

规格书 SPECIFICATION SHEET

Customer name:			
BERYL SERIES:	RC	TYPE:	RADIAL
DESCRIPTION:	6.8uF/400V	Ф8*12	
Apply date :	2021-05-05		

	BERYL		CUSTOMER					
P/N:RC400M6	R8LO8*12TH-2 <i>A</i>	AlEt	P/N:					
PREPARED	CHECKED	APPROVAL	PREPARED	CHECKED	APPROVAL			
董桂茹	邹小云工程部	刘高树						

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 2862871 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet NO.: 20210505 Page: 1/12

Revise record

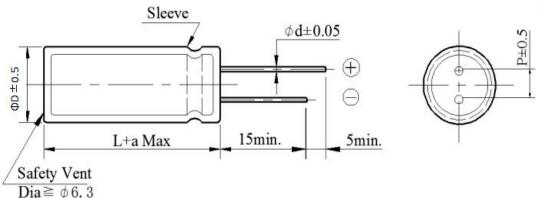
NO.	Date	Revise reason	Revise content	Prepared
01	2021.05.05	First issue	First issue	董桂茹

Sheet NO.: 20210505 Page: 2/12

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

2. Table of specification and characteristics

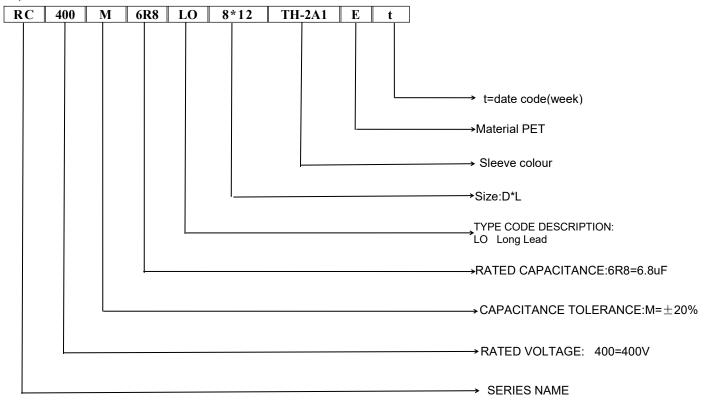

Series	Cap(uF) 120Hz/20°C	WV(V)	Size	e(mm)	Temperature (°C)	Capacitance Tolerance	Life(hours)	
	120112/20 C		D	L	()	1 ofer affec		
RC	6.8	400	8	12	-40~+105	±20%	5000	

DF (%)(MAX) 120Hz/20°C	LC(μA)(MAX) 2min/20°C	ESR(Ω)(MAX) 100KHz/20°C	RC (mArms) (MAX)105°C/100KHz	Surge voltage(V)
≤20	≤64.4	-	≤210	440

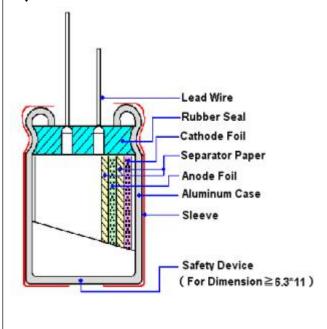
Other: /

3, Product Dimensions

Type

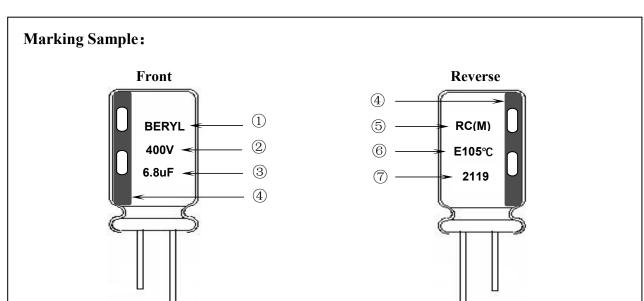


ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
а			(L<20)	± 1.5	(L≥2	$0) \pm 2.0$		


Sheet NO.: 20210505 Page: 3 / 12

4. Part Number

5, Construction


Material name	Composition	Supplier name
Lead	Al and (Fe+Cu+Sn)	NM、JX
Rubber	EPT / IIR	LHX、LA、TH、LM2
Case	Aluminum	OX、YJ、HL、LY2
Paper	Wood / Fibrous plant materials	KE、DF
Anode foil	$Al + Al_2O_3$	HY1、HY2、HF、HY3、 LD、FQ
Cathode foil	Aluminum	GY、LY1
Electrolyte	Glycol + Water +Ammonium salt	XZB、LM1、JZ2、FS
Sleeve	PET	YL、CY

Sheet NO.: 20210505 Page: 4/12

BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(400V)
- 3) Nominal capacitance(6.8uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2119)

21: Manufactured year 2021

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

19: Manufactured week (01, 02, 03, 04.....51, 52)

Sheet NO.: 20210505 Page: 5 / 12

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim450 \text{WV})$ -40°C to +105°C.

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C Criteria> Shall be within the specified capacitance tolerance.
2	Leakage current	$ \begin{array}{c} \text{Condition>} \\ \text{Connecting the capacitor with a protective resistor } (1k\Omega\pm10\Omega) \text{ in series for} \\ \text{2 minutes, and then, measure leakage current.} \\ \text{Criteria>} \\ \text{I: Leakage current } (\mu A) \\ \text{I } (\mu A) \leqslant 0.02\text{CV} + 10(\mu A) \text{ ,} \\ \text{measurement circuit refer to right drawing.} \\ \text{C: Capacitance } (\mu F) \\ \text{V: Rated DC working voltage } (V) \\ \end{array} $
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Must be within the parameters (See page 3)</criteria></condition>

Sheet NO.: 20210505 Page: 6 / 12

	ITEM				PERF	ORMAN	CE			
4	Impedance	Meas	uring frequency:1suring point: 2mm	max. from	the surfa	ace of a se		r on the lead	wire.	
5	Load life test	Maximum current exceed recovers and the control of	According to IEC60384-4No. 4.13 methods, the capacitor is stored at a temperature of Maximum operating temperature ±2°C with DC bias voltage plus the rated ripple current for Rated life +48/0hours. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following table <criteria> The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.</criteria>							
6	Shelf life test	The caten fro lease Criteria The chase Capace Dissip	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operating temperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for16 hours. measure leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.							
7	Maximum permissible (ripple current, temperature coefficient)	The ma applied Table-The co voltage	There shall be no leakage of electrolyte. Condition> The maximum permissible ripple current is the maximum A.C current at 100KF applied at maximum operating temperature Table-3 The combined value of D.C voltage and the peak A.C voltage shall not exceed voltage and shall not reverse voltage. Frequency Multipliers: Freq (Hz) Cap. (μF) 6.8 0.50 0.73 0.92 1.00 Temperature Coefficient: Temperature (°C) 60 85 95 105							

Sheet NO.: 20210505 Page: 7 / 12

Sheet NO.: 20210505

ALUMINUM ELECTROLYTIC CAPACITORS

Page : 8 / 12

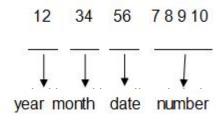
	ITEM				PER	FORMAN	NCE			
		Condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for30+5-0 seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° with 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.								
8	Terminal strength	Diame	eter of lead w	ire		e force N kgf)	Ber	nding force	N (kgf)	
		0.5	mm and less			(0.51)		2.5 (0.25	5)	
		C	0.6~0.8 mm		10 ((1.02)		5 (0.51))	
		<criteria> No noticea</criteria>	able changes	shall be	found, no	o breakage	or loos	seness at th	e termina	1.
		<condition></condition>								_
		STEP	Testing ter		re (°C)			Гіте		
		1		20±2				nermal equ		
		2	-40	-40 -25±3			Time to reach thermal equilibrium			
		3	20±2			Time to r	each tl	nermal equ	ilibrium	
o		4	1		Time to r	each tl	nermal equ	ilibrium		
		5	,	20±2		Time to r	each tl	nermal equ	ilibrium	
	Temperatur e characterist ics	a. At +105 Dissipat The leak b. In step 5 Dissipat The leak c. At -40°C Voltage (V Z-40°C/Z+2	°C, capacitantion factor shatage current is capacitance ion factor shatage current stage current sta	nce meas all be wi measured e measur all be wi shall not (Z) ratio	ured at + thin the l l shall no ed at +20 thin the l more tha shall not	20°C shall imit of Iten to more than 0°C shall be imit of Iten the specie exceed the	be with n 7.3 n 10 tine within 7.3 fied value	hin ±25% of the soft the following the soft the so	pecified vits originates	ralue. al value.
10	Surge test	series for 30± 1000 times. T before measur CR: Nomina <criteria> Leakage cu Capacitance Dissipation Appearanc Attention:</criteria>	5 seconds in hen the capacitement al Capacitance control of the Change of Factor e	every 5± citors sha se (μF) Not 1 With Not 1 Ther	more than in ±15% more than e shall be	n the specific of initial very the specific eno leakage	ied va alue. ied va e of ele	rocedure sh midity for lue. lue. ectrolyte.	nall be rep 1-2 hours	cΩ) resistor in seated

	ITEM		PERFORMA	NCE	
		<condition> Temperature cycle: According to IEC60384-4 N according as below:</condition>	o.4.7 methods, capacito	or shall be placed in an oven, the cond	lition
		Te	mperature	Time	
		(1) +20°C		3 Minutes	
	Change of	(2) Rated low tempera	ture (-40°C) (-25°C)	30±2 Minutes	
11	temperature test	(3) Rated high tempera	nture (+105°C)	30±2 Minutes	
		(1) to $(3) = 1$ cycle, total	al 5 cycle		
		Criteria> The characteristic shall meet Leakage current	the following requirem Not more than the		
		Dissipation Factor	Not more than the	specified value.	
		Appearance	There shall be no le	eakage of electrolyte.	
12	Damp heat test	Humidity test: According to IEC60384-4 N be exposed for 500±8 hours 40±2°C, the characteristic ch <criteria> Leakage current Capacitance Change Dissipation Factor Appearance</criteria>	in an atmosphere of 90- nange shall meet the foll Not more than the sp Within ±10% of initi	ecified value. al value. of the specified value.	
13	Solderabilit y test	Dipping speed : 2	45 ±5°C mm 5±2.5mm/s =0.5 s Less than 3s	nditions: % of the surface being	

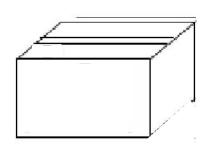
Sheet NO.: 20210505 Page: 9 / 12

ITEM		PERFORMANCE				
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°				
		<criteria> To be soldered</criteria>				
		After the test, the following items shall be tested:				
		Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.				
		Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.				
15	Resistance to solder heat test	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 -0 seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>				
		Leakage current Not more than the specified value.				
		Capacitance Change Within ±5% of initial value.				
		Dissipation Factor Not more than the specified value.				
		Appearance There shall be no leakage of electrolyte.				
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2>				
10	test	Diameter (mm) DC Current (A)				
		22.4 or less 1				
		Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.				

Sheet NO.: 20210505 Page: 10 / 12

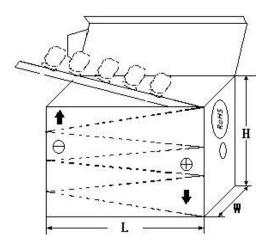


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

C.S.R:		Ltd.		
C.S.R P/0	:	ROHS HF		
C.S.R P/N	13			
S.P.R P/N	.)	QC		
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet NO.: 20210505 Page: 11 / 12

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	Cadmium and cadmium compounds					
Accord with	Lead and lead compounds					
heavy metal	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Organic chlorin	Polychlorinated naphthalenes (PCN)					
	Polychlorinated terphenyls (PCT)					
compounds	Chlorinated paraffins (CP)					
	Other chlorinated organic compounds					
Organic	Polybrominated biphenyls (PBB)					
bromine	Polybrominated diphenylethers (PBDE)					
compounds	Other brominated organic compounds					
Tributyltin compounds						
Triphenyltin compounds						
Asbestos						
Specific azo compounds						
Formaldehyde						
Polyvinyl chloride (PVC) and PVC blends						
F、Cl、Br、I						
REACH						

Sheet NO.: 20210505 Page: 12 / 12