Figure 9: Normalized Maximum Transier

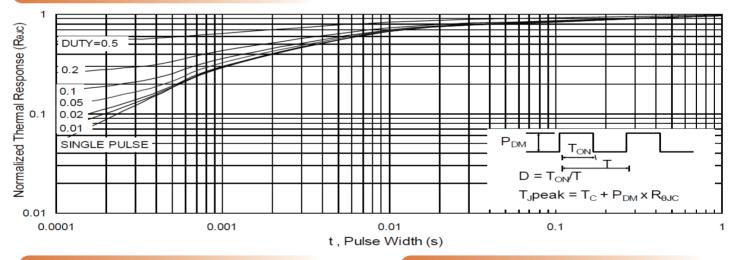
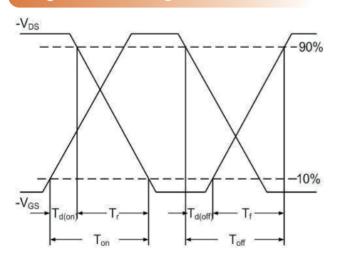
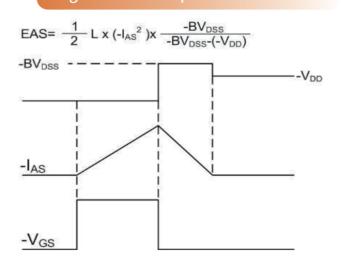
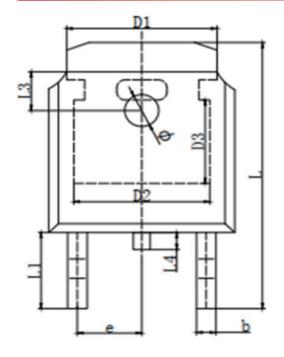
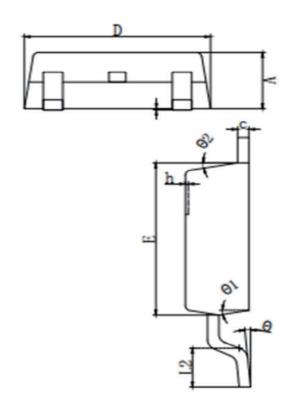


Figure 11: Switching Time Waveform


Figure 10: Unclamped Inductive Switchin

TO-252 Package outline

Symbol	MILLMETER		C -1 - 1	MILLMETER		
	MIN	MAX	Symbol	MIN	MAX	
A	2. 200	2.400	h	0.000	0.200	
A1	0.000	0. 127	L	9.900	10.30	
b	0.640	0.740	L1	2. 888REF		
С	0.460	0.580	L2	1.400	1.700	
D	6.500	6.700	L3	1.600REF		
D1	5. 33	4REF	L4	0.600 1.000		
D2	4.82	6REF	Ø	1.100	1.300	
D3	3. 16	3. 166REF		0°	8°	
Е	6.00	6. 200	θ_{1}	9° TYP2		
е	2. 28	6TYP	θ 2	9° TYP		