

PREPARED

Customer name:

ALUMINUM ELECTROLYTIC CAPACITORS

承认书 DATA SHEET

BERYL SERIES:	RC	TYPE: RADIAL			
DESCRIPTION:	33uF/400V	Ф13*20			
Apply date :	2022-01-17				
BERYL		C	USTOMER		
P/N:RC400M330LO13*20TH-2A	\1Et	P/N:			

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

PREPARED

CHECKED

APPROVAL

APPROVAL

张业维

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 2862871 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet No.: 20220107A Page : 1 / 13

Revise record

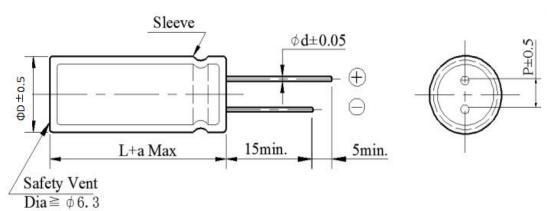
NO.	Date	Revise reason	Revise content	Prepared
01	2020.05.08	First issue	First issue	梁清桃

Sheet No.: 20220107A Page : 2 / 13

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

2. Table of specification and characteristics

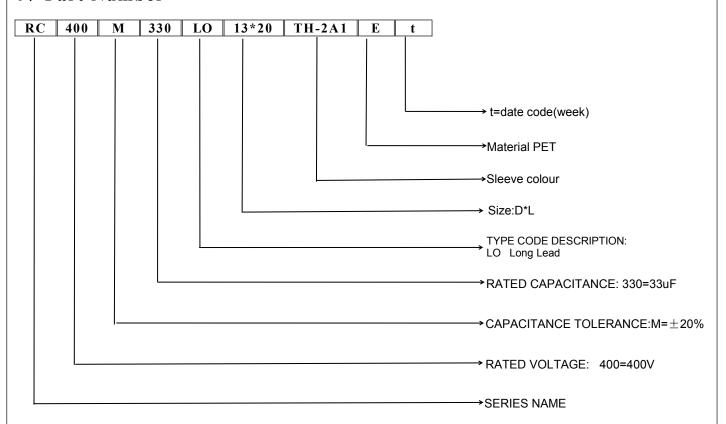

Series	Cap(uF) 120Hz/20℃	WV(V)	Size(mm)	Temperature	Capacitance	Life(hours)	
	120HZ/20 C		D	L	(℃)	Tolerance	@105(℃)	
RC	33	400	13	20	-40~ +105°C	±20%	5000	

DF (%)(MAX)	LC(μA)(MAX)	ESR(Ω)(MAX)	RC (mA rms)	Surge voltage(V)
120Hz/20℃	2min/20°C	100KHz/25℃	(MAX)105°C/100KHz	
≤20	≤274	-	805	440

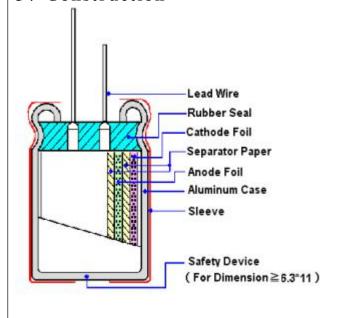
Other: /

3. Product Dimensions

Type



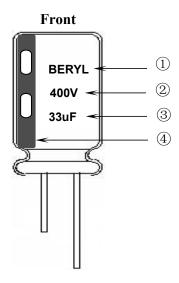
ФД	5	6.3	8	10	13	16	18	22	
P	2	2.5	3.5	5	5	7.5	7.5	10	
Φd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8	
a		$(L < 20) \pm 1.5$ $(L \ge 20) \pm 2.0$							

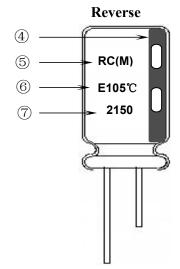

Sheet No.: 20220107A Page : 3 / 13

4. Part Number

5. Construction

Material name	Composition	Supplier name
Lead	Al and (Fe+Cu+Sn)	NM、JX
Rubber	EPT / IIR	LHX、LA、TH、LM2
Case	Aluminum	OX、YJ、HL、LY2
Paper	Wood / Fibrous plant materials	KE、DF
Anode foil	$Al + Al_2O_3$	HY1、HY2、HF、HY3、 LD、FQ
Cathode foil	Aluminum	GY、LY1
Electrolyte	Glycol + Water +Ammonium salt	XZB、LM1、JZ2、FS
Sleeve	PET	YL, CY


Sheet No.: 20220107A Page : 4 / 13


BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Sample:

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(400V)
- 3) Nominal capacitance(33uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% \sim +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature (105°C)

7) Date code (2150)

21: Manufactured year 2021

Code	19	20	21	22	23	24	25	26	
Year	2019	2020	2021	2022	2023	2024	2025	2026	

34: Manufactured week (01, 02, 03, 04......52)

Sheet No.: 20220107A Page : 5 / 13

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15°C to 35°C
Relative humidity: 45% to 85%
Air pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim450\text{WV})$ -40°C to +105°C.

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	<condition> Measuring Frequency: 120Hz±12Hz Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C <criteria> Shall be within the specified capacitance tolerance.</criteria></condition>
2	Leakage current	$ \begin{array}{l} \textbf{} \\ \textbf{Connecting the capacitor with a protective resistor } (1k\Omega\pm10\Omega) \text{ in series for} \\ \textbf{2 minutes, and then, measure leakage current.} \\ \textbf{} \\ \textbf{I: Leakage current } (\mu A) \\ \textbf{I } (\mu A) \leqslant 0.02\text{CV+10 } (\mu A), \\ \textbf{measurement circuit refer to right drawing.} \\ \textbf{C: Capacitance } (\mu F) \\ \textbf{V: Rated DC working voltage } (V) \\ \end{array} $
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Must be within the parameters (See page 3)</criteria></condition>

Sheet No.: 20220107A Page : 6 / 13

	ITEM				F	PER	FORMA	NCE			
4	Impedance	Condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. Criteria> (20°C) Must be within the parameters (See page 3)									
5	Load life test	According to IEC60384-4No. 4.13 methods, the capacitor is stored at a temperature of Maximum operating temperature ±2°C with DC bias voltage plus the rated ripple current for Rated life +48/0hours. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following table: Criteria> The characteristic shall meet the following requirements. Leakage current Not more than the specified value. Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200%of the specified value. Appearance There shall be no leakage of electrolyte.							ople nall not hours		
6	Shelf life test	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operating temperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for16 hours. measure leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte									
7	Maximum permissible (ripple current, temperature coefficient)	Appearance There shall be no leakage of electrolyte.									

Sheet No.: 20220107A Page : 7 / 13

	ITEM						PER	FORM	ANCE					
		Condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for30+5-0 seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° wit 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.										90° within		
8	Terminal strength	Diameter of lead wire						e force N (gf)	E	Bending	g force	N (kgf)	
		0.:	0.5mm and less				5	(0.51)		2.	.5 (0.25	5)		
			0.6~0.8	mm			10 (1.02)		5	(0.51))		
		<criteria> No notice</criteria>	able cha	anges	shall	be four	nd, no	breakaş	ge or lo	oosene	ss at th	e termi	nal.	
		<condition></condition>												
ı		STEP	Test			ature (°	C)			Time				
		1	20±2					Time to						
		2	-40 -25±3							ach thermal equilibrium				
		3			20±2			Time to						
		4			105±2			Time to						
		5	ance, DF, and impedar					Time to				libriun	ı	
9	Temperature characteristics	a. At +105 Dissipar The leal b. In step 5 Dissipar The leal c. At -40°	c°C, cap tion fact kage cur 5, capac tion fact kage cur C, Impe	acitanterent eitance tor short	nce measure measure measure shall record (Z)	easured within sured showithin mot mot ratio shows	the lall not the l	20°C sha imit of In t more th °C shall imit of In the spect	tem 7 nan 10 be wit tem 7 tecified the vi	vithin = 3 times hin ±1 3 value. alue of	=25% of its spow of its	pecified its original lowing	d value. inal value.	
		Voltage (V	-	6.3	10	16	25	35	50	63	100	160	200~400	450
		Z-40°C/Z+2	20°C	8	6	4	4	4	4	4	4	4	7	8
	Surge	<pre><condition> Applications series for 30± 1000 times. Tobefore measure CR: Nominations</condition></pre>	5 secon then the rement	ds in capa	every citors	5±0.5 shall b	minu	tes at 15	~35℃	.Proce	dure sh	all be		stor in
10	test	Leakage cı						the spe						
		Capacitano						of initia						
		Dissipation Appearance		<u> </u>				the spe no leak			lyte			
		Attention: This test si voltage as	mulates		r volta							applic	able to su	ch over

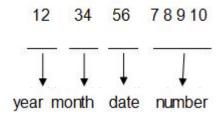
Sheet No.: 20220107A Page : 8 / 13

	ITEM	PERFORMANCE							
		Acco	perature cycle:	.4.7 methods, capacito	r shall be placed in an oven	, the condition			
			Ten	perature	Time				
			(1) +20°C		3 Minutes				
	Change of		(2) Rated low temperatu	re (-40°C) (-25°C)	30±2 Minutes				
11	temperature test		(3) Rated high temperate	ure (+105°C)	30±2 Minutes				
			(1) to $(3) = 1$ cycle, total	5 cycle					
		<criter td="" the<=""><td>ria> characteristic shall meet t Leakage current</td><td>he following requirement Not more than the s</td><td></td><th></th></criter>	ria> characteristic shall meet t Leakage current	he following requirement Not more than the s					
			Dissipation Factor	Not more than the s	•				
			Appearance	There shall be no le	eakage of electrolyte.				
12	Damp heat test	According to the experiment of	Humidity test: According to IEC60384-4 No.4.12 methods, capacitor shall be exposed for 500±8 hours in an atmosphere of 90~95%R H .at 40±2°C, the characteristic change shall meet the following requirement. **Criteria> Leakage current Not more than the specified value. Capacitance Change Within ±10% of initial value. Dissipation Factor Not more than 120% of the specified value. Appearance There shall be no leakage of electrolyte.						
13	Solderability test	Condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245 ±5°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Soldering wetting time Less than 3s Coating quality A minimum of 95% of the surface being immersed							

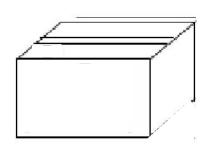
Sheet No.: 20220107A Page : 9 / 13

	ITEM	PERFORMANCE							
14	Vibration	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°							
	test	Criteria> To be soldered After the test, the following items shall be tested: Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. No mechanical damage in terminal. No leakage							
		Appearance of electrolyte or swelling of the case. The markings shall be legible.							
	Resistance	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5 °C for10±1seconds or400±10 °C for3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>							
15	to solder heat	Leakage current Not more than the specified value.							
	test	Capacitance Change Within ±5% of initial value.							
		Dissipation Factor Not more than the specified value.							
		Appearance There shall be no leakage of electrolyte.							
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied.							
16	test	Diameter (mm) DC Current (A) 22.4 or less 1							
		Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.							

Sheet No.: 20220107A Page : 10 / 13

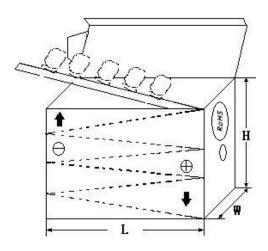


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (0) Lot number (1) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

BEKYL	Znao Qin	g Beryi Ele Ltd.	ctronic	Technology Co.,
C.S.R:			- 110 115	
C.S.R P/O:				ROHS HE
C.S.R P/N	10)			
S.P.R P/N:				QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet No.: 20220107A Page : 11 / 13

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

the fatest version of soudstances from often as per Rolls of soony-05-0025/-				
	Cadmium and cadmium compounds			
Accord with	Lead and lead compounds			
heavy metal	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Oii	Polychlorinated naphthalenes (PCN)			
Organic chlorin compounds	Polychlorinated terphenyls (PCT)			
	Chlorinated paraffins (CP)			
	Other chlorinated organic compounds			
Organic	Polybrominated biphenyls (PBB)			
bromine Polybrominated diphenylethers (PBDE)				
compounds Other brominated organic compounds				
Tributyltin compo	punds			
Triphenyltin com	pounds			
Asbestos				
Specific azo comp	pounds			
Formaldehyde				
Polyvinyl chloride	e (PVC) and PVC blends			
F、Cl、Br、I				
REACH				

Sheet No.: 20220107A Page : 12 / 13

Test Report

Series _	RC	_ Spec.	33uF/400V	_ Size(mm)	13*20
Cap tolerance	±20%	Work temperature	105℃	Color of Tube	Dark green
Test date	2022-01-05	Test humidity	58%	Test temperature	24.2℃

Items	Cap (µF)	D.F (%)	L.C (μA)	ESR (Ω)	Appearance
SPEC NO.	26.4~39.6 (120Hz)	≤20 (120Hz)	≤274 (2min)	≤/ (100KHz)	No abnormalities
1	30.93	4.92	40	/	OK
2	30.16	4.17	50	/	ОК
3	30.64	4.64	47	/	ОК
4	30.37	4.38	40	/	ОК
5	30.81	4.81	42	/	ОК
6	30.72	4.73	44	/	ОК
7	30.48	4.46	46	/	ОК
8	30.90	4.90	47	1	OK
9	30.29	4.29	40	/	OK
10	30.55	4.55	42	1	OK
Opinion After 2 minutes application of rated voltage					
Approve: 成旭		Audit: 黄	Audit: 黄汝梅		

Sheet No.: 20220107A Page : 13 / 13