

承 认 书 DATA SHEET

Customer name	:		
BERYL SERIES	:	ME	TYPE : RADIAL
DESCRIPTION	:	4.7uF/400V Φ6.3*12	
Apply date	:	2023-10-24	

BERYL		CUSTOMER					
P/N:ME400M4R7LO6.3*12TA-1	B3Et	P/N:					
PREPARED CHECKED	APPROVAL	PREPARED	CHECKED	APPROVAL			
胡晓敏 廖梅君	张业维						
工程部	12.11.71						

After approved, please sign back 1 Approval Sheet before order. If not, we will treat it as tacitly acknowledged and accepted our relative standard and technical index.

Zhao Qing Beryl Electronic Technology Co., Ltd.

TEL: (0758) 2862871 FAX: (0758) 2862870

E-mail: master@zq-beryl.com http://www.zq-beryl.com

NO.8 DUANZHOU ROAD, ZHAOQING CITY. GUANGDONG. CHINA

Sheet No.: 20231024k Page : 1/13

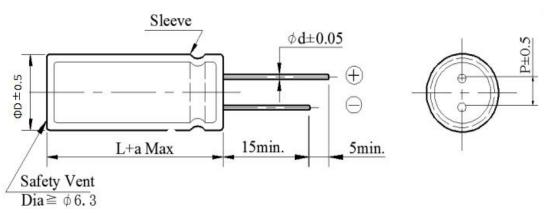
Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2023.10.24	First issue	First issue	胡晓敏

Sheet No.: 20231024k Page : 2 / 13

1, Application

This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

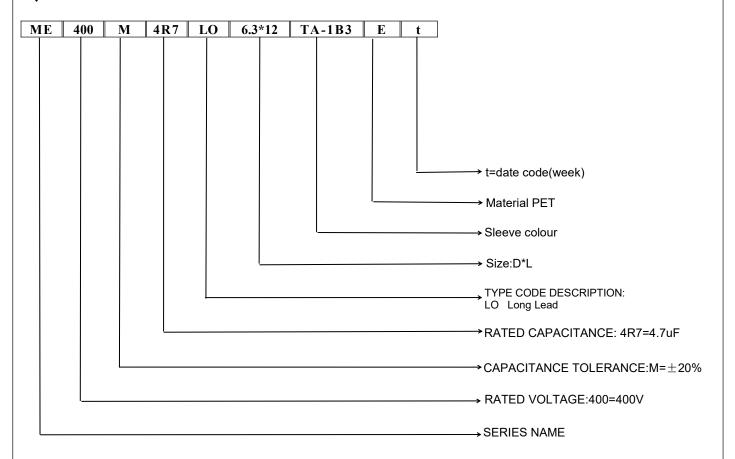

2. Table of specification and characteristics

Series	Series Cap(uF)		WV(V) Size(, I		Capacitance	\ /
	120Hz/20°C	,	D) L (°C)		Tolerance	@105(°C)	
ME	4.7	400	6.3	12	-40 ~ +105		±20%	2000
DF (%)(MAX) 120Hz/20°C)(MAX) /20°C	,)(MAX) Iz/25°C		E (mA rms) X)105°C/120Hz	Surge voltage(V)
≤24		<u><</u> 4	18		-		37	440

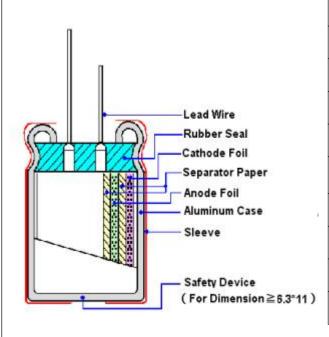
Other: /

3, Product Dimensions

Type



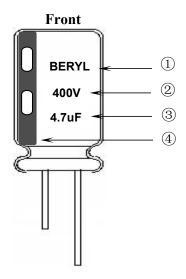
ФD	5	6.3	8	10	13	16	18	22
P	2	2.5	3.5	5	5	7.5	7.5	10
Фd	0.5	0.5	0.5/0.6	0.6	0.6	0.8	0.8	0.8
a			(L< 20)	± 1.5	(L≥2	$0) \pm 2.0$		

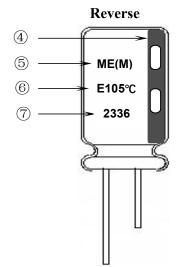

Sheet No.: 20231024k Page: 3 / 13

4. Part Number

5, Construction

Material name	Composition	Supplier name		
Lead	Al and (Fe+Cu+Sn)	NM、RH、ZY		
Rubber	IIR	LHX、TH		
Case	Aluminum	OX、YJ、LY2、SH		
Paper	Wood / Fibrous plant materials	KE、CY		
Anode foil	$Al + Al_2O_3$	HY1、HX2、HF、 HX1、GD、FC		
Cathode foil	Aluminum	GY、FL、TL		
Electrolyte	Glycol + Water +Ammonium salt	XZB、JZ2		
Sleeve	PET	YL、CY		
Adhesive tape	propylene, butyl acrylate	RK、RB、CW		


Sheet No.: 20231024k Page: 4 / 13


BERYL 绿宝石

ALUMINUM ELECTROLYTIC CAPACITORS

6. Product Marking

Marking Sample:

Marking Details:

Capacitor shall be marked the following items:

- 1) Trademark (BERYL)
- 2) working voltage(400V)
- 3) Nominal capacitance(4.7uF)
- 4) Cathode marked
- 5) Series symbol & Nominal capacitance tolerance (M: -20% ~ +20%)
- 6) Sleeve material(E: PET)

Maximum operating temperature(105°C)

7) Date code (2336)

23: Manufactured year 2023

Code	20	21	22	23	24	25	26	27	
Year	2020	2021	2022	2023	2024	2025	2026	2027	

36: Manufactured week (01, 02, 03, 04......52, 53)

Sheet No.: 20231024k Page: 5 / 13

7. Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to 85%
Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim400\mathrm{WV})$ -40°C to +105°C .(450WV) -25°C to +105°C .

Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	Condition> Measuring Frequency: 120Hz±12Hz Measuring circuit:Series equivalent circuit Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C Criteria> Shall be within the specified capacitance tolerance.
2	Leakage current	 Condition> Connecting the capacitor with a protective resistor (1kΩ±10Ω) in series for 2 minutes, and then, measure leakage current. Criteria> I: Leakage current (μA) I (μA) ≤0.02CV+10 (μA), measurement circuit refer to right drawing. C: Capacitance (μF) V: Rated DC working voltage (V)
3	Dissipation factor	Condition> Nominal capacitance, for measuring frequency, voltage and temperature. Criteria> Must be within the parameters (See page 3)

Sheet No.: 20231024k Page: 6 / 13

	ITEM	PERFORMANCE								
4	Impedance	Condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. Criteria> (20°C) Must be within the parameters (See page 3)								
5	Load life test	Condition> According to IEC60384 Maximum operating ten current for Rated life +4 exceed the rated workin recovering time at atmos Criteria> The characteristic shall Leakage current Capacitance Change Dissipation Factor Appearance	nperature = 18/0hours. ng voltage) ospheric comeet the forward Within Not mo	t2°C w (The s) Then to onditional tional tio	rith DC b um of D0 the produns. The re	ias voltage and rip act should sult should sult should ments. cified value. The specified specified rip act and act	ge plus the peak of the peak of the tester of the peak	ne rated rip voltage sh d after 16 the follow	ople nall not hours	
6	Shelf life test	Condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operating temperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for16 hours. measure leakage current Criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value Capacitance Change Within ±20% of initial value. Dissipation Factor Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte.								
7	Maximum permissible (ripple current, temperature coefficient)	Condition> The maximum permissib applied at maximum oper Table-3 The combined value of D voltage and shall not reverse Frequency Multipliers: Freq (Hz) Cap. (μF) 4.7 Temperature Coefficient: Temperature (° Factor	2.C voltage erse voltage 50 1 0.65 C)	erature and the	e	1k 1.75				

Sheet No.: 20231024k Page: 7 / 13

	ITEM]	PERI	FOR	MANCE					
		Condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for30+5-0 seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.										90° within		
8	Terminal strength	Diameter of lead wire					Tens	sile f	orce N (kg	gf) Be	nding	force	N (kgf)
	strength	0.	0.5mm and less					5	(0.51)		2.5	5 (0.25)	
			0.6~0.8 r	nm				10	(1.02)		5	(0.51)		
		<criteria> No noticeal</criteria>	ole chang	es sha	all be	foun	ıd, no	brea	akage or l	ooseness a	t the t	ermina	ıl.	
		<condition></condition>												
		STEP	Test	ing te	mper	ature	(°C)				Time			
		1 20±2							Time to	reach ther	mal ec	luilibr	ium	
		2	-40 -25±3						Time to reach thermal equilibrium					
		3	20±2						Time to	reach ther	mal ec	quilibr	ium	
		4	105±2			2			Time to	reach ther	mal ec	quilibr	ium	
		5 20±2								reach ther	mal ec	quilibr	ium	
9	Temperature characteristics	The leaka b. In step 5, Dissipation The leaka c. At -40°C, Voltage (V) Z-40°C/Z+20	C, capacion factor age current capacitation factor age current Impedar	tance shall nt me nce m shall nt sha nce (Z	measure asure be will be will not a limited to the will not a limited	sured ithin d sha red a ithin mor o sha	at +2 the li ll no t +20 the li e tha	20°C mit of t more C sl mit of n the t exc	shall be voted that the shall be with the shall be with the specified eed the value of the shall be sh	within ±25 3 times of i thin ±10% .3 value. alue of the	ts spec of its	cified origin	value. al valu	e.
10	Surge test	Condition Applied a surge voltage to the capacitor connected with a (100 ±50)/CR (kΩ) resistor in series for 30±5 seconds in every 5±0.5 minutes at 15~35°C. Procedure shall be repeated 1000 times. Then the capacitors shall be left under normal humidity for 1-2 hours before measurement CR : Nominal Capacitance (μF)												

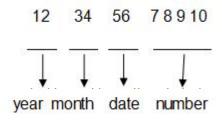
Sheet No.: 20231024k Page: 8 / 13

	ITEM		PERFORMA	PERFORMANCE								
		<condition> Temperature cycle: According to IEC60384-4 N according as below:</condition>	o.4.7 methods, capacito	r shall be placed in an oven, the condition								
		Te	mperature	Time								
	Change of	(1) +20°C		3 Minutes								
		(2) Rated low tempera	ture (-40°C) (-25°C)	30±2 Minutes								
11	temperature test	(3) Rated high tempera	ature (+105°C)	30±2 Minutes								
		(1) to $(3) = 1$ cycle, total	al 5 cycle									
		Criteria> The characteristic shall meet Leakage current	t the following requirem Not more than the s									
		Dissipation Factor	Not more than the s	specified value.								
		Appearance	There shall be no le	eakage of electrolyte.								
12	Damp heat test	Humidity test: According to IEC60384-4 N be exposed for 500±8 hours	cording to IEC60384-4 No.4.12 methods, capacitor shall exposed for 500±8 hours in an atmosphere of 90~95%R H .at ±2°C, the characteristic change shall meet the following requirement. eria> Leakage current Not more than the specified value. Capacitance Change Within ±10% of initial value. Dissipation Factor Not more than 120% of the specified value.									
13	Solderability test	Condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245 ±5°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Soldering wetting time Less than 3s Coating quality A minimum of 95% of the surface being immersed										

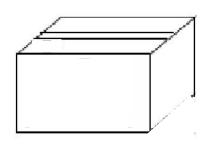
Sheet No.: 20231024k Page: 9 / 13

	ITEM	PERFORMANCE
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz each to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30°
		<pre> </pre> <pre> </pre> <pre> To be soldered</pre>
		After the test, the following items shall be tested:
		Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
	Resistance	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>
15	to solder heat	Leakage current Not more than the specified value.
	test	Capacitance Change Within ±5% of initial value.
		Dissipation Factor Not more than the specified value.
		Appearance There shall be no leakage of electrolyte.
16	Vent	Condition> The following test only apply to those products with vent products at diameter ≥∅6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from Table 2 is applied. Table 2>
10	test	Diameter (mm) DC Current (A)
		22.4 or less 1
		<criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</criteria>

Sheet No.: 20231024k Page: 10 / 13

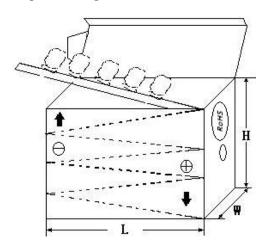


8. Packing Information


Packing Label Marked (the following items shall be marked on the label) (Inside box or bag)

(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension (7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number:


1) Bulk Packing:

3) Outer box

2) Taped Packing:

4) Outer box label:

		Ltd.		111111111
C.S.R:				B UA HE
C.S.R P/O:				ROHS HE
C.S.R P/N:				
S.P.R P/N:				QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		

Sheet No.: 20231024k Page: 11 / 13

9. Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>

	1			
	Cadmium and cadmium compounds			
Accord with	Lead and lead compounds			
heavy metal	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
	Polychlorinated naphthalenes (PCN)			
Organic chlorin compounds	Polychlorinated terphenyls (PCT)			
	Chlorinated paraffins (CP)			
	Other chlorinated organic compounds			
Organic	Polybrominated biphenyls (PBB)			
bromine	Polybrominated diphenylethers (PBDE)			
compounds	Other brominated organic compounds			
Tributyltin compounds				
Triphenyltin com	pounds			
Asbestos				
Specific azo com	pounds			
Formaldehyde				
Polyvinyl chloride (PVC) and PVC blends				
F, Cl, Br, I				
REACH				

Sheet No.: 20231024k Page : 12 / 13

Test Report

Series	ME	Spec.	4.7uF/400V	Size(mm)	6.3*12
Cap tolerance	±20%	Work temperature	105°C	Color of Tube	black
Test date	2023-10-13	Test humidity	45%	Test temperature	24.6°C

Items	Cap (μF)	D.F (%)	L.C (μA)	ESR (Ω)	Appearance	
SPEC NO.	3.76~5.64 (120Hz)	≤24 (120Hz)	≤48 (2min)	≤/ (100KHz)	No abnormalities	
1	4.27	4.30	9.0	/	OK	
2	4.03	3.70	8.0	/	ОК	
3	4.03	3.70	8.4	/	OK	
4	4.17	3.80	8.6	/	OK	
5	4.21	3.90	8.1	/	OK	
6	4.26	4.12	8.8	/	OK	
7	4.13	4.30	8.9	/	OK	
8	4.09	3.74	8.2	/	ОК	
9	4.06	3.81	8.4	/	ОК	
10	4.03	4.15	8.1	/	ОК	
Opinion	Opinion After 2 minutes application of rated voltage					
Approve:	廖梅君	Audit: 胡昀	極	Test: 赵凯群	1	

Sheet No.: 20231024k Page: 13 / 13