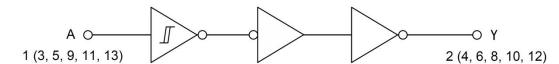


六路施密特触发器

概述

CD40106 是由六个 CMOS 反向电路组成,每个电路输入有一个施密特触发电路,触发开关在不同的电位,输出为正向和负向信号,正向电压(VP)和负向电压(VN)之间的电压差被定义为迟滞电压(VH)。在使用时,未使用的通道的输入端需要接到电源或者地来降低芯片的功耗。

主要特点


- 施密特触发输入
- 标准化对称输出特性

- 电源电压: 3 ~ 16V
- 输入电压: 0 ~ VDD
- 5V、10V、15V 参数额定
- 静态电流低: IDD < 1 µ A
- 工作温度: -20℃ ~ 85℃
- 封装形式: SOP14

应用领域

- 波形与脉冲整形
- 稳定多谐振荡器
- 单稳态振荡器
- 高噪声环境系统

内部框图

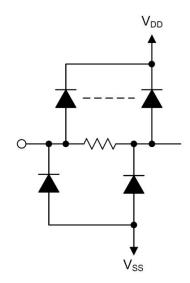
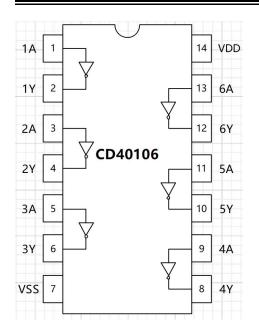



图 1. 逻辑图(一路缓冲器) & 简易框图

序号	管脚定义	序号	管脚定义
1	1 通道输入	14	电源
2	1 通道输出	13	6 通道输入
3	2 通道输入	12	6 通道输出
4	2 通道输出	11	5 通道输入
5	3 通道输入	10	5 通道输出
6	3 通道输出	9	4 通道输入
7	地	8	4 通道输出

极限最大参数

DV174-007 42 794			
参数	符号	最小值	最大值
电源电压	VDD	-0.5V	16V
输入电压	VIN	-0.5V	VDD+0.5V
输入电流	IIN	-10mA	+10mA
存储温度	Tstg	-65℃	150℃
结温	TJ	_	150℃
焊接温度	_	_	265℃
静电放电	ESD (HBM)	_	2000V

注意:超过以上极限值有可能造成芯片的永久性损坏。

推荐工作条件

41-14 11 W			
参数	符号	最小值	最大值
工作电压	VDD	3V	15V
输入电压	VIN	OV	VDD
工作温度	TA	-20℃	85℃

输入/输出真值表

输入(n A)	输出(n Y)		
L	Н		
Н	L		

注: L=低电平电压; H=高电平电压。

电气特性 - 静态参数

(没有特殊说明, TA=25℃)

符号	参数	测试刻	条件	最小值	典型值	最大值	单位
		$V_{IN} = 5V$	$V_{\rm DD} = 5V$	_	0	0.05	
Vol	输出低电平电压	$V_{IN} = 10V$	$V_{DD} = 10V$	_	0	0.05	V
		$V_{IN} = 15V$	$V_{DD} = 15V$	_	0	0.05	
		$V_{IN} = OV$	$V_{\rm DD} = 5V$	4. 95	5	-	
Vон	输出高电平电压	$V_{IN} = OV$	$V_{DD} = 10V$	9. 95	10	_	V
		$V_{IN} = OV$	$V_{DD} = 15V$	14. 95	15	_	
		_	$V_{\rm DD} = 5V$	2.9	3.6	4.3	
VP	正触发阈值电压	_	$V_{DD} = 10V$	5. 5	6.9	8. 2	V
		_	$V_{DD} = 15V$	8. 5	10.5	12. 5	
		_	$V_{\rm DD} = 5V$	0.7	1.7	2. 7	
Vn	负触发阈值电压	_	$V_{DD} = 10V$	2.0	3. 4	4.8	V
		_	$V_{DD} = 15V$	3.4	5. 2	7. 2	
		_	$V_{\rm DD} = 5V$	0.9	1.9	2.8	
VH	迟滞电压	_	$V_{DD} = 10V$	1.8	3. 5	4.0	V
		_	$V_{DD} = 15V$	3. 2	5. 3	7. 2	
		$V_0 = 0.4V$	$V_{\rm DD} = 5V$	0.5	1.6	_	
IIL	输出低电平灌电流	$V_0 = 0.5V$	$V_{DD} = 10V$	2. 5	5	-	mA
		$V_0 = 1.5V$	$V_{DD} = 15V$	3. 5	16	_	
		$V_0 = 4.6V$	$V_{\rm DD} = 5V$	_	-1	-0.5	
Іон	输出高电平源电流	$V_0 = 9.5V$	$V_{DD} = 10V$	_	-2.6	-1.3	mA
		$V_0 = 13.5V$	$V_{DD} = 15V$	_	-7.2	-3.5	
IIN	输入电流	V _{IN} =0V~15V	VDD=15V	-1	-	1	uA
		VIN=OV or 5V	$V_{DD} = 5V$	_	-	1	
IDD	电源电流	Vin=OV or 10V	$V_{DD} = 10V$	_	_	1	uA
		VIN=OV or 15V	$V_{DD} = 15V$	_	-	1	

注:转换特性波形如下

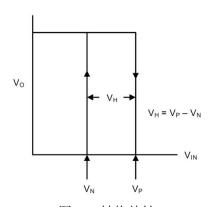


图 2. 转换特性

扬州国芯半导体有限公司 www.gcore.com.cn

第3页 共6页

电气特性 - 时间参数

参数	测试条件		最小值	典型值	最大值	单位
		V _{DD} =5V	_	35	110	ns
t _{PHL}	$C_L = 50 pF$	V _{DD} =10V	_	22	60	ns
	$RL = 200K \Omega$	VDD=15V	_	32	50	ns
	V _{IN} = 1KHz, D = 50%方波	V _{DD} =5V	_	46	110	ns
t _{PLH}	tr=tf≤20ns	V _{DD} =10V	_	30	60	ns
		VDD=15V	_	20	50	ns
		V _{DD} =5V	_	52	200	ns
tTHL	CL = 50pF	V _{DD} =10V	_	26	100	ns
	$R_L = 200 \text{K} \Omega$	VDD=15V	_	54	80	ns
	Vin = 1KHz, D = 50%方波	V _{DD} =5V	_	75	200	ns
ttlh	tr=tf≤20ns	V _{DD} =10V	_	40	100	ns
		VDD=15V	_	36	80	ns
CIN	Any Input		_	_	15	pF

注: 时间参数测试电路如下

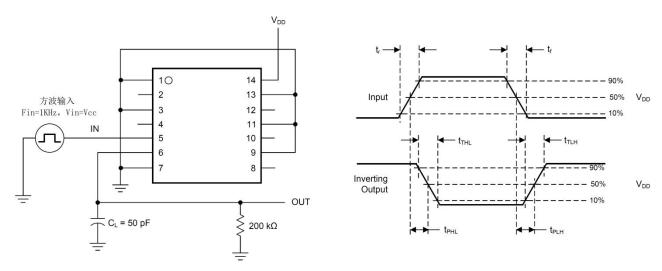


图 3. 时间测试原理图 & 输出波形

典型应用

(一) 波形整形器

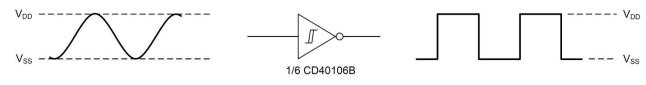
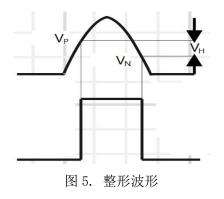



图 4. 波形整形器

上图应用中, 需注意:

- 1)输入波形电压幅度不能太大,应低于 VDD 电压;
- 2)输出负载也需要加以限制,以免超过芯片承受最大功率。

(二) 单稳态多谐振荡器

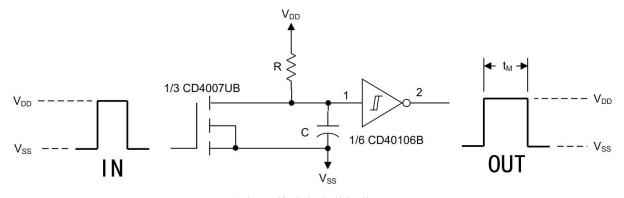


图 6. 单稳态多谐振荡器

(三) 非稳态多谐振荡器

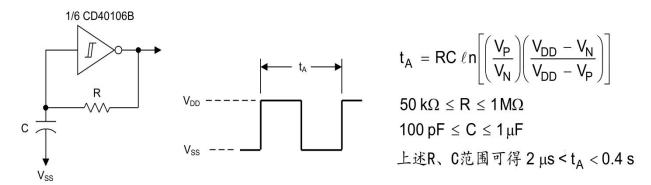
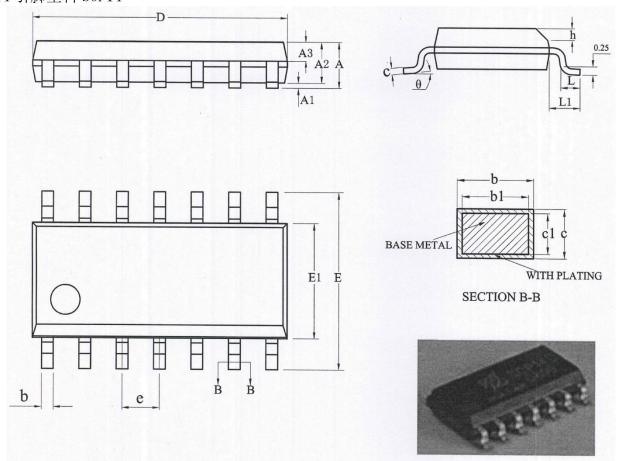



图 7. 非稳态多谐振荡器

封装信息

14 引脚塑料 SOP14

SYMBOL	MILLIMETER			
STMBOL	MIN	NOM	MAX	
A	_	_	1.75	
A1	0.10	_	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	_	0.47	
b1	0.38	0.41	0.44	
С	0.20	_	0.24	
c1	0.19	0.20	0.21	
D	8.55	8.65	8.75	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
Е	1.27BSC			
h	0.25	_	0.5	
L	0.50		0.8	
L1	1.05REF			
θ	0	_	8°	