

CSU8RP1186B 用户手册

基于 OTP ROM 的 8 位 RISC MCU Rev. 1.0

通讯地址:深圳市南山区南海大道 1079 号花园城数码大厦 A 栋 9 楼

邮政编码:518067

公司电话:+(86 755)86169257 传 真:+(86 755)86169057 公司网站:www.chipsea.com

微信二维码:

Rev.1.0

第1页,共100页

CSU8RP1186B

38 引脚 8 位 OTP ROM 单片机产品介绍

高性能的 RISC CPU

- 8位单片机 MCU
- 内置 4K×16 位一次性可编程存储器(OTP ROM)
- 256字节数据存储器(SRAM)
- 只有39条单字指令
- 8级存储堆栈

振荡器

- 内带 16MHz 振荡器
- 外部 32768Hz 晶振(RTC)、4MHz~16MHz 晶振

模拟特性

- 模数转换器 (ADC)
 - 一 1 路全差分模拟输入
 - 一 24 位分辨率
 - 一 内部集成的可编程增益放大器
 - ADC 的输出速率 30Hz~3.9KHz
- 内带电荷泵(2.6V 2.8V 3.0V 3.2 V)
- 内带稳压器供传感器和调制器
- 内置温度传感器

专用微控制器的特性

- 上电复位(POR)
- 上电复位延迟定时器(39ms)
- 内带低电压复位(LVR)
- Timer
 - 一8位可编程预分频的8位的定时计数器
- 扩展型看门狗定时器(WDT)
 - 一 可编程的时间范围

外设特性

● 14 位双向 I/O 口

- 1 路蜂鸣器输出,可选择 PT2.7 或 PT2.3 输出,默认 PT2.7 口输出
- 4×14的 LCD 驱动
 - 一 可选择内部晶振或 WDT 晶振作为时钟 源
 - 一 可选择两种不同的 LCD 驱动波形
 - 一 可选择不同的偏置电压产生方式
- 2个外部中断
- 低电压检测(LVD)引脚(内部提供 2.4V、 2.5V、2.6V、2.7V、2.8V、3.6V 电压比较)
- 内置低电压烧录控制电路,最低 2.5V 可以 自烧录

低功耗特性

- MCU工作电流
- 正常模式 500uA@500KHz (工作电压 3.3V)
 - 一 休眠模式下的电流小于 2μΑ

CMOS 技术

- 电压工作范围
 - DVDD 2.4V~3.6V
 - AVDD 2.4V~3.6V

封装

• 38-PIN dice

应用场合

- 电子衡器
- 精密测量及控制系统

历史修改记录

时间	记录	版本号
2015-10-12	初稿完成	V1.0

Rev.1.0 第3页, 共100页

目 录

历	史修改	记录	3
1	产品	概述	6
	1.1	主要特性	ϵ
		- 1	
		功能模块原理图	
2		功能	
		CPU 核	
	2.1 2.1.1		
	2.1.1		
	2.1.2		
		SFR	
	2.2.1		
	2.2.2	辅助专用寄存器	18
	2.3	时钟系统	20
	2.3.1	\$44.04 HB 1 CO	
	2.3.2		
	2.3.3		
	2.3.4	• • • • • • • • • • • • • • • • • • • •	
	2.3.5	7 = 7 2 . 7	
	2.3.6	24741114	
	2.3.7 2.4	UARTCLK定时器	
		た円 役	
	2.5 2.5.1		
	2.5.2		
	2.5.3		
	2.5.4		
	2.5.5	<u> </u>	
	2.5.6		
	2.5.7	数字 I/O 口、URAT 接口与外部中断输入: PT2[5:4]	46
	2.5.8	数字 I/O 接口或者蜂鸣器输出: PT2[7:6]	48
3	增强	功能	50
	3.1	电源系统	50
	3.1.1	Regulator	50
	3.1.2	低电压比较器	52
	3.1.3	= , , , , ,	
		HALT 与 SLEEP 模式	
		复位系统	
		看门狗	
		ADC 模块	
	3.5.1	* ** *** *** **	
	3.5.2		
	3.5.3		
	3.5.4		
	3.5.5	ADC 增益的温度特性调整	61

	3.6 LC	D Driver	62
	3.6.1	LCD 控制模式	62
	3.6.2	LCD 帧频选择	63
	3.6.3	LCD 偏置电压	65
	3.6.4	LCD 驱动波形	67
	3.6.5	LCD 寄存器说明	75
	3.6.6	LCD 操作步骤	78
	3.7 串	行通信接口	79
	3.7.1	工作方式	79
	3.7.2	寄存器说明	81
	3.7.3	波特率	81
	3.8 OT	P 模块	82
	3.9 OT	P 在线烧录	83
4	MCU 批	1 令集	85
5	电气特	生	96
	5.1 最	大极限值	96
		元特性(DVDD,AVDD=3.3V,T₄=25℃,如无其他说明则都是此条件)	
		C 的特性(VREF= $3V$, $T_A = 25$ °C,如无其他说明则都是此条件)	
6	BONDI	NG 说明	98
	6.1 PI	V.排布	98
		「坐标	
7		· · · · · · · · · · · · · · · · · · ·	
		只刑 是 · 说 · 旧	100

1 产品概述

1.1 主要特性

CSU8RP1186B 芯片是一个 8 位 CMOS 单芯片 MCU,内置 $4K\times16$ 位一次性可编程(OTP)ROM,一个带有 1 路全差分模拟信号输入的 24 位 ADC,低噪声放大器及 4×14 的 LCD 驱动。

1.2 PIN 配置

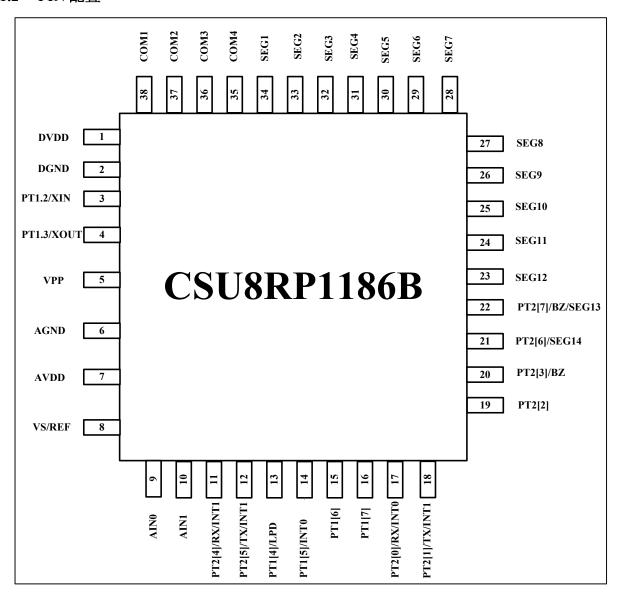


图 1-1 功能引脚图

表 1-1 引脚说明表

管脚名称	输入/输出	管脚序号	描述	
DVDD	P	1	数字电源	
DGND	P	2	数字地	
PT1.2/XIN	I/O	3	I/O 或外部晶振输入端	
			{ AIENB2, CST_E}	I0 功能描述
			00	自动开启外部晶振输入
			01	模拟 I0 外部晶振不打开,一 般无此用法
			1x	10
PT1.3/XOUT	I/O	4	I/O 或外部晶振输出端	
			{ AIENB2, CST_E}	IO 功能描述
			00	自动开启外部晶振输出
			01	模拟 I0 外部晶振不打开,一 般无此用法
			1x	10
VPP	P	5	烧录电源接口	
AGND	P	6	模拟地	
AVDD	Р	7	模拟电源	
VS/REF	O/I	8	稳压输出/参考电压输入	
AIN0~1 PT2[4]/ RX /INT1	I	9~10	模拟差分输入端	
P12[4]/ RX /IN11	I	11	I/O 或串口输入或外部中断 1 输, 注意中断和串口优先级一致,不	
			控制信号	I0 功能描述
			PTW1[0]=0 且不是串口配置	IO(默认值)
			PTW1[0]=1	可作为外部中断 1 输入
			UARTEN=1 且 UART_SEL=1	自动开启串口输入
PT2[5]/ TX /INT1	I/O	12	I/O 或外部中断 1 输入或串口输 注意中断和串口优先级一致,不	
			控制信号	IO 功能描述
			PTW1[1]=0 且不是串口配置	10 (默认值)
			PTW1[1]=1	可作为外部中断 1 输入
				自动开启串口输出
PT1[4]/LPD	I/O	13	UARTEN=1 且 UART_SEL=1 I/O 或者低电压检测输入端	日初开后中口制币
PT1[5] /INT0	I/O	14	I/O或有低电压位侧捆八编 I/O或外部中断 0 输入	
111[3]/11/10	1/0	17	控制信号	I0 功能描述
			PTW0[0]=0	10 切能描述
DT1[7]	1/0	1.5	PTW0[0]=1	可作为外部中断 0 输入
PT1[6]	I/O	15	I/O	
PT1[7] PT2[0] /RX /INT0	I/O I/O	16 17	I/O	
F 12[U] /KA /IN1U	1/0	1 /	OTP 烧写的数据或作为 I/O 或串	
			控制信号	IO 功能描述
			PTW0[1]=1	OTP 烧写的数据或可作为 外部中断 0 输入(默认 值)
			PTW0[1]=0 且不是串口配置	10

Rev.1.0

第7页,共100页

			TT	 			
			UARTEN=1 且 UART_SE	L=0 É	目动开启串口输入		
PT2[1] /TX /INT1	I/O	18	OTP 烧写的时钟或作为 I/O 或串口输出或外部中断 1 输入				
			控制信号		I0 功能描述		
			PTW1[2]=1		烧写的时钟或可作为 邓中断 1 输入(默认 值)		
			PTW1[2]=0 且不是串口	1配置	10		
			UARTEN=1 且 UART_SE	L=0 É	动开启串口输出		
PT2[2]	I/O	19	I/O				
PT2[3] /BZ	I/O	20	I/O 或蜂鸣器输出				
			控制信号		I0 功能描述		
			BZSEL=0		I0 (默认值)		
			BZEN=1、BZSEL=1		蜂鸣器输出		
PT2[6] /SEG14	I/O	21	I/O 或 LCD Segment 输出	! !			
			SEGCONO, VLCDX[1]		I0 功能描述		
			=10	开点	自 LCD SEG 功能		
			=其他值	IO (默认值)			
PT2[7] /BZ/SEG13	I/O	22	I/O 或蜂鸣器输出或 LCD) Segment 输出	1		
			SEGCON1、VLCDX[1]	BZEN 、BZSEL	I0 功能描述		
			=10	XX	开启 LCD SEG 功能		
			=其他值	=10	蜂鸣器输出		
			-央他徂	=其他值	I0 (默认值)		
SEG12~1	0	23~34	LCD Segment 输出				
COM4~1	0	35~38	LCD Com 输出				

1.3 功能模块原理图

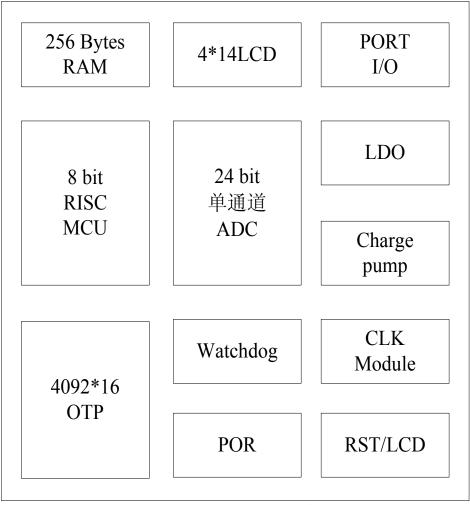


图 1-2 CSU8RP1186B 功能模块

从功能模块原理图中可看到有5个功能模块,其描述见表1-2 CSU8RP1186B主要功能描述

表 1-2 CSU8RP1186B 主要功能描述

项目	子项目	描述
	RISC CPU Core	详细描述见 2.1 节
	OTP 程序存储器	OTP: 一次性可编程
	〇11 月至月17日1日有時	4092 条编程指令
CPU 核	数据存储器	CSU8RP1186B 带有 384Bytes SRAM(128 Bytes 寄存
	3X \U 11 IN HB	器, 256 Bytes 普通数据存储器)
	时钟系统	CSU8RP1186B 有一个内部 16M 晶振,也可使用外部晶
		振(32768Hz 晶振或 4MHz~16MHz 晶振)
	定时器模块	用于定时中断及看门狗的时钟计数器
	LCD 模块	内带 4×14 的 LCD 驱动器
	Buzzer	用户连接一个蜂鸣器到内带的蜂鸣器接口以接收警告或
数据功能模块	Duzzoi	提醒信号
		CSU8RP1186B 提供 2 个外部中断接口(外部中断 0 可选
	Ext.INT	择 PT1.5 或 PT2.0 输入,外部中断 1 可选择 PT2.1 或
		PT2.4或 PT2.5 输入)
模拟功能模块	ADC	内带 Sigma-Delta 的 ADC 将传感器的模拟信号转换为数
一大小小山(大小		字信号
		CSU8RP1186B有一个专用的电源系统。此电源系统能为
电源功能模块	电源模块	ADC 提供固定的电压。芯片的输入电压可以在一个范围
		内浮动
	PT1	PT1 接口有 4 位。
普通用途 I/O		PT2接口有8位。用户可以定义这8位接口用于普通用
1 w/1/w 1/0	PT2	途或某些专用功能,比如外部中断、UART、蜂鸣器、
		LCD SEG □

2 标准功能

2.1 CPU 核

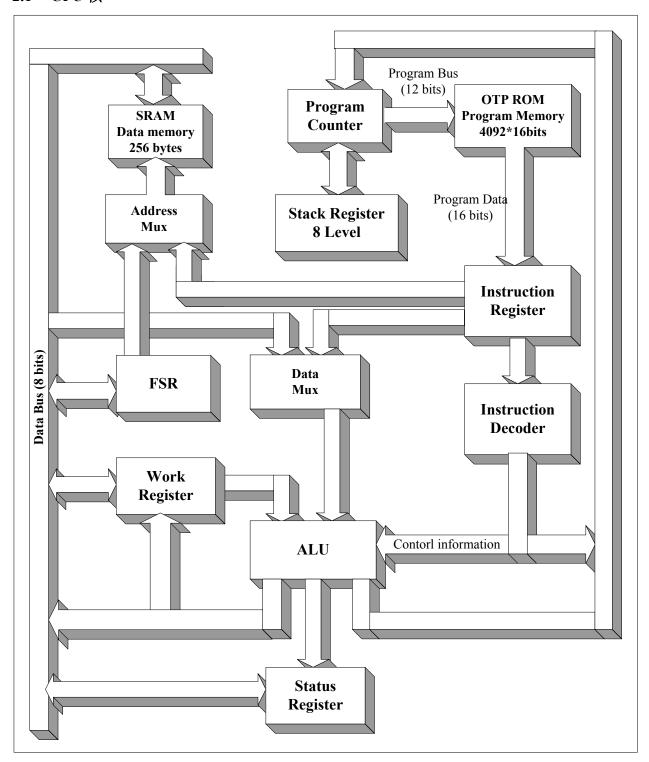


图 2-1 CSU8RP1186B CPU 核的功能模块图

从 CPU 核的功能模块图中,可以看到它主要包含 7 个主要寄存器及 2 个存储器单元。

Rev.1.0

第11页,共100页

表 2-1 MCU 架构说明

模块名称	描述
程序计数器	此寄存器在 CPU 的工作周期间起到很重要的作用,它记录 CPU 每个周期处理程
	序存储器中指令的指针。在一个 CPU 周期中,程序计数器将程序存储器地址
	(12bits),指令指针推送到程序存储器,然后自动加1以进行下一次周期。
栈寄存器	堆栈寄存器是用来记录程序返回的指令指针。当程序调用函数,程序计数器会将
	指令指针推送到堆栈寄存器。在函数执行结束之后,堆栈寄存器会将指令指针送
	回到程序计数器以继续原来的程序处理。
指令寄存器	程序计数器将指令指针(程序存储器地址)推送到程序存储器,程序存储器将程
	序存储器的数据(16bits)及指令推送到指令寄存器。
	CSU8RP1186B 的指令是 16bits,包括 3 种信息:直接地址,立即数及控制信
	息。
	CPU 能将立即数推送到工作寄存器,或者进行某些处理后,根据控制信息,
	将立即数存储到直接地址所指向的数据存储器寄存器中。
	直接地址(9bits)
	数据存储器的地址。CPU能利用此地址来对数据存储器进行操作。
	直接数据(8bits)
	CPU 通过 ALU 利用此数据对工作寄存器进行操作。
	控制信息
LIA NOT STORE	它记录着ALU的操作信息。
指令译码器	指令寄存器将控制信息推送到指令译码器以进行译码,然后译码器将译码后的信息发送到报关的客存器
数小咖担	息发送到相关的寄存器。
算术逻辑单元	算术逻辑单元不仅能完成8位二进制的加,减,加1,减1等算术计算,还能对8 位变量进行逻辑的与,或,异或,循环移位,求补,清零等逻辑运算。
工作寄存器	工作寄存器是用来缓存数据存储器中某些存储地址的数据。
状态寄存器	当 CPU 利用 ALU 处理寄存器数据时,如下的状态寄存器将会根据不同的指令而
	变化: PD, TO, DC, C及Z。
文件选择寄存器	在 CSU8RP1186B 的指令集中,FSR 是用于间接数据处理(即实现间接寻址)。
	用户可以利用 FSR 来存放数据存储器中的某个寄存器地址,然后通过 IND 寄存器
	对这个寄存器进行处理。
程序存储器	CSU8RP1186B 内带 4092*16Bits 的 OTP ROM 作为程序存储器。由于指令的操作
	码(OPCODE)是 16bits,用户最多只能编程 4092 的指令。程序存储器的地址总
	线是 12bits,数据总线是 16bits。
数据存储器	CSU8RP1186B 内带 256bytes 的 SRAM 作为数据存储器。此数据存储器的地址总
	线是 8bits,数据总线是 8bits。

2.1.1 存储器

1. 程序存储器主要用于指令的存储,在 CSU8RP1186B 中,该程序存储器是 4092*16bit 的 OTP。(范围为 000H~FFBH),FFCH 和 FFFH 为保留地址。系统的 reset 地址为 000H,中断入口地址为 004H,需要注意的一点就是所有的中断共用同一个中断入口地址。

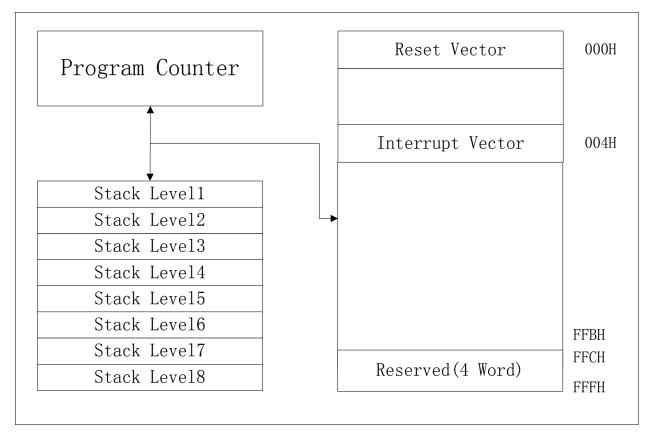


图 2-2 程序存储器

2. 数据存储器主要用于程序运行过程中,全局以及中间变量的存储。该存储器分为三个部分。地址的 000H 至 008H 是系统特殊功能寄存器,例如间接地址,间接地址指针,状态寄存器,工作寄存器,中断标志位,中断控制寄存器。地址的 009H 至 07FH 外设特殊功能寄存器,例如 IO 端口,定时器,ADC,UART,LCD 驱动,系统特殊功能寄存器和外设特殊功能寄存器是用寄存器实现,而通用数据存储器是 RAM 实现,可以读出也可以写入。

表 2-2 数据存储器地址分配

数据存储器	起始地址	结束地址
系统特殊功能寄存器	000H	008H
外设特殊功能寄存器	009H	07FH
通用数据存储器	080H	17FH

3. 通过IND0 及FSR0 或IND1 及FSR1 这两组寄存器可以对数据存储器以及特殊功能寄存器进行间接访问。当从间接地址寄存器(IND0/IND1)读入数据时,MCU实际上是以FSR0/FSR1 中的值作为地址去访问数据存储器得到数据。当向间接寄存器(IND0/IND1)写入数据时,MCU实际上是以FSR0/FSR1 中的值作为地址去访问数据存储器将值存入该地址。其访问方式见图 2-3 间接地址访问。

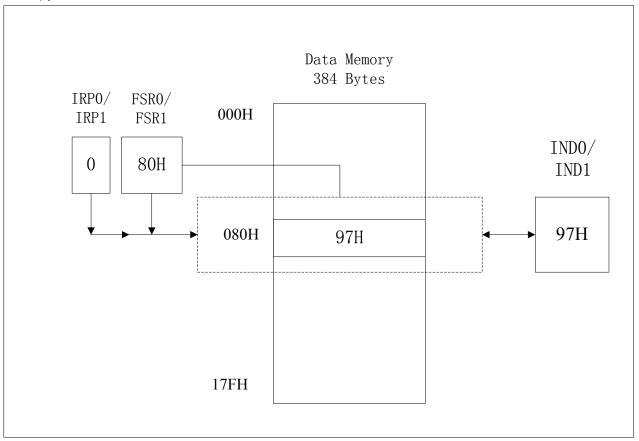


图 2-3 间接地址访问

Bank 选择寄存器(地址为 08H)

特性	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
BSR	IRP0	IRP1						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Rev.1.0

Bit 7 IRP0: IND0间接页寻址位

1=间接寻址IND0时,访问后128byte地址

0=间接寻址IND0时,访问前256byte地址

Bit 6 IRP1: IND1间接页寻址位

1=间接寻址IND1时,访问后128byte地址

0=间接寻址IND1时,访问前256byte地址

2.1.2 状态寄存器

状态寄存器包含 ALU 的算术状态及复位状态。状态寄存器类似于其它寄存器,可以作为任何指令 的目标寄存器。如果状态寄存器是某条指令的目标寄存器,则会影响到 Z,DC或 C位,那么对这三个 位的写是不使能。这些位是由器件逻辑进行置位或清零。TO及PD位是不可写的。

状态寄存器(地址为04H)

特性	U-0	U-0	U-0	R-0	R-0	R/W-X	R/W-X	R/W-X
STATUS				PD	TO	DC	C	Z
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 4 PD: 掉电标志位

1=执行 SLEEP 指令

0=上电复位后

Bit 3 TO: 看门狗定时溢出标志。

1=看门狗定时溢出发生

0=上电复位后

Bit 2 DC: 半字节进位标志/借位标志,用于 ADDWF(C)及 SUBWF(C)

用于借位时,极性相反

1=结果的第4位出现进位溢出

0=结果的第4位不出现进位溢出

Bit 1 C: 进位标志/借位标志

用于借位时,极性相反

1=结果的最高位(MSB)出现进位溢出

0=结果的最高位(MSB)不出现进位溢出

Bit 0 Z: 零标志

1=算术或逻辑操作结果为0

0=算术或逻辑操作结果不为0

特性 (Property):

R = 可读位

W=可写位

U=无效位

-n = 上电复位后的值 '1'=位已设置

'0' = 位已清零 X = 不确定位

2.1.3 INTE 及 INTF 中断寄存器

中断系统的入口地址为 004H,各个中断之间没有优先级,靠程序控制各个中断的优先级。只要有中断标志位,就会有中断响应,响应中断之后需要软件将中断标志位清除,否则会不断响应中断。 INTE 及 INTF 寄存器是可读、可写的,包括使能位及标志位,用于中断器件。

INTE 寄存器(地址为07H)

特性	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
INTE	GIE			TMIE		ADIE	E1IE	E0IE
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 GIE: 全局中断使能标志

1=使能所有非屏蔽中断

0=不使能所有中断

Bit 4 TMIE: 8-Bit 定时器中断使能标志

1=使能定时器中断

0=不使能定时器中断

Bit 2 ADIE: ADC 中断使能标志

1 = 使能 ADC 中断

0 = 不使能 ADC 中断

Bit 1 ElIE: 外部中断 1 使能标志

1=使能外部中断1

0=不使能外部中断1

Bit 0 E0IE: 外部中断 0 使能标志

1=使能外部中断0

0=不使能外部中断0

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n=上电复位后的值 '1' =位已设置 '0' =位已清零 X=不确定位

INTF 寄存器(地址为 06H)

特性	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
INTF				TMIF		ADIF	E1IF	E0IF
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 4 TMIF: 定时中断标志

1=发生定时中断,必须软件清0

0=没发生定时中断

Bit 2 ADIF: ADC 中断标志

1=发生 ADC 中断,必须软件清 0

0=没发生 ADC 中断

Bit 1 E1IF: 外部中断 1 标志

1=发生外部中断 1,必须软件清 0

0=没发生外部中断1

Bit 0 E0IF: 外部中断志 0

1 = 发生外部中断 0, 必须软件清 0

0=没发生外部中断0

INTE2 寄存器(地址为 33H)

特性	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
INTE							URTIE	URRIE
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 1 URTIE: 串口发送中断使能标志

1=使能串口发送中断

0=不使能串口发送中断

Bit 0 URRIE: 串口接收中断使能标志

1=使能串口接收中断

0=不使串口接收中断

INTF2 寄存器 (地址为 32H)

特性	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
INTF							URTIF	URRIF
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 1 URTIF: 串口通信发送中断标志

1=发生串口发送中断,必须软件清0

0=没有发生串口发送中断

Bit0 URRIF: 串口通信接收中断标志

1=发生串口接收中断,必须软件清0

0=没有发生串口接收中断

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n = 上电复位后的值 '1' = 位已设置 '0' = 位已清零 X = 不确定位

2.2 SFR

2.2.1 系统专用寄存器

系统专用寄存器用于完成 CPU 核的功能,由间接地址,间接地址指针,状态寄存器,工作寄存器,中断标志及中断控制寄存器。

地址	名称	Bit7	Bit6	Bi5	Bi4	Bit3	Bit2	Bit1	Bit0	上电复位值	
00H	IND0	以 FSR0	中内容作为	为地址的数	数据存储器中	卜的数据				00000000	
01H	IND1	以 FSR1	SR1 中内容作为地址的数据存储器中的数据								
02H	FSR0	间接数据	长数据存储器的地址指针 0								
03H	FSR1	间接数据	可接数据存储器的地址指针 1								
04H	STATUS				PD	TO	DC	С	Z	uuu00xxx	
05H	WORK				工作	寄存器				00000000	
06H	INTF		TMIF ADIF E1IF E0IF								
07H	INTE	GIE			TMIE		ADIE	E1IE	E0IE	0uu0u000	
08H	BSR	IRP0	IRP1							00uuuuuu	

表 2-3 系统寄存器表

2.2.2 辅助专用寄存器

辅助专用寄存器是为辅助功能而设计,比如L/O口,定时器,ADC,信号的条件控制寄存器,UART,LCD驱动。详细描述请看表 2-4 辅助专用寄存器列表及以下章节。

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
0AH	EADRH						PARH[4:0]			uuu00000
0BH	EADRL				PARL	[7:0]				00000000
0DH	WDTCON	WDTEN			Wdt_lcd		WDT	S[3:0]		0uu00000
0EH	TMOUT				TMOU	Γ[7:0]				00000000
0FH	TMCON	TRST				TMEN	1uuu0000			
10H	ADOH				ADO[2					00000000
11H	ADOL				ADO[00000000
12H	ADOLL				ADO[00000000
13H	ADCON					ADSC		ADM[2:0]		uuuu0000
14H	MCK						M2_CK	M1_CK		uuuuu00u
15H	PCK				CKS[3:0]			EEP[1:0]		u000000u
16H	MCK2	TMSE		XTALSEL	CST_E	CST_IN	EO_SLP	M3_CK	CLK_SEL	00110000
18H	NETA	SINL	[1:0]							00uuuuuu
19H	NETB					ERV				uuuuxuuu
1AH	NETC			ADGAI	N[5:0]			ADEN		0000000u
1BH	NETD					VLCDX	[1:0]	LCDREF[1:0]		uuuu0000
1CH	NETE	LDOS	S[1:0]			SILB[2:0]		ENLB		00u0000u
1DH	NETF	CHP_VPP		ENVDDA			BG	ID[1:0]	ENVB	0u0uu000
1FH	SVD								LBOUT	uuuuuux
20H	PT1			PT1[xxxxxxuu
21H	PT1EN			PT1EN					000000uu	
22H	PT1PU			PT1PU	J[7:2]					000000uu
23H	AIENB					AIENB1				uuuu0uuu
24H	PT2				PT2[XXXXXXXX
25H	PT2EN				PT2EN					00000000
26H	PT2PU	Dani			PT2PU	L		E01 (F1	0.1	00000000
27H	PT2MR	BZEN	GEGGOVIO			E1M[1	[:0]	E0M[1	:0]	0uuu0000
28H	PT2CON	SEGCON1	SEGCON0			BZSEL	QEC.	1.[2.0]		00uu0uuu
40H	LCD1 LCD2							1[3:0]		uuuu0000
41H 42H	LCD2 LCD3							2[3:0]		uuuu0000 uuuu0000
	LCD3 LCD4							3[3:0]		
43H 44H	LCD4 LCD5							4[3:0] 5[3:0]		uuuu0000 uuuu0000
44H 45H	LCD5 LCD6							5[3:0] 6[3:0]		uuuu0000 uuuu0000
45H 46H	LCD6 LCD7						uuuu0000 uuuu0000			
46H 47H	LCD7							7[3:0] 8[3:0]		uuuu0000 uuuu0000
47H 48H	LCD8							8[3:0] 9[3:0]		uuuu0000 uuuu0000
48H 49H	LCD9							9[3:0] .0[3:0]		uuuu0000 uuuu0000
47N	LCDIU						SEGI	[0.6]0		uuuuuuu

表 2-4 辅助专用寄存器列表

第18页,共100页

CSU8RP1186 B

标准功能

4AH	LCD11						SEG1	1[3:0]		uuuu0000
4BH	LCD12						SEG1	[2[3:0]		uuuu0000
4CH	LCD13							uuuu0000		
4DH	LCD14							uuuu0000		
57H	LCDCN					CSE_LCD	CSE_LCD			uuuu0uuu
58H	LCDENR	LCDCI	KS[1:0]	LCDEN	LCDWS	LEVEL	LCD_	DUTY[1:0]	ENPMPL	00000110
59H	TEMPC				TEMPO	C[7:0]				00000000
7AH	SCON1	SM0	SM1	SM2	REN	TB8	RB8	UART_SEL	UARTEN	00000000
7BH	SCON2	SMOD								Ouuuuuuu
7CH	SBUF									
7FH	AIENB2	AIENB2								Ouuuuuuu

2.3 时钟系统

2.3.1 振荡器状态

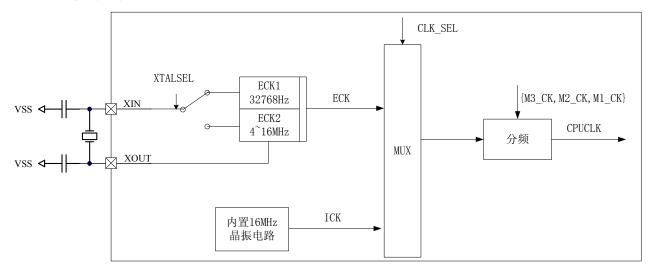


图 2-4 CSU8RP1186B 振荡器状态框图

表 2-5 CSU8RP1186B 时钟系统寄存器列表

	地址	名称	Bit7	Bits6	Bit5	Bits4	Bit3	Bits2	Bit1	Bit0	上电复位 值
F	14H	MCK						M2_CK	M1_CK		uuuuu00u
	16H	MCK2	tmse	l[1:0]	XTALSEL	CST E	CST IN	EO SLP	M3 CK	CLK SEL	00110000

CSU8RP1186B 有三个时钟源。一个是内部集成的时钟, 16MHz 的时钟供 CPU 工作,其余是外部时钟。可以通过 CLK SEL 寄存器选择。

对 MCK 寄存器进行写操作时,建议使用 bcf 或 bsf 指令。

注意:把 CPU 时钟由内部晶振切换到外部晶振,并把内部晶振关闭时应按照以下顺序执行

bcf mck2, 4 ;打开外部晶振 1

...

movlw 01h

movwf mck2 ;切换到外部晶振 1

nop

bsf mck2,3 ;关闭内部晶振

表 2-6 MCK 寄存器各位功能表

位地址	标识符	功能										
×III.		M3_CK、M2	3 CK、M2 CK和 M1 CK用做指令周期的选择									
		M3_CK	M2_CK	M1_CK	指令周期(KHz)							
		0	0	0	125							
2	M2_CK	0	0	1	62.5							
	WIZ_CIC	0	1	0	500							
		0	1	1	250							
		1	0	0	250							
		1	0	1	125							

Rev.1.0

第20页,共100页

		1	1	0	1000
		1	1	1	500
1	M1_CK	M2_CK和 M	11_CK 用做时	钟周期的选择;	

表 2-7 MCK2 寄存器各位功能表

位地址	标识符	功能						
7:6	tmsel[1:0]	定时器时钟源选择						
5	XTALSEL	外部晶振选择 XTALSEL 0 选择外部低速晶振 1 选择外部高速晶振						
4	CST_E	外部晶振启动开关 1: 外部晶振关闭 0: 外部晶振打开 注:PT1.2/PT1.3 为外置晶振的输入/输出脚,使用该功能时先要配置 AIENB2,使 PT1.2/PT1.3 为模拟 IO						
3	CST_IN	内部晶振启动开关 1: 内部晶振关闭 0: 内部晶振打开						
2	EO_SLP	外部低速晶振控制位 1: 如果选择的是外部低速晶振(32768Hz),在 sleep 模式下不关闭外部晶振 6: sleep 模式下关闭外部晶振						
1	M3_CK	指令周期低速/高速切换 1: 指令周期最快为 1MHz 0: 指令周期最快为 500kHz						
0	CLK_SEL	时钟源选择位 CLK_SEL CPU 时钟 0 内部晶振作为系统时钟 1 外部晶振作为系统时钟						

2.3.2 石英/陶瓷振荡器

石英/陶瓷振荡器由 XIN/XOUT 口驱动,对于高速和低速不同工作模式,振荡器的驱动电流也不同。通过 MCK2 寄存器的 CST_E 位来使能外置晶振输入,通过 MCK2 寄存器的 XTALSEL 位选择低速晶振或高速晶振。外部晶振电容范围 15P~30P。

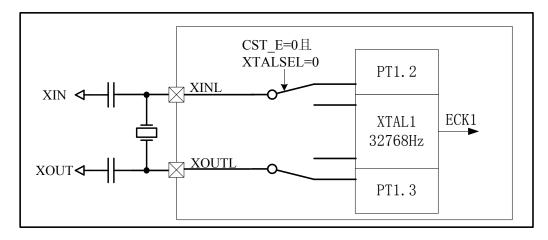


图 2-5 外部振荡器 1

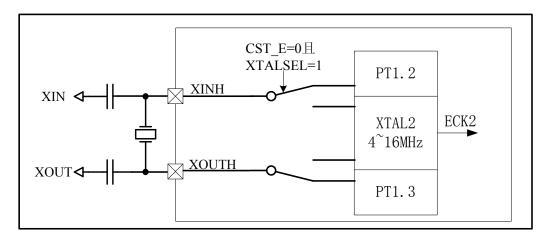


图 2-6 外部振荡器 2

2.3.3 CPU 指令周期

表 2-8 CSU8RP1186B CPU 指令周期寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
14H	MCK						M2_CK	M1_CK		uuuuu00u
16H	MCK2	TMSEL[1:0]		XTALSE L	CST_E	CST_IN	EO_SLP	M3_CK	CLK_SEL	00110000

用户可以通过设置 M1_CK, M2_CK, M3_CK 来选择指令周期,通过设置 CLK_SEL 切换晶振, (用户必须保证切换指令周期时,时钟切换是稳定的;一般在切换后加一条 NOP 指令)。

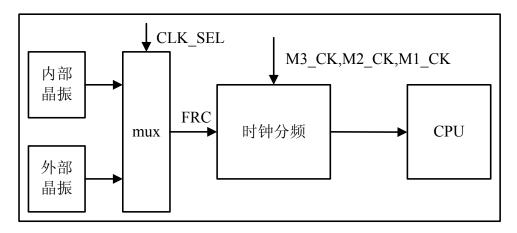


图 2-7 CPU 指令周期时钟示意图

表 2-9 指令周期选择列表

M3_CK	M2_CK	M1_CK	指令周期(KHz)
0	0	0	125
0	0	1	62.5
0	1	0	500
0	1	1	250
1	0	0	250
1	0	1	125
1	1	0	1000
1	1	1	500

2.3.4 蜂鸣器时钟

表 2-10 蜂鸣器时钟寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
15H	PCK						S_BEI	EP[1:0]		uuuuu00u
16H	MCK2	TMSE	TMSEL[1:0]		CST_E	CST_IN	EO_SLP	M3_CK	CLK_SEL	00110000
27H	PT2MR	BZEN								0uuu0000
28H	PT2CON	SEGCON1	SEGCON0			BZSEL				00uu0uuu

CSU8RP1186B有一个蜂鸣器时钟用于蜂鸣器源。用户通过设置 S_BEEP 寄存器标志位来改变蜂鸣器时钟,设置如表 2-11。

注: BZSEL=0,蜂鸣器输出为 PT2.7; BZSEL=1,蜂鸣器输出为 PT2.3; BZSEL 默认为 0。

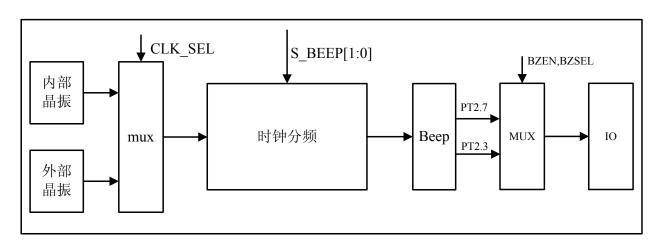


图 2-8 Beep 时钟选择示意图

表 2-11 蜂鸣器时钟选择列表

CLK_SEL	XTALSEL	S	BEEP	时钟源	Ŕ(KHz)	BEEP CLOCK(KHz)		
0	0	0	0	ICK	16000	ICK/1024	16	
0	0	0	1	ICK	16000	ICK/2048	8	
0	0	1	0	ICK	16000	ICK/4096	4	
0	0	1	1	ICK	16000	ICK/8192	2	
1	0	0	0	ECK	32	ECK/4	8	
1	0	0	1	ECK	32	ECK/8	4	
1	0	1	0	ECK	32	ECK/16	2	
1	0	1	1	ECK	32	ECK/32	1	
1	1	0	0	ECK	16000	ECK/1024	16	
1	1	0	1	ECK	16000	ECK/2048	8	
1	1	1	0	ECK	16000	ECK/4096	4	
1	1	1	1	ECK	16000	ECK/8192	2	

2.3.5 TMCLK(定时器模块输入时钟)

TMCLK 用于 CSU8RP1186B 定时器模块。根据表 2-14,用户通过正确设置 M1_CK 标志位以选择 TMCLK 的频率。

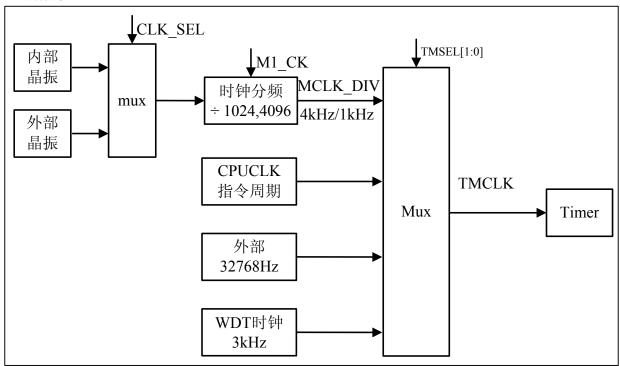


图 2-9 定时器时钟分频示意图

表 2-12 定时器时钟寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
16H	MCK2	TMSE	L[1:0]	XTALSEL	CST_E	CST_IN	EO_SLP	M3_CK	CLK_SEL	00110000

表 2-13 定时器时钟源选择列表

TMSEL[1:0]	定时器时钟源(TMCK)				
00	内部晶振或者外部晶振分频时钟 4KHz 或 1KHz				
01	CPUCLK: 指令周期				
10	外部 32768Hz 晶振时钟,				
	仅当外部接 32768Hz 晶振, 且晶振打开时有效				
11	内部 WDT 时钟				
	仅当内部 WDT 晶振打开时有效				

表 2-14 TMCLK 选择列表

M1_CK	CLK_SEL #	寸钟源(KHz)	TMCLK(Hz)		
0	=0, ICK	16000	ICK/4096	3906	
1	=0, ICK	16000	ICK/16384	976	
0	=1, ECK	16000	ECK/4096	3906	
1	=1, ECK	16000	ECK/16384	976	

2.3.6 LCDCLK (LCD 模块输入时钟)

LCD 的帧频率可以通过设置寄存器标志 LCDCKS[1:0]确定。CSU8RP1186B 对 LCD 模块的输入时钟进行分频以获得 LCDCK。

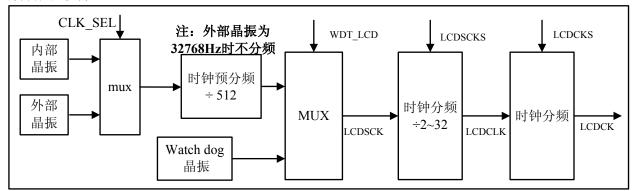


图 2-10 LCD 帧频时钟选择

表 2-15 LCDSCK 选择列表

WDT_LCD	CSE_LCD	CLK_SEL	XTALSEL	时钟源(KHz)		LCDSCK(KHz)		
1	X	X	X	WDT	3	WDT	3	
0	1	X	X	ECK	32	ECK	32	
0	0	0	X	ICK	16000	ICK/512	32	
0	0	1	0	ECK	32	ECK	32	
0	0	1	1	ECK	16000	ECK/512	32	

表 2-16 LCDCLK 选择列表

Wdt_lcd		LCDS	SCKS		LCDCL	LCDCLK(KHz)				
0	0	0	0	0	LCDSCK/32	1				
0	0	0	0	1	LCDSCK/30	1.067				
0	0	0	1	0	LCDSCK/28	1.143				
0	0	0	1	1	LCDSCK/26	1.231				
0	0	1	0	0	LCDSCK/24	1.333				
0	0	1	0	1	LCDSCK/22	1.455				
0	0	1	1	0	LCDSCK/20	1.6				
0	0	1	1	1	LCDSCK/18	1.778				
0	1	0	0	0	LCDSCK/16	2				
0	1	0	0	1	LCDSCK/14	2.286				
0	1	0	1	0	LCDSCK/12	2.667				
0	1	0	1	1	LCDSCK/10	3.2				
0	1	1	0	0	LCDSCK/8	4				
0	1	1	0	1	LCDSCK/6	5.333				
0	1	1	1	0	LCDSCK/4	8				
0	1	1	1	1	LCDSCK/2	16				
1	0	0	0	0	WTDCLK/32	0.094				
1	0	0	0	1	WTDCLK/30	0.1				
1	0	0	1	0	WTDCLK/28	0.107				
1	0	0	1	1	WTDCLK/26	0.115				
1	0	1	0	0	WTDCLK/24	0.125				
1	0	1	0	1	WTDCLK/22	0.136				
1	0	1	1	0	WTDCLK/20	0.15				
1	0	1	1	1	WTDCLK/18	0.167				
1	1	0	0	0	WTDCLK/16	0.188				
1	1	0	0	1	WTDCLK/14	0.214				
1	1	0	1	0	WTDCLK/12	0.25				
1	1	0	1	1	WTDCLK/10	0.3				

Rev.1.0

第26页,共100页

1	1	1	0	0	WTDCLK/8	0.375
1	1	1	0	1	WTDCLK/6	0.5
1	1	1	1	0	WTDCLK/4	0.75
1	1	1	1	1	WTDCLK/2	1.5

表 2-17 LCD 帧频选择列表

LCDCKS[1:0]	LCD 帧频率(LCDCK)
00	LCD 输入时钟频率/4
01	LCD 输入时钟频率/8
10	LCD 输入时钟频率/16
11	LCD 输入时钟频率/32

2.3.7 UARTCLK

UARTCLK 用于 UART 模块。UARTCLK 的时钟源是 ICK(CLK_SEL=0)或 ECK(CLK_SEL=1), 分 频系数固定为 52。

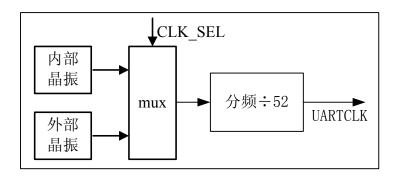


图 2-11 UART 时钟分频示意图

2.4 定时器

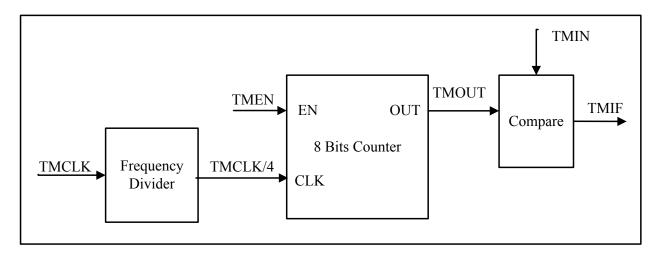


图 2-12 定时模块的功能框图

定时器模块的输入是 TMCLK。在定时器模块集成了一个分频器对 TMCLK 进行 4 分频,分频的时钟作为 8 bits 计数器的输入时钟。当用户设置了定时器模块的使能标志,8 bits 计数器将启动,TMOUT[7:0]将会从 00H 递增到 FFH。用户需要设置 INS(定时器模块中断信号选择器)以选择定时超时中断信号。当定时超时发生时,中断标志位会自设置,程序计数器会跳转到 004H 以执行中断服务程序。

地址 名称 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 上电复位值 06H INTF TMIF uuu0u000 07H INTE GIE TMIE 0uu0u000 0EH TMOUT TMOUT[7:0] 00000000 TRST 0FH TMCON **TMEN** INS[2:0] 1uuu0000

表 2-18 定时器寄存器列表

操作:

- 1. 设置 TMCLK,为定时器模块选择输入。
- 2. 设置 INS[2:0],选择定时器中断源。请看表 2-19。
- 3. 设置寄存器标志位: TMIE 与 GIE, 使能定时器中断。
- 4. 设置寄存器标志位: TMEN, 使能定时器模块的 8 bits 计数器。
- 5. 清零寄存器标志位: TRST, 复位定时器模块的计数器。
- 6. 当定时超时发生时,寄存器标志位 TMIF 会自复位,程序计数器会复位为 004H。

表 2-19 定时器选择列表

INS[2:0]	中断源	时间(TMCLK = 976Hz)
000	TMOUT[0]	1/128 s
001	TMOUT[1]	1/64 s
010	TMOUT[2]	1/32 s
011	TMOUT[3]	1/16 s
100	TMOUT[4]	1/8 s
101	TMOUT[5]	1/4 s
110	TMOUT[6]	1/2 s
111	TMOUT[7]	1 s

2.5 I/O port

表 2-20 I/O 口寄存器表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF							E1IF	E0IF	uuu0u000
07H	INTE	GIE						E1IE	E0IE	uuu0u000
20H	PT1		PT1[7:2]							
21H	PT1EN			PT1EN[7	7:2]					000000uu
22H	PT1PU		PT1PU[7:2]							000000uu
23H	AIENB					AIENB1				uuuu0uuu
24H	PT2				PT2[7:0					XXXXXXX
25H	PT2EN				PT2EN[7	:0]				00000000
26H	PT2PU				PT2PU[7	:0]				00000000
27H	PT2MR	BZEN				E1M	[1:0]	E0M	[[1:0]	0uuu0000
28H	PT2CON	SEGCON1	SEGCON0			BZSEL				00uu0uuu
29H	PTINT		P'	PTW1[2:0]				PTW	0[1:0]	u100uu10
7FH	AIENB2	AIENB2								Ouuuuuuu

微控制器中的普通用途 I/O 口(GPIO)用于普通的用途的输入与输出功能。用户可以通过 GPIO 接收数据信号或将数据传送给其它的数字设备。CSU8RP1186B的部分 GPIO 可以被定义为其它的特殊功能。在本节,只说明 GPIO 的普通用途 I/O 口功能,特殊功能将会在接下来的章节中说明。

注意: 所有读 IO 的操作均是对 PT 口的状态进行读取,而不是读 PT 寄存器的值

PT1 寄存器 (地址为 20H)

特性	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	U-0	U-0
PT1		PT1[7:2]						
	Bit7	Bit6	Bit1	Bit0				

Bit 7-0 PT1[7:2]: GPIO1 口数据标志

PT1[7] = GPIO1 bit 7 数据标志位

PT1[6] = GPIO1 bit 6 数据标志位

PT1[5] = GPIO1 bit 5 数据标志位

PT1[4] = GPIO1 bit 4 数据标志位

PT1[3] = GPIO1 bit 3 数据标志位

PT1[2] = GPIO1 bit 2 数据标志位

PT1EN 寄存器 (地址为 21H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PT1EN			PT1E	N[7:2]				
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-0 PT1EN[7:2]: GPIO1 口输入/输出控制标志

PT1EN[7] = GPIO1 bit 7 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[6] = GPIO1 bit 6 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[5] = GPIO1 bit 5 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[4] = GPIO1 bit 4 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[3] = GPIO1 bit 3 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口 PT1EN[2] = GPIO1 bit 2 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1PU 寄存器 (地址为 22H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PT1PU								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-0 PT1PU[7:2]: GPIO1 口上拉电阻使能标志

PT1PU[7] = GPIO1 bit 7 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT1PU[6] = GPIO1 bit 6 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT1PU[5] = GPIO1 bit 5 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT1PU[4] = GPIO1 bit 4 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT1PU[3] = GPIO1 bit 3 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT1PU[2] = GPIO1 bit 2 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT1PU[2] = GPIO1 bit 2 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

AIENB 寄存器(地址为 23H)

特性	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
AIENB		·			AIENB1			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3 AIENB1: PT1[4]数模通道选择信号

0 = PT1[4]定义为模拟通道 1 = PT1[4]定义为数字通道

PT2 寄存器 (地址为 24H)

特性	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X			
PT2	PT2[7:0]										
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			

Bit 7-0 PT2[7:0]: GPIO2 口数据标志位

PT2[7] = GPIO2 bit 7 的数据标志位

PT2[6] = GPIO2 bit 6 的数据标志位

PT2[5] = GPIO2 bit 5 的数据标志位

PT2[4] = GPIO2 bit 4 的数据标志位

PT2[3] = GPIO2 bit 3 的数据标志位

PT2[2] = GPIO2 bit 2 的数据标志位

PT2[1] = GPIO2 bit 1 的数据标志位

PT2[0] = GPIO2 bit 0 的数据标志位

PT2EN 寄存器(地址为 25H)

	nn —	- •									
特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PT2EN		PT2EN[7:0]									
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			

Bit 7-0 PT2EN[7:0]: GPIO 2 口输入/输出控制标志

PT2EN[7] = GPIO2 bit 7 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[6] = GPIO2 bit 6 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

Rev.1.0

第31页,共100页

PT2EN[5] = GPIO2 bit 5 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口 PT2EN[4] = GPIO2 bit 4 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口 PT2EN[3] = GPIO2 bit 3 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口 PT2EN[2] = GPIO2 bit 2 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口 PT2EN[1] = GPIO2 bit 1 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口 PT2EN[0] = GPIO2 bit 0 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口 PT2EN[0] = GPIO2 bit 0 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2PU 寄存器 (地址为 26H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PT2PU		PT2PU[7:0]										
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				

Bit 7-0 PT2PU[7:0]: GPIO2 口上拉电阻使能标志

PT2PU[7] = GPIO2 bit 7 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[6] = GPIO2 bit 6 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[5] = GPIO2 bit 5 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[4] = GPIO2 bit 4 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[3] = GPIO2 bit 3 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[2] = GPIO2 bit 2 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[1] = GPIO2 bit 1 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[0] = GPIO2 bit 0 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻 PT2PU[0] = GPIO2 bit 0 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT2MR 寄存器 (地址为 27H)

特性	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
PT2MR	BZEN				E1M[1:0]		E0M[1:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 BZEN: 蜂鸣器使能标志

1 = 使能蜂鸣器功能, 蜂鸣器由 PT2.7 或 PT2.3 输出

0=不使能蜂鸣器功能,

Bit 3-2 E1M[1:0]: 外部中断 1 触发模式

11=外部中断1在状态改变时触发

10=外部中断1在状态改变时触发

01=外部中断1为上升沿触发

00=外部中断1为下降沿触发

Bit 1-0 E0M[1:0]: 外部中断 0 触发模式

11 = 外部中断 0 在状态改变时触发

10=外部中断0在状态改变时触发

01=外部中断0为上升沿触发

00=外部中断0为下降沿触发

PT2CON 寄存器(地址为 28H)

特性	R/W-0	R/W -0	U-0	U-0	R/W-0	U-0	U-0	U-0
PT2CON	SEGCON1	SEGCON0			BZSEL			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 SEGCON1: 选择 PT2.7 口功能

0=PT2.7 为普通 IO 口

第32页,共100页

1 = PT2.7 为 SEG13 口

注: 在 VLCDX[1]=1 时 PT2.7 不能作为 SEG 口使用, SEGCON1 无效。

Bit6 SEGCON0: 选择 PT2.6 口功能

0 = PT2.6 为普通 IO 口 1 = PT2.6 为 SEG14 口

注: 在 VLCDX[1]=1 时 PT2.6 不能作为 SEG 口使用, SEGCON0 无效。

Bit 3 BZSEL: 蜂鸣器输出 IO 选择

0 = 蜂鸣器输出 IO 为 PT2.7

1 = 蜂鸣器输出 IO 为 PT2.3

PTINT 寄存器 (地址为 29H)

特性	U -0	R/W-1	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-0	
PTINT			PTW1[2:0]				PTW0[1:0]		
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit 6 PTW1[2]: PT2.1 外部中断 1 使能,默认为 1

0 = 禁止 PT2.1 外部中断 1 1 = 使能 PT2.1 外部中断 1

Bit 5 PTW1[1]: PT2.5 外部中断 1 使能

0 = 禁止 PT2.5 外部中断 1 1 = 使能 PT2.5 外部中断 1

Bit 4 PTW1[0]: PT2.4 外部中断 1 使能

0 = 禁止 PT2.4 外部中断 1 1 = 使能 PT2.4 外部中断 1

Bit 1 PTW0[1]: PT2.0 外部中断 0 使能,默认为 1

0 = 禁止 PT2.0 外部中断 0 1 = 使能 PT2.0 外部中断 0

Bit 0 PTW0[0]: PT1.5 外部中断 0 使能

0 = 禁止 PT1.5 外部中断 0 1 = 使能 PT1.5 外部中断 0

AIENB2 寄存器(地址为 23H)

特性	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
AIENB2	AIENB2		AIENB1								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			

Bit 7 AIENB2: PT1[3]、PT1[2]数模通道选择信号

0 = PT1[3]、PT1[2]定义为模拟通道 1 = PT1[3]、PT1[2]定义为数字通道

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n=上电复位后的值 '1' =位已设置 '0' =位已清零 X=不确定位

2.5.1 带模拟输入通道的数字 I/O 口: PT1[3:2]

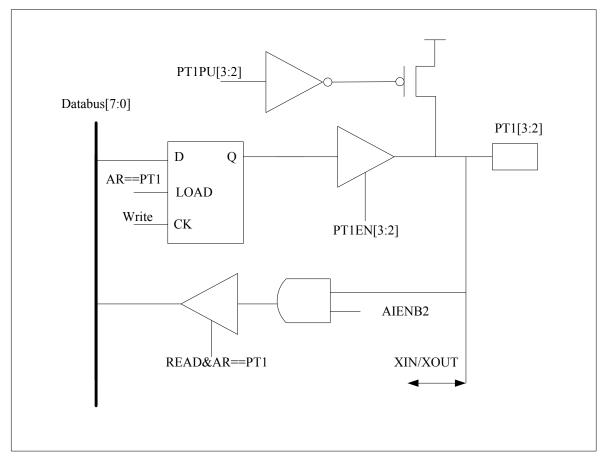


图 2-13 PT1[3:2] 功能框图

GPIO1 口(PT1[3:2]) 功能框图如图 2-13 PT1[3:2] 功能框图所示。GPIO的主要功能是用于数据总线与接口之间的交换。通过控制寄存器标志PT1EN[3:2]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下。

● 输入

GPIO1 接口 bit 3/bit2 (PT1[3:2]) 可用于输入数字或模拟信号。用户应该控制寄存器标志 AIENB2 决定输入信号的类型。如果 AIENB2 被置位(即为 1),GPIO1 接口中的与门允许数字信号连接到数据总线,否则,输入信号被定义为模拟信号,模拟信号被发送到相应的功能模块

输出

CSU8RP1186B 通过内部 D 触发器输出数字信号。当程序通过 PT1 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1186B 内部器件地址指针)指向 PT1 时,然后 D 触发器会锁存数据从 PT1 口输出。

● 上拉电阻

CSU8RP1186B 在 PT1 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT1PU)。可通过控制寄存器标志 PT1PU[3:2]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

表 2-21 PT1 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
20H	PT1					PT1	[3:2]			xxxxxxuu
21H	PT1EN					PT1E1	N[3:2]		000000uu	
22H	PT1PU					PT1PU[3:2]			000000uu	
7FH	AIENB2	AIENB2								Ouuuuuuu

读数据操作:

- 1. 清零寄存器标志位: PT1EN[n] (n 是用户要控制的 bit)。PT1 [n]被定义为输入接口。
- 2. 置位寄存器标志位: PT1PU[n]。PT1 [n]接口连接到一个内部上拉电阻。
- 3. 置位寄存器标志位: AIENB2。
- 4. 如果输入信号是模拟信号,清零寄存器标志位: AIENB2,同时将 PT1EN[3:2]置低(设置为数字输入),PT1UP[3:2]置低(没有上拉电阻)。
- 5. 需先使能 ENVB,模拟输入才能正常工作。
- 6. 在信号从外部输入后,用户可以从PT1[n]获得数据。

写数据操作:

- 1. 置位寄存器标志 PT1EN[n]。PT1 [n]被定义为输出接口。
- 2. 置位相应的寄存器标志 PT1PU[n]。PT1 [n]连接到内部的上拉电阻。
- 3. 设置 PT1[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT1[n]的数据改变。

模拟功能操作:

- 1. 清零寄存器标志位: AIENB2。
- 2. 配置 MCK2 相关寄存器, 打开外部晶振功能。

注意操作:

- 1. 为了在睡眠模式下保持低工作电流,置位 AIENB2 使 PT1 悬空。
- 2. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT1PU[n]被置位时,可以增加输出的驱动电流,

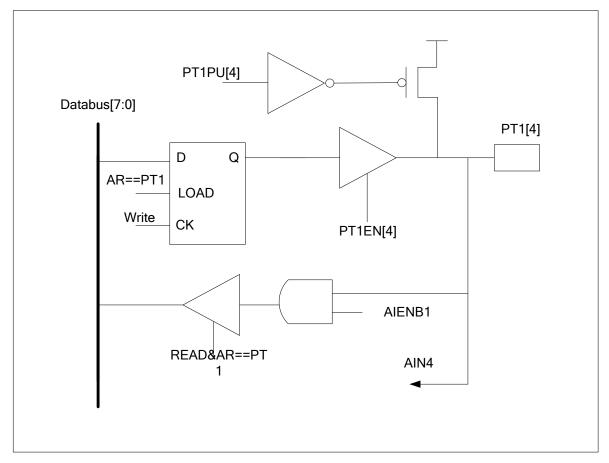


图 2-14 PT1[4] 功能框图

GPIO1 口(PT1[4]) 功能框图如图 2-13 PT1[3:2] 功能框图所示。GPIO的主要功能是用于数据总线与接口之间的交换。通过控制寄存器标志PT1EN[4]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下。

● 输入

GPIO1接口 bit 4 (PT1[4])可用于输入数字或模拟信号。用户应该控制寄存器标志 AIENB1决定输入信号的类型。如果 AIENB1被置位(即为 1),GPIO1接口中的与门允许数字信号连接到数据总线,否则,输入信号被定义为模拟信号,模拟信号被发送到相应的功能模块

● 输出

CSU8RP1186B 通过内部 D 触发器输出数字信号。当程序通过 PT1 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1186B 内部器件地址指针)指向 PT1 时,然后 D 触发器会锁存数据从 PT1 口输出。

● 上拉电阻

CSU8RP1186B 在 PT1 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT1PU)。可通过控制寄存器标志 PT1PU[4]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

表 2-22 PT1 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
20H	PT1				PT1[4]					xxxxxxuu
21H	PT1EN				PT1EN[4]					000000uu
22H	PT1PU				PT1PU[4]					000000uu
23H	AIENB					AIENB1				uuuu0uuu

读数据操作:

- 3. 清零寄存器标志位: PT1EN[n](n是用户要控制的bit)。PT1 [n]被定义为输入接口。
- 4. 置位寄存器标志位: PT1PU[n]。PT1 [n]接口连接到一个内部上拉电阻。
- 5. 如果输入信号是数字信号,置位寄存器标志位: AIENB1。
- 6. 如果输入信号是模拟信号,清零寄存器标志位: AIENB1,同时将 PT1EN[4]置低(设置为数字输入),PT1UP[4]置低(没有上拉电阻)。
- 7. 需先使能 ENVB,模拟输入才能正常工作。
- 8. 在信号从外部输入后,用户可以从 PT1[n]获得数据。

写数据操作:

- 4. 置位寄存器标志 PT1EN[n]。PT1 [n]被定义为输出接口。
- 5. 置位相应的寄存器标志 PT1PU[n]。PT1 [n]连接到内部的上拉电阻。
- 6. 设置 PT1[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT1[n]的数据改变。

注意操作:

- 3. 为了在睡眠模式下保持低工作电流,置位 AIENB1 使 PT1 悬空。
- 4. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT1PU[n]被置位时,可以增加输出的驱动电流,

2.5.3 数字 I/O 口: PT1[5]

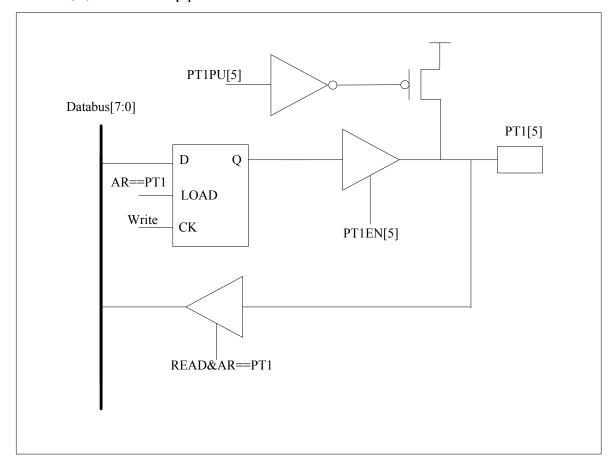


图 2-15 PT1[5] 功能框图

GPIO1 口(PT1[5]) 功能框图如图 2-16 PT1[7:6] 功能框图所示。GPIO的主要功能是用于数据总线与接口之间的交换。通过控制寄存器标志PT1EN[5]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下。

● 输入

GPIO1接口 bit 5(PT1[5])可作为外部中断 0接口: INT0,或者作为普通 I/O 口。通过控制 INTE 寄存器的标志位 E0IE、PTW0[1:0]以决定是否使能中断。中断触发模式是由寄存器标志 E0M[1:0]决定。当 PT1EN[n]置为 0 时,PT1[7:5]设置为数字输入。

● 输出

CSU8RP1186B 通过内部 D 触发器输出数字信号。当程序通过 PT1 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1186B 内部器件地址指针)指向 PT1 时,然后 D 触发器会锁存数据从 PT1 口输出。

● 上拉电阻

CSU8RP1186B 在 PT1 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT1PU)。可通过控制寄存器标志 PT1PU[5]决定是否连接上拉电阻。当接上拉电阻时,输入数据默认为高(即为 1)。

2.5.4 数字 I/O 口: PT1[7:6]

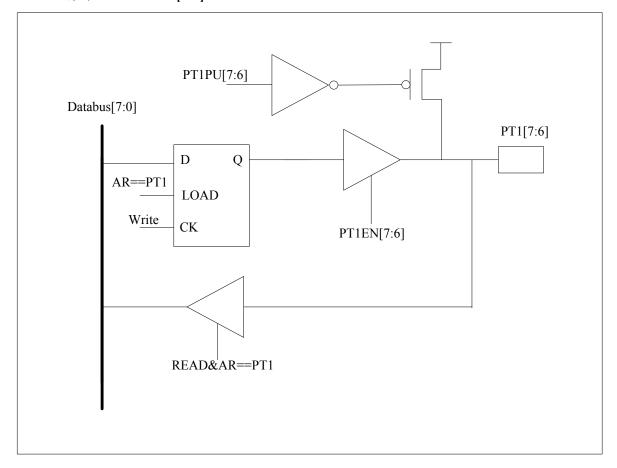


图 2-16 PT1[7:6] 功能框图

GPIO1 口(PT1[7:6])功能框图如图 2-16 PT1[7:6] 功能框图所示。GPIO的主要功能是用于数据总线与接口之间的交换。通过控制寄存器标志PT1EN[7:6]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下。

输入

GPIO1 接口 bit 7~bit 6 (PT1[7:6]) 可用于输入数字。当 PT1EN[n]置为 0 时,PT1[7:6]设置为数字输入。

● 输出

CSU8RP1186B 通过内部 D 触发器输出数字信号。当程序通过 PT1 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1186B 内部器件地址指针)指向 PT1 时,然后 D 触发器会锁存数据从 PT1 口输出。

● 上拉电阻

CSU8RP1186B 在 PT1 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT1PU)。可通过控制寄存器标志 PT1PU[7:6]决定是否连接上拉电阻。当接上拉电阻时,输入数据默认为高(即为 1)。

表 2-23 PT1 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
20H	PT1		PT1[7:5]							xxxxxxuu
21H	PT1EN		PT1EN[7:5]							000000uu
22H	PT1PU		PT1PU[7:5]							000000uu

读数据操作:

- 1. 清零寄存器标志位: PT1EN[n](n是用户要控制的bit)。PT1 [n]被定义为输入接口。
- 2. 置位寄存器标志位: PT1PU[n]。PT1 [n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从PT1[n]获得数据。

写数据操作:

- 7. 置位寄存器标志 PT1EN[n]。PT1 [n]被定义为输出接口。
- 8. 置位相应的寄存器标志 PT1PU[n]。PT1 [n]连接到内部的上拉电阻。
- 9. 设置 PT1[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT1[n]的数据改变。

注意操作:

5. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT1PU[n]被置位时,可以增加输出的驱动电流。

2.5.5 数字 I/O 口、URAT 接口与外部中断输入: PT2[1:0]

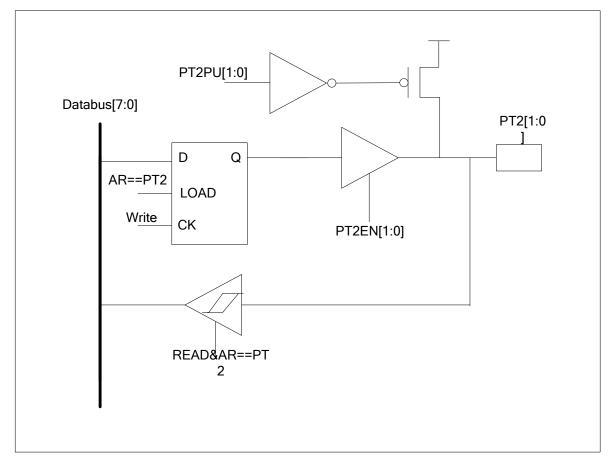


图 2-17 PT2[1:0]功能框图

GPIO2 口的bit1~0(PT2[1:0]) 功能框图如图 2-17所示。此GPIO口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志PT2EN[1:0]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下:

● 输入

GPIO2 口 bit1~0 (PT2[1:0]) 可作为外部中断接口: INT1 与 INT0, 或者作为 UART 通信接口 (PT2.0 作为 UART 接收端口),或者作为普通 I/O 口。通过控制 INTE 寄存器的标志位 E0IE 与 E1IE、PTW1[2:0]和 PTW0[1:0]以决定是否使能中断。中断触发模式是由寄存器标志: E0M[1:0], E1M[1:0]决定。这两个输入接口可以作为施密特触发,上/下触发电平分别为 0.7VDD/0.3VDD。

● 输出

CSU8RP1186B 通过内部 D 触发器输出数字数据,可作为 UART 通信接口(PT2.1 作为 UART 发送端口),或者作为普通 I/O 口。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1186B 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

● 上拉电阻

CSU8RP1186B 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ (上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[1:0]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

表 2-24 PT2 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF							E1IF	E0IF	uuu0u000
07H	INTE	GIE						E1IE	E0IE	0uu0u000
24H	PT2		PT2[7:0]						XXXXXXXX	
25H	PT2EN		PT2EN[7:0]					00000000		
26H	PT2PU				PT	2PU[7:0]				00000000
27H	PT2MR					E1M	[1:0]	E0M[1:0]	00000000
29H	PTINT			PTW1[2:0]				PTW0	[1:0]	u100uu10

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n] (n 是用户要控制的 bit)。PT2[n]被定义为输入接口。
- 2. 置位寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从PT2[n]获得数据。

写数据操作:

- 1. 置位寄存器标志 PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

外部中断操作(以下降沿触发为例子)

- 1. 清零寄存器标志位 PT2EN[n]。PT2[n]被定义为输入接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 置 E0M[1:0]为 00, 定义 INT0 的中断触发模式为"下降沿触发"。
- 4. 置 E1M[1:0]为 00, 定义 INT1 的中断触发模式为"下降沿触发"。
- 5. 置 PTW1[2:0] 为 100, 定义 PT2.1 为 INT1 的中断源。
- 6. 置 PTW0[1:0]为 00, 定义 PT2.0 为 INT1 的中断源。。

注意操作:

1. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流,

2.5.6 数字 I/O 口: PT2[3:2]

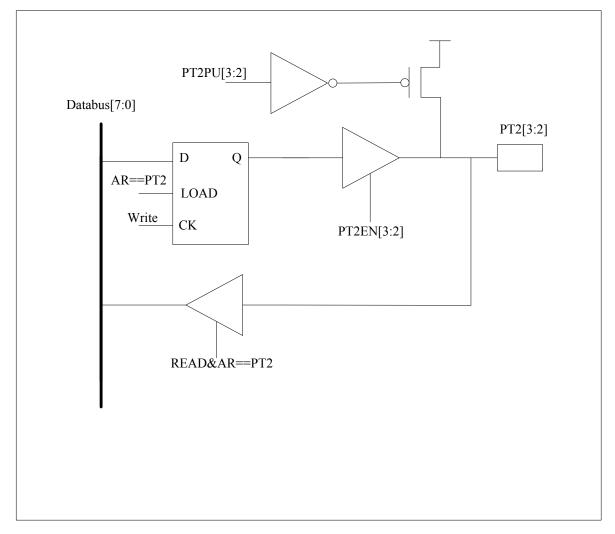


图 2-18 PT2[6:2] 功能框图

GPIO2 口 bit 3:2 (PT2[3:2]) 的功能框图如图 2-18 PT2[6:2] 功能框图所示。此 GPIO 口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志 PT2EN[3:2]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下:

输入

GPIO2 口 bit3:2(PT2[3:2]): PT2.3 可以作为蜂鸣器输出,或者作为普通用途的 I/O 口; PT2.2 只可作为普通用途的 I/O 口。

● 输出

CSU8RP1186B 使用内部 D 锁存器输出数字数据。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1186B 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

● 上拉电阻

CSU8RP1186B 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[3:2]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

表 2-25 PT2 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
24H	PT2				PT2	[7:0]				XXXXXXXX
25H	PT2EN				PT2E	N[7:0]				00000000
26H	PT2PU				PT2P	U[7:0]				00000000
27H	PT2MR	BZEN				E1M	1[1:0]	E0M[1:0]	0uuu0000
28H	PT2CON					BZSEL				00uu0uuu

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n] (n 是用户要控制的 bit)。PT2[n]被定义为输入接口。
- 2. 置位寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从PT2[n]获得数据。

写数据操作:

- 1. 置位相应的寄存器标志位: PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志位: PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

PT2.3 蜂鸣器输出操作:

- 1. 置位寄存器标志位 PT2EN[3]。PT2[3]定义为输出接口。
- 2. 置位寄存器标志位 S BEEP,设置蜂鸣器频率。
- 3. 置位寄存器标志位 BZEN 和 BZSEL(BZSEL=1)。PT2[3]就作为蜂鸣器输出接口。
- 4. 将一个蜂鸣器与 PT2 bit3 口连接。蜂鸣器就可以正确工作。

注意操作:

1. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流。

2.5.7 数字 I/O 口、URAT 接口与外部中断输入: PT2[5:4]

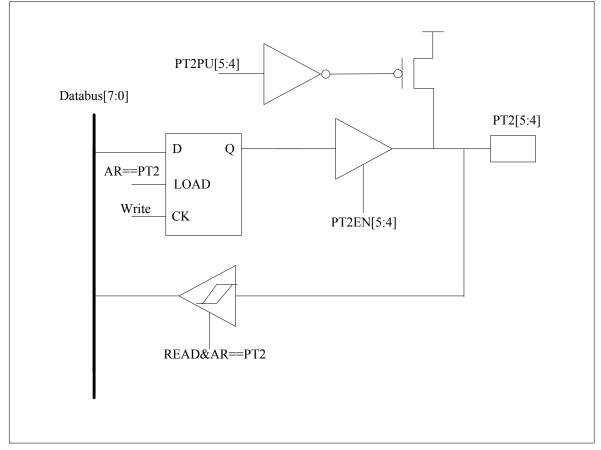


图 2-19 PT2[5:4]功能框图

GPIO2 口的bit5~4 (PT2[5:4]) 功能框图如图 2-17所示。此GPIO口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志PT2EN[5:4]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下:

● 输入

GPIO2 口 bit5~4(PT2[5:4])可作为外部中断接口: INT1,或者作为 UART 通信接口(PT2.4 作为 UART 接收端口),或者作为普通 I/O 口。通过控制 INTE 寄存器的标志位 E1IE、PTW1[2:0]以决定是否使能中断。中断触发模式是由寄存器标志 E1M[1:0]决定。

输出

CSU8RP1186B 通过内部 D 触发器输出数字数据,可作为 UART 通信接口(PT2.5 作为 UART 发送端口),或者作为普通 I/O 口。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1186B 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

● 上拉电阻

CSU8RP1186B 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[5:4]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

表 2-26 PT2 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF							E1IF	E0IF	uuu0u000
07H	INTE	GIE						E1IE	E0IE	0uu0u000
24H	PT2		PT2[7:0]						XXXXXXXX	
25H	PT2EN			PT2EN[7:0]					00000000	
26H	PT2PU				PT	2PU[7:0]				00000000
27H	PT2MR					E1M	[1:0]	E0M[1:0]	0uuu0000
29H	PTINT			PTW1[2:0]				PTW0	[1:0]	u100uu10

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n] (n 是用户要控制的 bit)。PT2[n]被定义为输入接口。
- 2. 置位寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从PT2[n]获得数据。

写数据操作:

- 1. 置位寄存器标志 PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

外部中断操作(以下降沿触发为例子)

- 1. 清零寄存器标志位 PT2EN[n]。PT2[n]被定义为输入接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 置 E1M[1:0]为 00, 定义 INT1 的中断触发模式为"下降沿触发"。
- 4. 置 PTW1[2:0] 为 010, 定义 PT2.5 为 INT1 的中断源, 或置 PTW1[2:0] 为 001, 定义 PT2.4 为 INT1 的中断源。

注意操作:

2. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流,

2.5.8 数字 I/O 接口或者蜂鸣器输出: PT2[7:6]

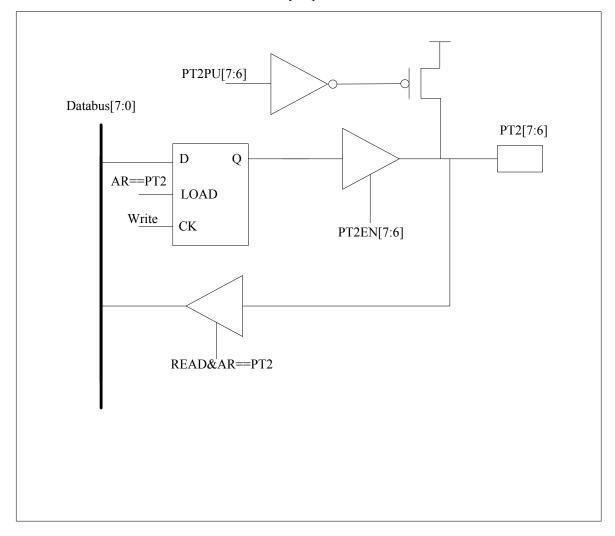


图 2-20 PT2[7:6] 功能框图

GPIO2 口bit7~6(PT2[7:6])的功能框图如图 2-20所示。此GPIO口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志PT2EN[7:6]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下:

输入

GPIO2 口 bit 7~6 (PT2[7:6]) PT2.7 可以作为蜂鸣器输出接口,或者作为普通 I/O 接口; PT2.6 可以作为普通 I/O 接口。

PT2.7 通过设置寄存器标志 BZEN 和 BZSEL 决定是否使能蜂鸣器输出。 输出

CSU8RP1186B 使用内部 D 锁存器输出数字数据。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR (CSU8RP1186B 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

上拉电阻

CSU8RP1186B 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[7:6]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)

第48页,共100页

表 2-27 PT2[7]寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
24H	PT2				PT2[7:0]				XXXXXXX
25H	PT2EN		PT2EN[7:0]							
26H	PT2PU		PT2PU[7:0]							
27H	PT2MR	BZEN			E1M[1:0] E0M[1:0]			0uuu0000		
28H	PT2CON					BZSEL				00uu0uuu

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n] (n 是用户要控制的 bit)。PT2[n]被定义为输入接口。
- 2. 置位相应的寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从PT2[n]获得数据。

写数据操作:

- 1. 置位相应的寄存器标志位: PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志位: PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

PT2.7 蜂鸣器输出操作:

- 5. 置位寄存器标志位 PT2EN[7]。PT2[7]定义为输出接口。
- 6. 置位寄存器标志位 S BEEP,设置蜂鸣器频率。
- 7. 置位寄存器标志位 BZEN 和 BZSEL(BZSEL=0)。PT2[7]就作为蜂鸣器输出接口。
- 8. 将一个蜂鸣器与 PT2 bit7 口连接。蜂鸣器就可以正确工作。

注意操作:

1. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流。

3 增强功能

3.1 电源系统

3.1.1 Regulator

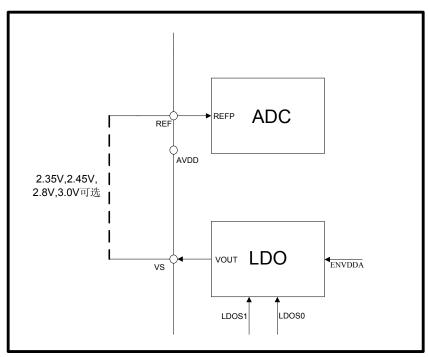


图 3-1 稳压电路

如图 3-1 所示,用于产生VS作为传感器和ADC的参考电压,通过选择LDOS可以使输出 2.35V, 2.45V, 2.8V, 3.0V可选。ENVDDA作为LDO的使能信号。LDO的控制寄存器标志是ENVDDA与LDOS。输出电压是VS。ENVB作为整个模拟电源部分的使能信号,关断之后ADC和LCD 电荷泵等将会不工作。

表 3-1 稳压电路寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
1CH	NETE	LDC	OS[1:0]							00uu000u
1DH	NETF			ENVDDA					ENVB	0u0uu000

NETE 寄存器(地址=1CH)

特性	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
NETE	LDOS	S[1:0]						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7~6 LDOS[1:0]: VS 电压值选择

LDOS[1:0] 00 VS=3.0 LDOS[1:0] 01 VS=2.8 LDOS[1:0] 10 VS=2.45 LDOS[1:0] 11 VS=2.35

NETF寄存器(地址=1DH)

特性	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
NETF			ENVDDA					ENVB
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit5 ENVDDA: LDO 使能信号 ENVDDA=1: LDO 使能 ENVDDA=0: LDO 不使能

Bit0 ENVB: 模拟电源使能信号 ENVB=1: 模拟电源使能 ENVB=0: 模拟电源不使能

操作:

- 1. 将 ENVDDA 置高
- 2. 设置 ENVB 置高
- 3. 设置 LDOS[1:0], 选择 VS 值。

3.1.2 低电压比较器

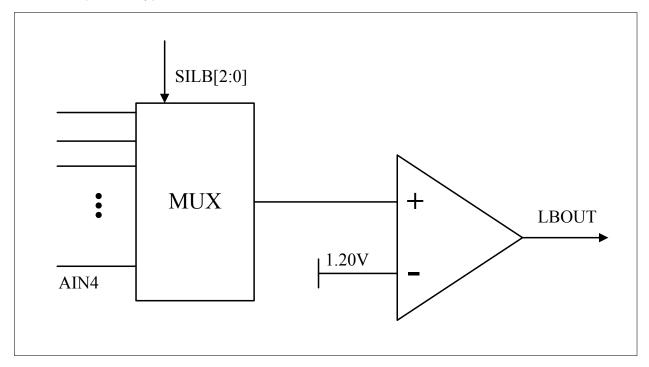


图 3-2 低电压比较功能模块框图

低电压比较器用于VDD的低电压检测。CSU8RP1186B集成一个可产生 1/2VDD及 1/3VDD的分压器。多路选择器用于选择不同的分压连接到低电压比较器的输入端。多路选择器的输出与 1.20V进行比较,它的控制寄存器标志是SILB[2:0]及ENLB,比较器的输出是LBOUT,LBOUT为只读。请看图 3-2。

表 3-2 低电压比较器寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
1CH	NETE					SILB[2:0]		ENLB		00u0000u
1FH	SVD								LBOUT	uuuuuux

操作:

- 1. 设置寄存器标志位 ENLB, 使能低电压比较器。
- 2. 比较器输出是LBOUT。

表 3-3 低电压比较器检测电压的选择列表

SILB[2:0]	检测电压	满足条件	则
000	VDD	VDD>2.4V	LBOUT=1
001	VDD	VDD>2.5V	LBOUT=1
010	VDD	VDD>2.6V	LBOUT=1
011	VDD	VDD>2.7V	LBOUT=1
100	VDD	VDD>2.8V	LBOUT=1
101	VDD	VDD>3.6V	LBOUT=1
110	AIN4	AIN4>1.20V	LBOUT=1
111	VDD	VDD>3.6V	LBOUT=1

3.1.3 电荷泵

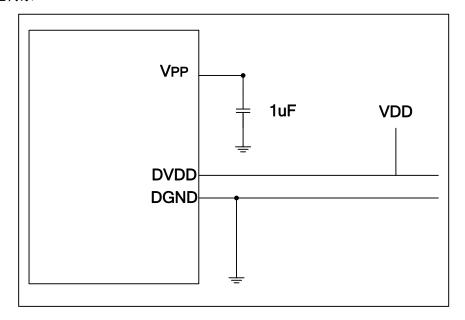


图 3-3 电荷泵外围电路示意图

电荷泵电路主要有两种使用方式,一种是提供 LCD 的显示电压源,一种是作为自烧录时提供烧录电压。当使用电荷泵电路时,需要在 VPP 引脚处接入一个 1uF 的电容。

不同应用情况下的寄存器配置和外置电容接法。

1142/4/11/201 14/4 14 18 19 25 1 / 1 / 20 2 1 / 1 / 20 2 1 / 20 2										
功能	LCDEN	CHP_VPP	ENPMPL	外置电容(VPP引脚)						
LCD 关闭,不升压,不外部供电	0	0	0	无需外接电容						
内部供电显示,LCD接 DVDD	1	X	0	无需外接电容						
自烧录,LCD 关闭	0	1	1	接外置电容						
自烧录,LCD 显示	1	1	1	接外置电容						
内部供电显示,LCD接 Pump	1	0	1	接外置电容						
Pump 开,LCD 关闭	0	0	1	接外置电容						

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
1BH	NETD					VLCD:	X[1:0]			uuuu0000
1DH	NETF	CHP_VPP							ENVB	0u0uu000
58H	LCDENR								ENPMPL	00000110

NETF 寄存器(地址=1DH)

特性	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
NETF	CHP_VPP							ENVB

Bit 7 CHP_VPP:升压泵电压选项

0=升压泵电压受 VLCDX 选择

1=升压泵电压泵到烧录电压 6.5V

NETD 寄存器(地址为 1BH)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
NETD					VLCD	OX[1:0]		
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit3-2 VLCDX: VLCD 输出电压选择

00 = 2.6V

第53页,共100页

01 = 2.8V

10 = 3.0V

11 = 3.2V

电荷泵作为 LCD 显示使用操作说明:

- 1把基准打开(ENVB置高)
- 2根据LCD要求设置LCDREF和VLCDX寄存器
- 3将电荷泵使能信号打开(ENPMPL 置高)

电荷泵作为自烧录 EPROM 区域使用操作说明:

- 1把基准打开(ENVB置高)
- 2 将 VLCDX 置为 11
- 3将电荷泵使能信号打开(ENPMPL 置高)
- 4将 CHP_VPP 置高,然后等待 200ms 时间检测 ERV 寄存器

3.2 Halt 与 Sleep 模式

CSU8RP1186B 支持低功耗工作模式。为了使 CSU8RP1186B 处于待机状态, 可以让 CPU 停止工作 使 CSU8RP1186B 进行停止或睡眠模式,减低功耗。这两种模式描述如下: 停止模式

CPU 执行停止指令后,程序计数器停止计数直到出现中断指令。为了避免由中断返回(Interrupt Return)引起的程序错误,建议在停止指令之后加一 NOP 指令以保证程序返回时能正常运行。 睡眠模式

CPU 执行睡眠指令后,所有的振荡器停止工作直到出现一个外部中断指令复位 CPU。为了避免由中断返回(Interrupt Return)引起的程序错误,建议在停止指令之后加一 NOP 指令以保证程序的正常运行。在睡眠模式下的功耗大约有 2uA。

为了保证 CPU 在睡眠模式下的功耗最小,在执行睡眠指令之前,需要关闭所有的电源模块及模拟电路,并且保证所有的 I/O 口是接到 DVDD 或 DGND 电平。

在执行睡眠指令之前,先执行下面的程序。

CLRF NETA ;复位状态 CLRF NETC ;复位状态 CLRF NETE ;复位状态 CLRF NETF ;复位状态

CLRF PT1PU ;断开 PT1 上拉电阻

MOVLW FFH

MOVWF PT1EN ;PT1[7:4]用作输出接口 CLRF PT1 ;将 PT1[7:4]输出为低

MOVLW 01H

MOVWF PT2PU ;断开 PT2 口除 bit0(PT2[0])外的其它接口的上拉电阻

MOVLW 0FEH

MOVWF PT2EN ;除 bit0 (PT2[0]) 外, PT2[7:0]用作输出接口

CLRF PT2 ;将 PT2[7:1]输出为低

CLRF INTF ;清零中断标志

MOVLW 081H

MOVWF INTE ;使能外部中断

SLEEP ;使 CSU8RP1186B 进行睡眠模式 NOP ;保证 CPU 重启后程序能正常工作

3.3 复位系统

CSU8RP1186B包括以下几种复位方式:

上电复位 看门狗复位 掉电复位

上述复位方式中除看门狗复位以外的复位方式发生时,所有的系统寄存器恢复默认状态,程序停止运行,同时程序计数器 PC 清零。复位结束后,系统从向量 000H 处重新开始运行。 当看门狗复位发生时,系统寄存器值仍然保持不变,程序停止运行,同时程序计数器 PC 清零。复位结束后,系统从向量 000H 处重新开始运行。

系统复位需要一定的时间,并提供完整的上电复位过程。对于不同类型的振荡器,完成复位所需要的时间也不同。因此,DVDD的上升速度和不同晶振的起振时间都不固定。晶体振荡器类型不同则复位时间亦存在差别,这使得DVDD上升时间和启动时间不是确定值。

在 CSU8RP1186B 中,除看门狗复位以外的复位方式发生以后,系统需要等待 39ms 的时间,才能 开始正常工作。

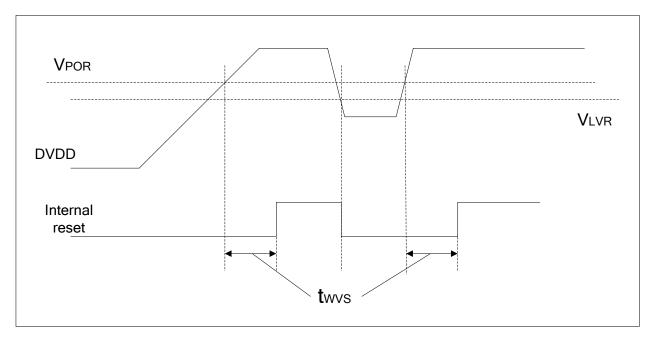


图 3-4 上电复位电路示例及上电过程

参数	典型值
VPOR	2.2V
VLVR	2.0V
tWVS	39ms

VPOR: 上电复位 VLVR: 低电压复位 tWVS: 等待电压稳定时间

3.4 看门狗

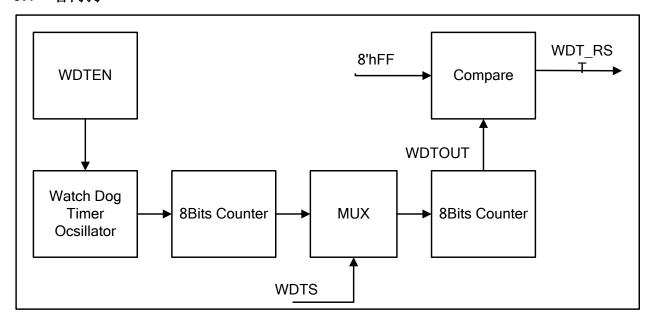


图 3-5 看门狗定时器功能框图

看门狗定时器(WDT)用于防止程序由于某些不确定因素而失去控制。当 WDT 启动时,WDT 计时超时后将使 CPU 复位。在正常运行时,程序一般在 WDT 复位 CPU 之前先复位 WDT。当出现某些故障时,程序会被 WDT 复位到正常状态下。

看门狗定时器的输入是寄存器标志位: WDTEN与 WDTS[2:0], WDT 的输出是寄存器标志位: TO。当用户置位 WDTEN时,则内部的看门狗定时器振荡器(3KHz)将会启动,产生的时钟被送到"8 bits 计数器 1",如图 3-5 所示。"8 bits计数器 1"的输出是虚信号 WDTA[7:0],被发送到一个受寄存器标志位 WDTS[2:0]控制的多路选择器,选择器的输出作为"8 bits计数器 2"的时钟输入。当"8 bits计数器 2"溢出时,它会发送 WDTOUT 信号复位 CPU(程序计数器将会跳转到 000H 以复位程序)及置位 TO标志位。

当 WDTS[3]为 1 时,8 bits 计数器 2 的计数到 93 时溢出,当 WDTS[3]为 0 时,8 bits 计数器 2 的计数到 255 时溢出。

用户可以使用指令 CLRWDT 复位 WDT。

表 3-4 看门狗定时器寄存器表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
04H	STATUS					TO				00u00xxx
0DH	WDTCON	WDTEN			Wdt lcd		WDT	S[3:0]		0uu00000

操作:

- 1. 设置 WDTS[3:0], 选择 WDT 超时频率。
- 2. 置位寄存器标志位: WDTEN, 使能 WDT。
- 3. 在程序中执行 CLRWDT 指令复位 WDT。

当 wdt_lcd 标志位置高以后,LCD 将采用 wdt 的 2 分频时钟作为 LCD_CLK,此时 LCSSCKS 的寄存器对于 LCD_CLK 的分频作用无效,但是 LCDCKS 的帧频分频仍然有效。具体时钟分频请参考 3.6.2LCD 帧频选择。

表 3-5 看门狗时钟选择列表

WDTS[3]	WDTS[2:0]	计数器时钟	时间
0	000	WDTIN[7]	21.8 s
(8 bits 计数器 1)	001	WDTIN [6]	10.9 s
	010	WDTIN [5]	5.5 s
	011	WDTIN [4]	2.7 s
	100	WDTIN [3]	1.4 s
	101	WDTIN [2]	0.68 s
	110	WDTIN [1]	0.34 s
	111	WDTIN [0]	0.17 s
1	000	WDTIN[7]	8 s
(6bits 计数器 1)	001	WDTIN [6]	4 s
	010	WDTIN [5]	2s
	011	WDTIN [4]	1 s
	100	WDTIN [3]	0.5s
	101	WDTIN [2]	0.25s
	110	WDTIN [1]	0.125s
	111	WDTIN [0]	0.0625s

3.5 ADC 模块

3.5.1 ADC 寄存器说明

表 3-6 ADC 功能模块相关寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF						ADIF			uuu0u000
07H	INTE	GIE					ADIE			0uu0u000
10H	ADOH				ADO[23	3:16]				00000000
11H	ADOL				ADO[1	5:8]				00000000
12H	ADOLL				ADO[7:0]				00000000
13H	ADCON					ADSC	1	ADM[2:0]		uuuu0000
18H	NETA	SINL								00uuuuuu
1AH	NETC		ADGAIN[5:0] ADEN							0000000u
1DH	NETF					•	BGII	D[1:0]		0u00uu00

ADOH 寄存器(地址为10H)

特性	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
ADOH		ADO[23:16]							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

ADOL 寄存器(地址为11H)

特性	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
ADOL				ADO	[15:8]			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

ADOLL 寄存器(地址为 12H)

特性	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
ADOLL		ADO[7:0]								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		

Bit 23-0 ADO[23:0]: ADC 数字输出

ADO[23] = ADC 数字输出符号位。0 = 输出为正; 1 = 输出为负。

ADO[22] = ADC 数字输出数据 bit 22

 \sim

ADO[0] = ADC 数字输出数据 bit 0

NETA 寄存器(地址为 18h)

特性	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
NETA	SINL	[1:0]						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-6 SINL:

00 = ADC 输入端连接到 AIN0 和 AIN1, AIN0 为 Vin+, AIN1 为 Vin-;

 $01 = \Box 00$:

10 = ADC 输入端连接到 TEMP;

11 = ADC 输入端连接到 AIN0 和 AIN1, AIN0 为 Vin-, AIN1 为 Vin+;

其中 TEMP 片内集成温度传感器的输入端。

当选择片内集成的温度传感器时,PGA(ADC增益)要选择1这一档。

针对传感器的温度补偿,建议使用 TEMPC 寄存器配置(参见 3.5.2ADC 增益以及时钟),可以不使用 温度传感器直接进行温度补偿。

NETC 寄存器(地址为1AH)

		*						
特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
NETC			ADGA	IN[5:0]			ADEN	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-2 ADGAIN[5:0]: ADC 增益相关选项

Bit 1 ADEN: ADC 使能标志

1 = ADC 使能

0 = ADC 不使能

注意: VS 使能前(NETF 寄存器的 ENVDDA 位), ADEN 不使能; VS 使能后, 延时 50us 以上 ADEN 才使能。(要严格按照该过程操作否则 AD 工作异常)示例代码和过程如下:

BCF NETC,ADEN ;1、使能VS电源之前ADEN要关闭

....

MOVLW xx1xxxx1B

MOVWF NETF ;2、使能模拟电源ENVB和VS电源ENVDDA

....

CALL sub_delay_50us ;3、延时50us

....

BSF NETC,ADEN ;4、使能ADEN

.

3.5.2 ADC 增益以及时钟

表 3-7 ADC 增益选择列表

VS	ADSC	ADGAIN	BGID	TEMPC	ADCF	PGA	ENOB
2.35V	0	110101	01	11100000	250K	1	18.3
	0	000001	01	11100000	250K	64	17.3
2.45V	0	110101	01	11100000	250K	1	18.3
	0	000001	01	11100000	250K	64	17.3
	1	000001	01	11100000	125K	128	17.2
2.8V	0	110101	01	11100000	250K	1	18.3
	0	000001	01	11100000	250K	64	17.3
	1	000001	01	11100000	125K	128	17.4
3.0V	0	110101	01	11100000	250K	1	18.3
	0	000001	01	11100000	250K	64	17.3
	1	000001	01	11100000	125K	128	17.4

注:

- 1.信号源内阻为 $1K\Omega$, ADM=111, 信号测试范围 $0mV\sim5mV$ 。
- 2.ENOB 计算中所选取的 AD 个数为连续的 1024 个 AD 值, ENOB 结果不包含符号位。所有 ENOB 数据为单一样片测试结果,对批量生产只起参考作用,实际应用中,由于传感器及芯片的批次不同,精度将有所偏差。

3.5.3 ADC 输出速率

表 3-8 ADC 输出速率选择列表

ADM[2:0]	ADC 输出速率(ADCF 参照表 3-7 ADC 增益选择列表)
000	ADCF/64
001	ADCF/128
010	ADCF/256
011	ADCF/512
100	ADCF/1024
101	ADCF/2048
110	ADCF/4096
111	ADCF/8192

注: 详细使用参见表 3-7 ADC 增益选择列表

3.5.4 ADC 工作电流

NETF 寄存器(地址为1DH)

特性	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
NETF						BGIE	D[1:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

注: 详细使用参见表 3-7 ADC 增益选择列表

3.5.5 ADC 增益的温度特性调整

TEMPC 寄存器(地址为59H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TEMPC		TEMPC[7:0]						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

注: 详细使用参见表 3-7 ADC 增益选择列表

3.6 LCD Driver

3.6.1 LCD 控制模式

LCD 驱动器有 3 种控制模式: 1/2duty, 1/3duty 及 1/4duty, 设置寄存器标志 LCD_DUTY[1:0]选择一种模式。

表 3-9 LCD 的 duty 选择列表

LCD DUTY[1.0]	控制模		SEG1-16						
LCD_DUTY[1:0]	式	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
01	1/2duty					-	-	COM2	COM1
10	1/3duty					1	COM3	COM2	COM1
11	1/4duty					COM4	COM3	COM2	COM1

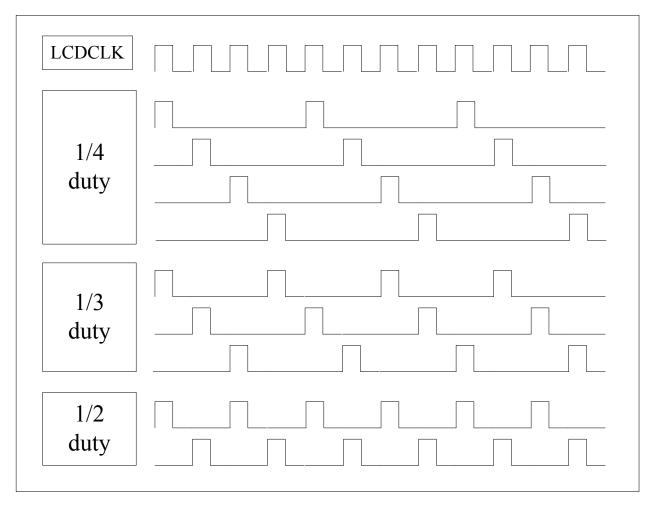


图 3-6 LCD 的 duty 模式工作周期

3.6.2 LCD 帧频选择

LCD 的帧频率可以通过设置寄存器标志 LCDCKS[1:0]确定。CSU8RP1186B 对 LCD 模块的输入时钟进行分频以获得 LCDCK。

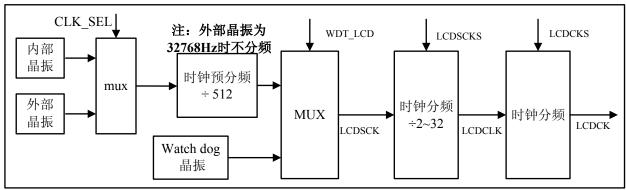


图 3-7 LCD 帧频时钟选择

表 3-10 LCDSCK 选择列表

WDT_LCD	CSE_LCD	CLK_SEL	XTALSEL	时钟源((KHz)	LCDSCK	(KHz)
1	X	X	X	WDT	3	WDT	3
0	1	X	X	ECK	32	ECK	32
0	0	0	X	ICK	16000	ICK/512	32
0	0	1	0	ECK	32	ECK	32
0	0	1	1	ECK	16000	ECK/512	32

表 3-11 LCDCLK 选择列表

Wdt_lcd		LCDS	SCKS		LCDCLK(K	Hz)
0	0	0	0	0	LCDSCK/32	1
0	0	0	0	1	LCDSCK/30	1.067
0	0	0	1	0	LCDSCK/28	1.143
0	0	0	1	1	LCDSCK/26	1.231
0	0	1	0	0	LCDSCK/24	1.333
0	0	1	0	1	LCDSCK/22	1.455
0	0	1	1	0	LCDSCK/20	1.6
0	0	1	1	1	LCDSCK/18	1.778
0	1	0	0	0	LCDSCK/16	2
0	1	0	0	1	LCDSCK/14	2.286
0	1	0	1	0	LCDSCK/12	2.667
0	1	0	1	1	LCDSCK/10	3.2
0	1	1	0	0	LCDSCK/8	4
0	1	1	0	1	LCDSCK/6	5.333
0	1	1	1	0	LCDSCK/4	8
0	1	1	1	1	LCDSCK/2	16
1	0	0	0	0	WTDCLK/32	0.094
1	0	0	0	1	WTDCLK/30	0.1
1	0	0	1	0	WTDCLK/28	0.107
1	0	0	1	1	WTDCLK/26	0.115
1	0	1	0	0	WTDCLK/24	0.125
1	0	1	0	1	WTDCLK/22	0.136
1	0	1	1	0	WTDCLK/20	0.15
1	0	1	1	1	WTDCLK/18	0.167
1	1	0	0	0	WTDCLK/16	0.188
1	1	0	0	1	WTDCLK/14	0.214
1	1	0	1	0	WTDCLK/12	0.25
1	1	0	1	1	WTDCLK/10	0.3
1	1	1	0	0	WTDCLK/8	0.375

第63页,共100页

CSU8RP1186 B

增强功能

1	1	1	0	1	WTDCLK/6	0.5
1	1	1	1	0	WTDCLK/4	0.75
1	1	1	1	1	WTDCLK/2	1.5

表 3-12 LCD 帧频选择列表

LCDCKS[1:0]	LCD 帧频率(LCDCK)
00	LCD 输入时钟频率/4
01	LCD 输入时钟频率/8
10	LCD 输入时钟频率/16
11	LCD 输入时钟频率/32

3.6.3 LCD 偏置电压

LCD 驱动器有 3 个偏置电压,V1、V2 及 V3,有 2 种电源模式: 1/3bias、1/2bias。偏置电压的产生电路采用内部电阻分压,优点是可以节省 V2 与 V1 pin 的外部电容,静态功耗的大小与分压电阻的阻值有关,分压电阻越大驱动能力越弱。

采用电阻分压的方式产生偏置电压

● 1/3bias 电源系统

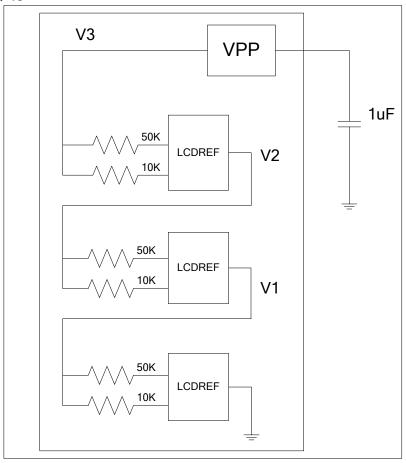


图 3-8 LCD 的 1/3bias 电源系统电路连接图(电阻分压)

● 1/2bias 电源系统

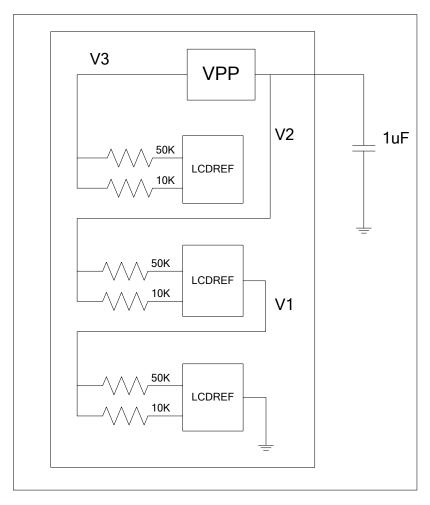


图 3-9 LCD 的 1/2bias 电源系统电路连接图(电阻分压)

3.6.4 LCD 驱动波形

LCD 驱动波形分为 A 和 B 两种波形,通过寄存器 LCDWS 来选择,其中 B 波形对于大尺寸的显示效果更好。

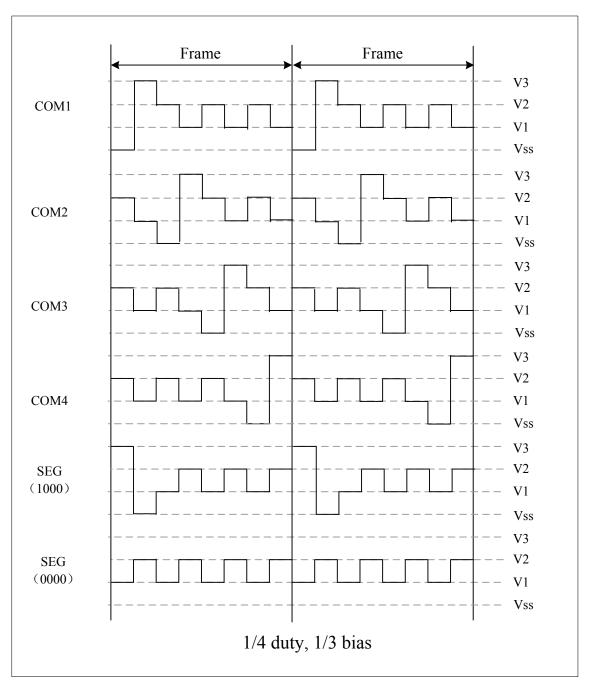


图 3-10 LCD 的 1/4duty 1/3bias 电源系统的时钟(A 波形)

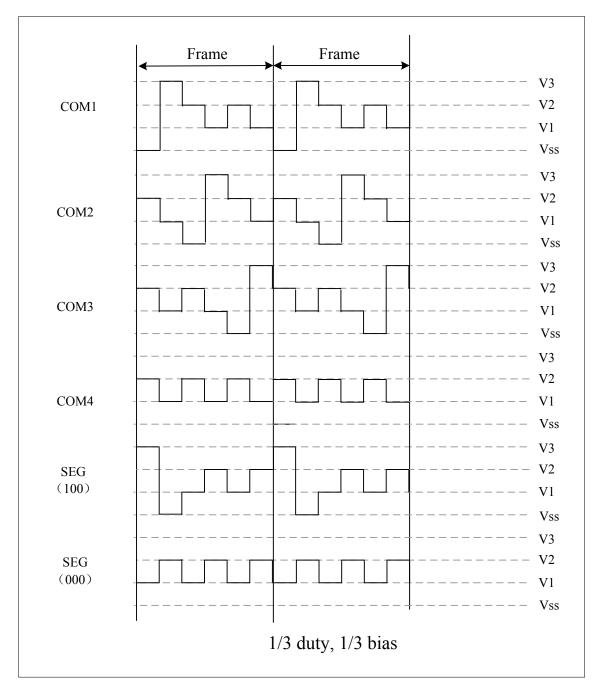


图 3-11 LCD 的 1/3duty 1/3bias 电源系统的时钟(A 波形)

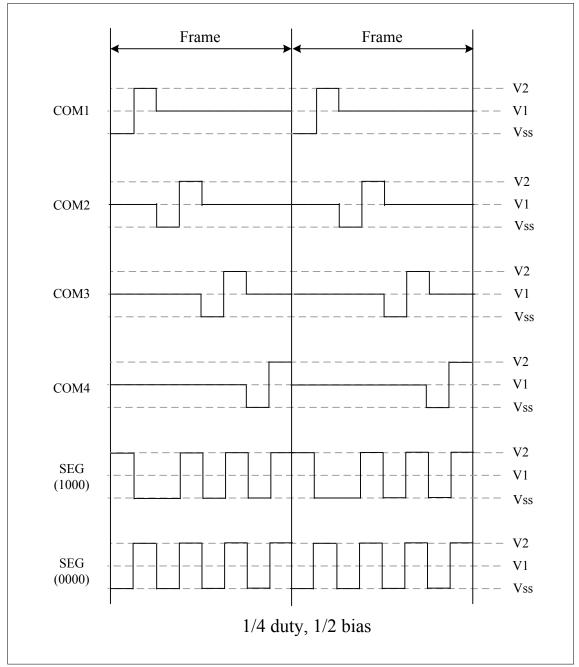


图 3-12 LCD 的 1/4duty 1/2bias 电源系统的时钟(A波形)

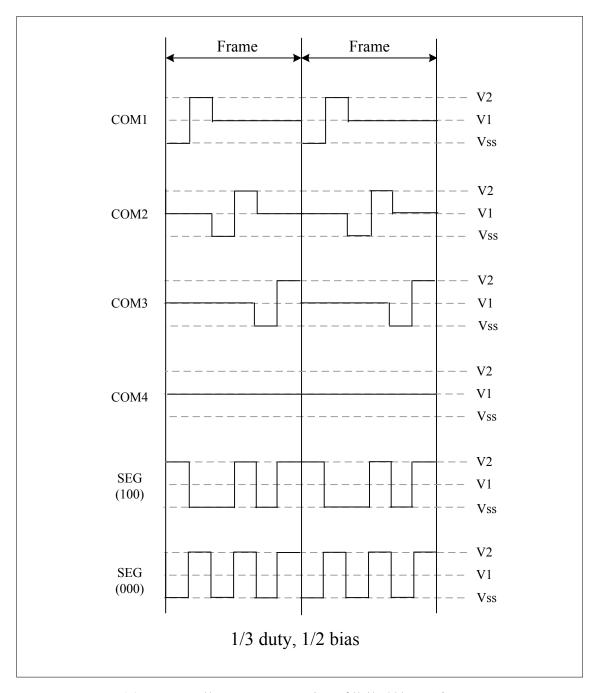


图 3-13 LCD 的 1/3duty 1/2bias 电源系统的时钟(A 波形)

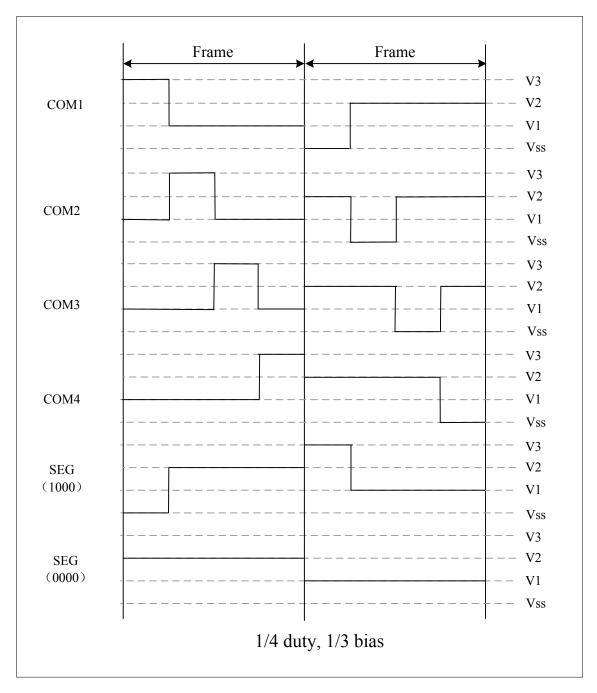


图 3-14 LCD 的 1/4duty 1/3bias 电源系统的时钟(B波形)

图 3-15 LCD 的 1/3duty 1/3bias 电源系统的时钟(B波形)

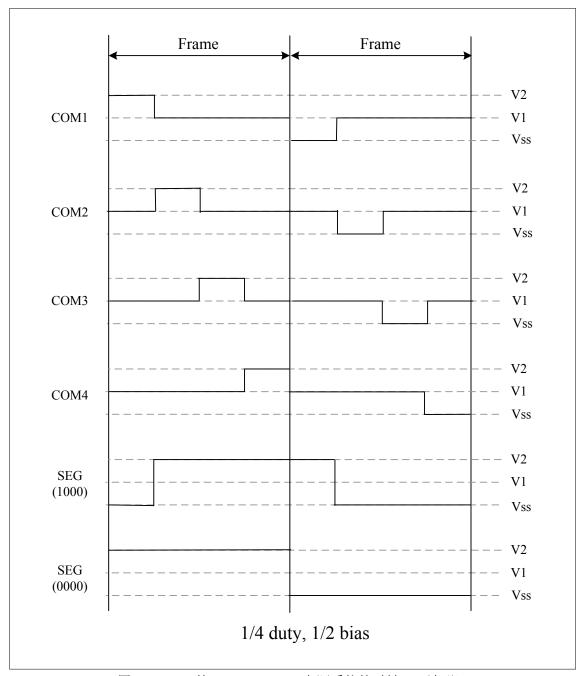


图 3-16 LCD 的 1/4duty 1/2bias 电源系统的时钟(B波形)

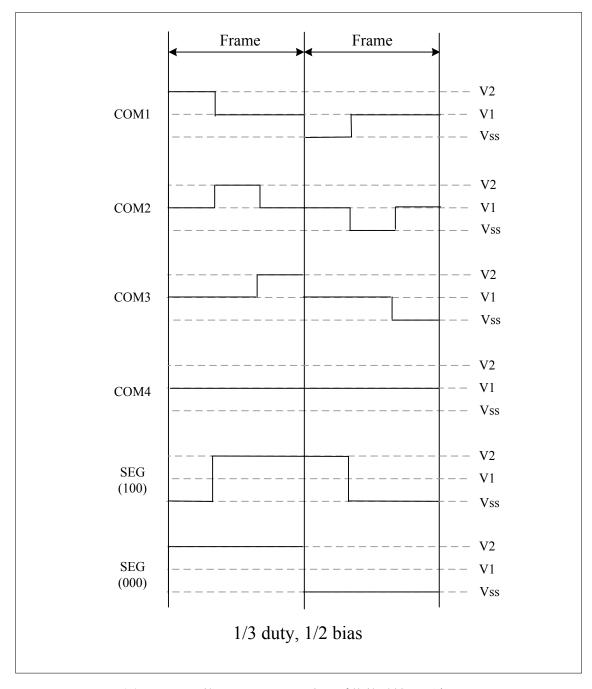


图 3-17 LCD 的 1/3duty 1/2bias 电源系统的时钟(B波形)

3.6.5 LCD 寄存器说明

表 3-13 CSU8RP1186B 的 LCD 驱动器寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值
15H	PCK			LCDSC	KS[3:0]					u000000u
1BH	NETD					VLCDX	X[1:0]	LCDR	EF[1:0]	uuuu0000
28H	PT2CON	SEGCON 1	SEGCON0			BZSEL				00uu0uuu
40H	LCD1						SEG	1[3:0]		uuuu0000
41H	LCD2						SEG	2[3:0]		uuuu0000
42H	LCD3						SEG	3[3:0]		uuuu0000
43H	LCD4						SEG	4[3:0]		uuuu0000
44H	LCD5						SEG	5[3:0]		uuuu0000
45H	LCD6						SEG	6[3:0]		uuuu0000
46H	LCD7						SEG	7[3:0]		uuuu0000
47H	LCD8							8[3:0]		uuuu0000
48H	LCD9							9[3:0]		uuuu0000
49H	LCD10							0[3:0]		uuuu0000
4AH	LCD11						SEG1	1[3:0]		uuuu0000
4BH	LCD12						SEG1	2[3:0]		uuuu0000
4CH	LCD13						SEG1	3[3:0]		uuuu0000
4DH	LCD14						SEG1	4[3:0]		uuuu0000
57H	LCDCN					CSE_LCD				uuuu0uuu
58H	LCDENR	LCDC	KS[1:0]	LCDEN	LCDWS	LEVEL	LCD_	DUTY[1: 0]	ENPMP L	00000000

NETD 寄存器(地址为1BH)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-X	R/W-0
NETD					VLCD	X[1:0]	LCDR	EF[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit3-2 VLCDX: VLCD 输出电压选择

00=保留

01 = 2.8V

10 = 3.0V

11 = 3.2V

注: 在 VLCDX[1]=1 时, PT2.6/PT2.7 不能作为 SEG 口使用, SEGCON1、SEGCON0 无效。

Bit1-0 LCDREF: LCD V1/V2产生电路分压电阻选择

0X=保留

10 = 50Kohm

11 = 10Kohm

PT2CON 寄存器(地址为 28H)

	, , , , ,							
特性	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0
PT2CON	SEGCON1	SEGCON0			BZSEL			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 SEGCON1: 选择 PT2.7 口功能

0 = PT2.7 为普通 IO 口

1 = PT2.7 为 SEG13 口

注: 在 VLCDX[1]=1 时 PT2.7 不能作为 SEG 口使用, SEGCON1 无效。

Bit6 SEGCON0: 选择 PT2.6 口功能

0 = PT2.6 为普通 IO 口

第75页,共100页

1 = PT2.6 为 SEG14 口

注: 在 VLCDX[1]=1 时 PT2.6 不能作为 SEG 口使用, SEGCON0 无效。

LCD1 寄存器(地址为 40H)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
LCD1						SEG	1[3:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3-0 SEG1[3]: LCD 驱动器控制信号: SEG1 带 COM4。

SEG1[2]: LCD 驱动器控制信号: SEG1 带 COM3。

SEG1[1]: LCD 驱动器控制信号: SEG1 带 COM2。

SEG1[0]: LCD 驱动器控制信号: SEG1 带 COM1。

LCD2 寄存器(地址为 41H)

 \sim

LCD3 寄存器(地址为 42H)

~

LCD14 寄存器(地址为 4DH)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
LCD14						SEG1	4[3:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3-0 SEG14[3]: LCD 驱动器控制信号: SEG14 带 COM4。

SEG14[2]: LCD 驱动器控制信号: SEG14 带 COM3。

SEG14[1]: LCD 驱动器控制信号: SEG14 带 COM2。

SEG14[0]: LCD 驱动器控制信号: SEG14 带 COM1。

LCDCN 寄存器 (57H)

特性	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
LCDCN					CSE_LCD			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3 CSE_LCD: LCD 选择外部低速晶振作为时钟源控制信号,仅在外部晶振为低速时使用,如果外部晶振为高速时会造成功能紊乱。

1=选择外部低速晶振作为 LCD 时钟源

0=不选择外部低速晶振作为 LCD 时钟源

LCDENR 寄存器 (58H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LCDENR	LCDCK	S[1:0]	LCDEN	LCDWS	LEVEL	LCD DU	JTY[1:0]	ENPMPL
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-6 LCDCKS[1:0]: LCD 帧频选择器

11 = LCD 的帧频是 LCD 输入时钟频率的 1/32

10 = LCD 的帧频是 LCD 输入时钟频率的 1/16

01 = LCD 的帧频是 LCD 输入时钟频率的 1/8

00 = LCD 的帧频是 LCD 输入时钟频率的 1/4

Bit 5 LCDEN: LCD 驱动器使能标志

1 = LCD 驱动器使能。LCD 的时钟被启动

0 = LCD 驱动器不使能。LCD 的时钟被停止

Bit 4 LCDWS:LCD 波形选择

1=波形B

0=波形 A

Bit 3 LEVEL: LCD 驱动器的偏置电压选择器

0 = LCD 驱动器的偏置电压是 1/3bias

第77页,共100页

1 = LCD 驱动器的偏置电压是 1/2bias

Bit 2-1 LCD_DUTY[1:0]: LCD 驱动器控制模式(SEG duty 周期)

11 = LCD 驱动器控制模式是 1/4duty 周期模式

10 = LCD 驱动器控制模式是 1/3duty 周期模式

01 = LCD 驱动器控制模式是 1/2duty 周期模式

00 = 不可用

Bit 0 ENPMPL: 电荷泵 使能标志位

1 = 电荷泵 打开(此时 ENVB 必须置 1,否则 PUMP 无法正常工作)

0 = 电荷泵 关闭

3.6.6 LCD 操作步骤

LCD 的操作:

- 1. 将段接口连接到 LCD 面板。
- 2. 设置寄存器标志 LEVEL 选择 LCD 驱动器电源系统。(0 = 1/3bias, 1 = 1/2bias)
- 3. 如果使用芯片提供 LCD 的电源时,设置 ENPMPL 使能 LCD 电荷泵。(同时必须打开 ENVB) 如果使用外部电源提供 LCD 的电源时,将外部电源与 VLCD 相连即可,不需要打开 LCD 电荷泵。
- 4. 选择 LCD 输入时钟的频率。
- 5. 设置寄存器标志 LCD DUTY[1:0],选择控制模式。(SEG duty 周期)

表 3-14 LCD 的 duty 控制模式选择列表

LCD_DUTY[1:0]	控制模式
00	
01	1/2
10	1/3
11	1/4

6. 置位 LCDEN 以使能 LCD 驱动器

注:如果要使用 4×14 的 LCD,需要配置寄存器 SEGCONO 和 SEGCON1。

3.7 串行通信接口

CSU8RP1186B 主要提供一个可编程全双工串行通信接口。该接口能同时进行数据的发送和接收,也可以作为一个同步移位寄存器使用。工作模式同通用 8051。

3.7.1 工作方式

主要提供四种工作模式:

表 3-15 串口通信工作模式

SM0	SM1	方式	类型	波特	帧长度	起始位	停止位	第9位	
0	0	0	同步	fepu	clk/6	8bits	无	无	无
0	1	1	异步	UARTCLK	/16 或者 32	10bits	1	1	无
				SMOD	波特率				
1	0	2	异步	0	fcpuclk/32	11bits	1	1	0,1
				1 fcpuclk/16					
1	1	3	异步	UARTCLK	/16 或者 32	11bits	1	1	0,1

模式 0:

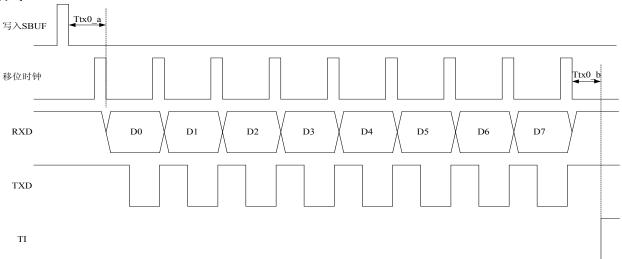


图 3-18 模式 0 发送数据波形

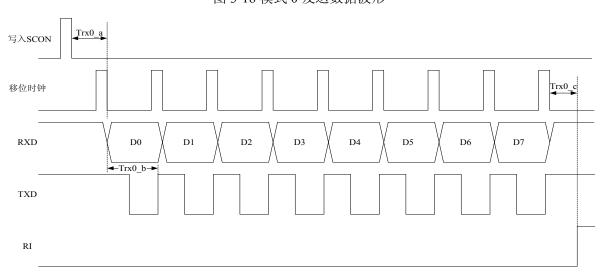
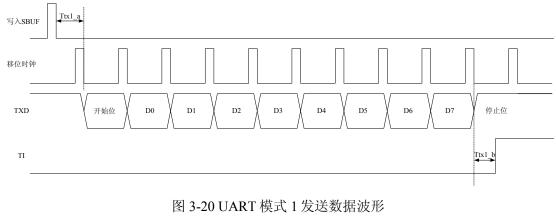



图 3-19 模式 0 接收数据波形

模式 1:

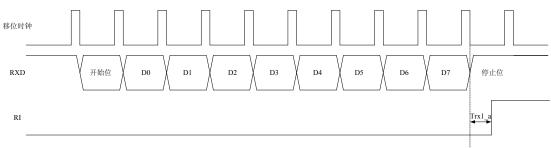


图 3-21 UART 模式 1 接收数据波形

模式 2:

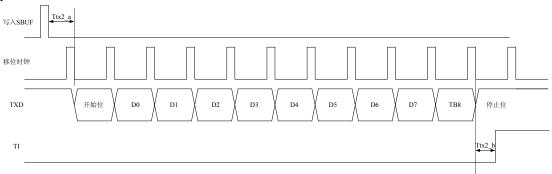


图 3-22 UART 模式 2 发送数据波形

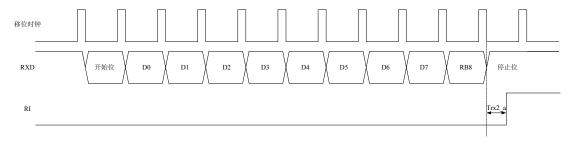


图 3-23 UART 模式 2 接收数据波形

Rev.1.0

模式 3:

模式 3 的操作、数据结构同模式 2,它们的不同在于波特率的生成。模式 3 的数据传输时序同模式 2 相同,只是移位时钟的时钟源不同。进入模式 3 状态,需将 SCON1 寄存器的 SM0 标志位置 1,同时将 SM1 标志位置 1。

3.7.2 寄存器说明

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
32H	INTF2							URTIF	URRIF	uuuuuu00
33H	INTE2							URTIE	URRIE	uuuuuu00
7AH	SCON1	SM0	SM1	SM2	REN	TB8	RB8	UART_SEL	UARTEN	00000000
7BH	SCON2	SMOD								0uuuuuu
7CH	SBUF									00000000

SCON1 寄存器

bcon.	1 可付船	
位地址	标识符	功能
7:6	SM0、SM1	串口通信工作方式选择寄存器
7.0	SIVIO, SIVII	参见表 3-15 串口通信工作模式
5	SM2	保留
		接收控制选择
4	REN	1: 允许接收
		0: 禁止接收
3	TB8	发送数据第9位
2	RB8	接收数据第9位 不可写
		串口通信接口选择:
1	UART_SEL	=0: PT2.0/PT2.1 作为通信接口
		=1: PT2.4/PT2.5 作为通信接口
0	UARTEN	串口使能

SCON2 寄存器

位地址	标识符	功能
7	SMOD	波特率选择寄存器 参见表 3-15 串口通信工作模式

SBUF 寄存器

位地址	标识符	功能
7:0	SBUF	当串口发送数据时,将发送数据写入 SBUF 寄存器。 当串口接收数据时,从 SBUF 寄存器读出接收数据。

3.7.3 波特率

波特率(K)	ICK 或 ECK=16MHz,模式 2 或模式 4			
	实际波特率(K)	偏差(%)	SMOD	
9.6	9.6153	0.16	=0	
19.2	19.2307	0.16	=1	

3.8 OTP 模块

OTP 烧写器的接口:

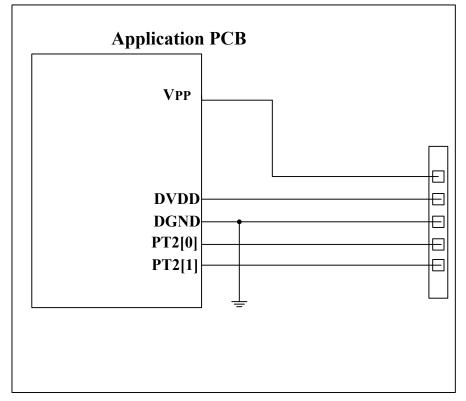


图 3-24 OTP 烧写器接口图

表 3-16 OTP 接口说明

端口名称	说明	备注
VPP	烧录电压	
DVDD	电源正端	
DGND	电源负端	
PT2[0]	数据端口	
PT2[1]	数据端口	

3.9 OTP 在线烧录

电路要求:在在线烧录需要写入数据时,VPP必须采用内部的电荷泵。

地址要求: CSU8RP1186B 芯片芯片通过 PARH[4:0]和 PARL[7:0]寄存器来选择地址: 当 PARH[4]=0 时,地址由{1'b1, PARH[2:0], PARL[7:0]}组成,寻址空间是 800H~FFBH; 当 PARH[4]=1 时,地址由{PARH[3:0], PARL[7:0]}组成,寻址空间是 000H~FFBH。例如当 EADRH[4:0]为 00H,EADRL[7:0]为 7FH 时选择对 107FH 地址(数据代码区)进行烧录和读取。

PARH[4]
PARH[2:0]
PARH[2:0]
PARH[7:1]
PARH[7:1]
PARH[7:1]
PARH[7:0]

图 3-25 在线烧录地址寻址

表 3-17 在线烧录寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
05H	WORK		工作寄存器				00000000			
0AH	EADRH	PARH[4:0]				uuu00000				
0BH	EADRL	PARL[7:0]				00000000				
19H	NETB					ERV				uuuuxuuu

EADRH: 提供 OTP 在线烧录或者在线读 OTP 的高位地址。 EADRL: 提供 OTP 在线烧录或者在线读 OTP 的低位地址。

Work: 提供 OTP 在线烧录时的烧录数据,读 OTP 时读出的数据的低 8 位。

Rev.1.0

ERV: 当 VPP 引脚电压达到烧录电压时, ERV 置高。

相关指令:

TBLP k

MOVP

其中 TBLP k 是将寄存器 work 中的数据写到以 EADRH, EADRL 的内容作为 OTP 的写地址中, 烧录时间是 K 个指令周期。

MOVP 是将 EADRH 和 EADRL 的内容作为 OTP 的读地址,读出的数据的低 8 位放到寄存器 work中。

操作方式:

在线烧录 OTP 时,

- 1. 把基准打开(ENVB置高)。
- 2. 将 VLCDX 置为 11。
- 3. 将电荷泵使能信号打开(ENPMPL 置高)。
- 4. 将 CHP_VPP 置高, 然后等待 200ms 时间检测 ERV 寄存器。
- 5. 延时 50ms,检查 ERV 电压值是否达到烧录电压,如果检查未达到烧录电压延时 50ms 再检查一次。
- 6. 将烧录地址写入 EADRH, EADRL 寄存器。
- 7. 将烧录的数据写入 work 寄存器。
- 8. 用在线烧录指令(TBLP)烧录,数据写入对应OTP地址的低8位。烧录指令中的时间选择(k)参见表3-18在线烧录时间选择寄存器
- 9. 烧录完一个后,必须从步骤5开始烧录下一个。

表 3-18 在线烧录时间选择寄存器

序号	时钟源	(KHz)	M3_CK	M2_CK	M1_CK	指令周期(KHz)	k (十进制)
1	ICK	16000	0	0	0	125	25
2	ICK	16000	0	0	1	62.5	13
3	ICK	16000	0	1	0	500	100
4	ICK	16000	0	1	1	250	50
5	ICK	16000	1	0	0	250	50
6	ICK	16000	1	0	1	125	25
7	ICK	16000	1	1	0	1000	200
8	ICK	16000	1	1	1	500	100

在线读 OTP 数据时

- 1. 将读 OTP 地址的写入 EADRH 和 EADRL 寄存器。
- 2. 用在线读 OTP 指令(MOVP)读出 OTP 数据,执行该指令后,数据的低 8 位存放在 work 寄存器。

如果使用 MOVP 对程序代码区进行查表时,要注意指令是以 word(16 位)寻址,在线读 OTP 是以 word(16 位)进行寻址。下面的例子只能查询到低 8 位数据 75H,查询不到高 8 位数据 26H。

Example: ORG 158H DW 2675H

4 MCU 指令集

表 4-1 MCU 指令集

ADDPCW ADDWF f,d ADDWFC f,d ANDLW k ANDWF f,d	$[W] \leftarrow [W] + k$ $[PC] \leftarrow [PC] + 1 + [W]$ $[Destination] \leftarrow [f] + [W]$ $[Destination] \leftarrow [f] + [W] + C$ $[W] \leftarrow [W] \land ND k$ $[Destination] \leftarrow [W] \land ND [f]$	1 1 1 1	C,DC,Z ~ C,DC,Z C.DC,Z
ADDWF f,d [ADDWFC f,d [ANDLW k [ANDWF f,d [1 1	C,DC,Z
ADDWF f,d [ADDWFC f,d [ANDLW k [ANDWF f,d [1	
ADDWFC f,d [ANDLW k [ANDWF f,d [[Destination] \leftarrow [f]+[W]+C [W] \leftarrow [W] AND k		CDC7
ANDWF f,d		1	$_{\circ, \iota \circ, \iota}$
ANDWF f,d		1	Z
		1	Z
BCF f,b	[f]←0	1	~
BSF f,b	[f]←1	1	2
BTFSC f,b	Jump if[f]=0	1	2
	Jump if[f]=1	1	2
CALL k	Push PC+1 and Goto K	1	2
CLRF f	[f]←0	1	Z
CLRWDT	Clear watch dog timer	1	~
	[f]←NOT([f])	1	Z
DECF f,d	[Destination] \leftarrow [f] -1	1	Z
DECFSZ f,d	[Destination] \leftarrow [f] -1, jump if the result is zero	1	?
GOTO k	PC←k	1	2
HALT (CPU Stop	1	?
INCF f,d	[Destination] \leftarrow [f]+1	1	Z
INCFSZ f,d	[Destination] \leftarrow [f]+1,jump if the result is zero	1	2
	[W]←[W] OR k	1	Z
IORWF f,d	$[Destination] \leftarrow [W] OR [f]$	1	Z
MOVP	[EADRL]->WORK	2	~
MOVFW f	[W]←[f]	1	~
MOVLW k	[W]←k	1	~
MOVWF k	[f]←[W]	1	~
	No operation	1	~
RETFIE I	Pop PC and GIE =1	1	~
RETLW k	RETURN and W=k	1	~
RETURN I	POP PC	1	~
	$[Destination < n+1 >] \leftarrow [f < n >]$	1	C,Z
	$[Destination < n-1 >] \leftarrow [f < n >]$	1	C,Z
	STOP OSC	1	PD
SUBLW k	$[W] \leftarrow k - [W]$	1	C,DC,Z
SUBWF f,d	$[Destinnation] \leftarrow [f] - [W]$	1	C,DC,Z
SUBWFC f,d	$[Destinnation] \leftarrow [f] - [W] + C$	1	C,DC,Z
	[EADRL] ←WORK	k+1	~
XORLW k	[W]←[W] XOR k	1	Z
XORWF f,d	$[Destination] \leftarrow [W] XOR [f]$	1	Z

参数说明:

f:数据存储器地址(00H~FFh)

- W:工作寄存器
- k: 立即数
- d:目标地址选择: d=0 结果保存在工作寄存器, d=1: 结果保存在数据存储器 f单元
- b:位选择(0~7)
- [f]:f地址的内容
- PC:程序计数器
- C:进位标志
- DC:半加进位标志
- Z:结果为零标志
- PD:睡眠标志位

Rev.1.0

第85页,共100页

TO:看门狗溢出标志 WDT:看门狗计数器

表 4-2 MCU 指令集描述

1

ADDLW	加立即数到工作寄存器
指令格式	ADDLW K (0<=K<=FFH)
操作	(W)<(W)+K
标志位	C, DC, Z
描述	工作寄存器的内容加上立即数 K 结果保存到工作寄存器中
周期	1
例子	在指令执行之前:
ADDLW 08H	W=08H
	在指令执行之后:
	W=10H

2

ADDPCW	将W的内容加到PC中
指令格式	ADDPCW
操作	$(PC) < -(PC) + 1 + (W)$ $\stackrel{\underline{\psi}}{=} (W) < = 7FH$
	(PC)<一(PC)+1+(W)-100H 其余
标志位	没有
描述	将地址 PC+1+W 加载到 PC 中
周期	1
例子 1	在指令执行之前:
ADDPCW	W=7FH , PC=0212H
	指令执行之后:
	PC=0292H
例子 2	在指令执行之前:
ADDPCW	W=80H, PC=0212H
	指令执行之后:
	PC=0193H
例子 3	在指令执行之前:
ADDPCW	W=FEH, PC=0212H
	指令执行之后:
	PC=0211H

3

ADDWF	加工作寄存器到 f
指令格式	ADDWF f,d 0<=f<=FFH d=0,1
操作	[目标地址]<(f)+(W)
标志位	C, CD, Z
描述	将f的内容和工作寄存器的内容加到一起。
	如果 d 是 0,结果保存到工作寄存器中。
	如果 d 是 1,结果保存到 f中。
周期	1
例子 1	指令执行之前:
ADDWF f 0	f=C2H W=17H
	在指令执行之后
	f=C2H W=D9H
例子 2	指令执行之前
ADDWF f 1	f=C2H W=17H
	指令执行之后
	f=D9H W=17H

ADDWFC	将Wf和进位位相加
指令格式	ADDWFC f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(f)+(W)+C
标志位	C, DC, Z
描述	将工作寄存器的内容和f的内容以及进位位相加
	当 d 为 0 时结果保存到工作寄存器
	当 d 为 1 时结果保存到 f 中
周期	1
例子	指令执行之前
ADDWFC f, 1	C=1 f=02H W=4DH
	指令执行之后
	C=0 f=50H W=4DH

5

ANDLW	工作寄存器与立即数相与
指令格式	ANDLW K 0<=K<=FFH
操作	(W)<(W) AND K
标志位	Z
描述	将工作寄存器的内容与 8bit 的立即数相与,结果保存到工作寄存器中。
周期	1
例子	在指令执行之前
ANDLW 5FH	W=A3H
	在指令执行之后
	W=03H

6

ANDWF	将工作寄存器和f的内容相与
指令格式	ANDWF f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(W) AND (f)
标志位	Z
描述	将工作寄存器的内容和 f 的内容相与
	如果 d 为 0 结果保存到工作寄存器中
	如果 d 为 1 结果保存到 f 中
周期	1
例子 1	在指令执行之前
ANDWF f, 0	W=0FH f=88H
	在指令执行之后
	W=08H f=88H
例子 2	在指令执行之前
ANDWF f, 1	W=0FH f=88H
	在指令执行之后
	W=0FH f=08H

7

BCF	清除f的某一位
指令格式	BCF f, b 0<=f<=FFH 0<=b<=7
操作	$(f[b]) \leftarrow 0$
标志位	无
描述	F 的第 b 位置为 0
周期	1
例子	指令执行之前:
BCF FLAG 2	FLAG=8DH
	指令执行之后:
	FLAG=89H

Rev.1.0

第87页,共100页

BSF	F的b位置1
指令格式	BSF f, b 0<=f<=FFH 0<=b<=7
操作	(f[b]) < -1
标志位	无
描述	将 f 的 b 位置 1
周期	1
例子	在指令执行之前
BSF FLAG 2	FLAG=89H
	在指令执行之后
	FLAG=8DH

9

BTFSC	如果 bit 测试为 0 则跳转
指令格式	BTFSC f, b 0<=f<=FFH 0<=b<=7
操作	Skip if $(f[b])=0$
标志位	无
描述	如果 f 的 bit 位是 0,下一条取到的指令将被丢到,然后执行一条空指令组成一个两周期的指令。
周期	1
例子	在程序执行以前
NODE BTFSC	PC=address(NODE)
FLAG 2	指令执行之后
OP1:	If(FLAG[2])=0
OP2:	PC=address(OP2)
	If(FLAG[2])=1
	PC=address(OP1)

10

BTFSS	如果 bit 测试为 1,则跳转
指令格式	BTFSS f, b 0<=f<=FFH 0<=b<=7
操作	Skip if $(f[b])=1$
标志位	无
描述	如果 f 的 bit 位是 1,下一条取到的指令将被丢到,然后执行一条空指令组成一个两周期的指
	令。
周期	1
例子	在程序执行以前
NODE BTFSS FLAG 2	PC=address(NODE)
OP1:	指令执行之后
OP2:	If(FLAG[2])=0
	PC=address(OP1)
	If(FLAG[2])=1
	PC=address(OP2)

11

CALL	子程序调用
指令格式	CALL K 0<=K<=1FFFH
操作	(top stack)<—PC+1
	PC<-K
标志位	无
描述	子程序调用,先将 PC+1 压入堆栈,然后把立即数地址下载到 PC 中。
周期	1

12

CLRF	清除 f
指令格式	CLRF f 0<=f<=FFH

Rev.1.0

第88页,共100页

操作	(f)<-0
标志位	Z
描述	将 f 的内容清零
周期	1
例子	在指令执行之前
CLRF WORK	WORK=5AH
	在指令执行之后
	WORK=00H

*注。当 clrf status 寄存器时,标志位 Z 不会置高

13

CLRWDT	清除看门狗定时器
指令格式	CLRWDT
操作	看门狗计数器清零
标志位	无
描述	清除看门狗定时器
周期	1
例子	指令执行之后
CLRWDT	WDT=0

14

COLE	
COMF	f取反
指令格式	COMF f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一NOT(f)
标志位	Z
描述	将f的内容取反,
	当 d 为 0 时,结果保存到工作寄存器中,
	当d为1时,结果保存到f中。
周期	1
例子	在指令执行之前
COMF f, 0	W=88H, f=23H
	在指令执行之后
	W=DCH, f=23H
例子 2	在指令执行之前
COMF f, 1	W=88H, f=23H
	在指令执行之后
	W=88H, f=DCH

15

DECF	f减 1
指令格式	DECF f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(f)-1
标志位	Z
描述	F的内容减 1
	当 d 为 0 时,结果保存到工作寄存器中
	当 d 为 1 时,结果保存到 f 中。
周期	1
例子	在指令执行之前
DECF f, 0	W=88H f=23H
	在指令执行之后
	W=22H f=23H
例子 2	在指令执行之前
DECF f, 1	W=88H f=23H
	在指令执行之后
	W=88H f=22H

16

10	
DECFSZ	f减1如果为0则跳转

第89页,共100页

指令格式	DECFSZ f, d 0<=f<=FFH d=0,1
操作	(目的地址)<(f)-1,如果结果为 0 跳转
标志位	无
描述	f的内容减 1。
	如果 d 为 0, 结果保存到工作寄存器中。
	如果 d 为 1,结果保存到 f 中
	如果结果为 0,下一条已经取到的指令将被丢掉,然后插入一条 NOP 指令组成一个两个周
	期的指令。
周期	1
例子	在指令执行之前
Node DECFSZ FLAG, 1	PC=address(Node)
OP1:	在指令执行之后
OP2:	(FLAFG)=(FLAG)-1
	If(FLAG)=0
	PC=address(OP2)
	If(FLAG)!=0
	PC=address(OP1)

GOTO	无条件跳转
指令格式	GOTO K 0<=K<=1FFFH
操作	PC<—K
标志位	无
描述	立即地址载入 PC
周期	1

18

HALT	停止 CPU 时钟
指令格式	HALT
操作	CPU 停止
标志位	无
描述	CPU 时钟停止,晶振仍然工作,CPU 能够通过内部或者外部中断重启。
周期	1

19

INCF	f加 1
指令格式	INCF f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(f)+1
标志位	Z
描述	f加 1
	如果 d 为 0,结果保存到工作寄存器中
	如果 d 为 1,结果保存到 f 中。
周期	1
例子	在指令执行之前
INCF f, 0	W=88H f=23H
	在指令执行之后
	W=24H f=23H
例子 2	在指令执行之前
INCF f, 1	W=88H f=23H
	在指令执行之后
	W=88H f=24H

20

20	
INCFSZ	f加1,如果结果为0跳转
指令格式	INCFSZ f, d 0<=f<=FFH d=0,1
操作	(目的地址)<─(f)+1 如果结果为 0 就跳转

Rev.1.0

第90页,共100页

标志位	无
描述	f的内容加 1。
	如果 d 为 0,结果保存到工作寄存器中。
	如果 d 为 1,结果保存到 f 中
	如果结果为 0,下一条已经取到的指令将被丢掉,然后插入一条 NOP 指令组成一个两个周期
	的指令。
周期	1
例子	在指令执行之前
Node INCFSZ FLAG, 1	PC=address(Node)
OP1:	在指令执行之后
OP2:	(FLAFG)=(FLAG)+1
	If(FLAG)=0
	PC=address(OP2)
	If(FLAG)!=0
	PC=address(OP1)

IORLW	工作寄存器与立即数或
指令格式	IORLW K 0<=K<=FFH
操作	(W)<(W) K
标志位	Z
描述	立即数与工作寄存器的内容或。结果保存到工作寄存器中。
周期	1
例子	在指令执行之前
IORLW 85H	W=69H
	在指令执行之后
	W=EDH

22

IORWF	f与工作寄存器或
指令格式	IORWF f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(W) (f)
标志位	Z
描述	f和工作寄存器或 当 d 为 0 时,结果保存到工作寄存器中 当 d 为 1 时,结果保存到 f 中
周期	1
例子 IORWF f,1	在指令执行前 W=88H f=23H
	在指令执行后 W=88H f=ABH

23

MOVFW	传送到工作寄存器
指令格式	MOVFW f 0<=f<=FFH
操作	(W)<(f)
标志位	无
描述	将数据从 f 传送到工作寄存器
周期	1
例子	在指令执行之前
MOVFW f	W=88H f=23H
	在指令执行之后
	W=23H f=23H

24

MOVLW	将立即数传送到工作寄存器中
指令格式	MOVLW K 0<=K<=FFH

Rev.1.0

第91页,共100页

操作	(W) <k< th=""></k<>
标志位	无
描述	将 8bit 的立即数传送到工作寄存器中
周期	1
例子	在指令执行之前
MOVLW 23H	W=88H
	在指令执行之后
	W=23H

MOVP	将 OTP 中的{EADRL}的数据读出放入{WORK}中
指令格式	MOVP K
操作	({WORK})< ({EADRL})
标志位	无
描述	将 OTP 中的{EADRL}的数据读出放入{WORK}中
周期	2
例子	在指令执行之前
MOVP	EPROM: 03H: 07H
	EADRL =03H
	在指令执行之后
	W=07H

26

20	
MOVWF	将工作寄存器的值传送到 f中
指令格式	MOVWF f 0<=f<=FFH
操作	(f)<(W)
标志位	无
描述	将工作寄存器的值传送到 f中
周期	1
例子	在指令执行之前
MOVWF f	W=88H f=23H
	在指令执行之后
	W=88H f=88H

27

NOP	无操作
指令格式	NOP
操作	无操作
标志位	无
描述	无操作
周期	1

28

RETFIE	从中断返回
指令格式	RETFIE
操作	(Top Stack)=>PC
	Pop Stack
	1=>GIE
标志位	无
描述	PC 从堆栈顶部得到,然后出栈,设置全局中断使能位为 1
周期	1

29

RETLW	返回,并将立即数送到工作寄存器中
指令格式	RETLW K 0<=K<=FFH
操作	(W) <k< th=""></k<>
	(Top Stack)=>PC

Rev.1.0

第92页,共100页

	Pop Stack
标志位	无
描述	将 8bit 的立即数送到工作寄存器中,PC 值从栈顶得到,然后出栈
周期	1

RETURN	从子程序返回
指令格式	RETURN
操作	(Top Stack)=>PC
	Pop Stack
标志位	无
描述	PC 值从栈顶得到,然后出栈
周期	1

J1	
RLF	带进位左移
指令格式	RLF f, d 0<=f<=FFH d=0,1
操作	(目标地址[n+1])<—(f[n])
	(目标地址[0])<—C
	C<(f[7])
标志位	C, Z
描述	F带进位位左移一位
	如果 d 为 0, 结果保存到工作寄存器
	如果 d 为 1,结果保存到 f 中
周期	1
例子	在指令执行之前
RLF f, 1	C=0 W=88H f=E6H
	在指令执行之后
	C=1 W=88H f=CCH

RRF	带进位右移
指令格式	RRF f, d 0<=f<=FFH d=0,1
操作	(目标地址[n-1])<一(f[n])
	(目标地址[7])<—C
	C<-(f[0])
标志位	С
描述	F带进位位右移一位
	如果 d 为 0, 结果保存到工作寄存器
	如果 d 为 1, 结果保存到 f 中
周期	1
例子	在指令执行之前
RRF f, 0	C=0 W=88H f=95H
	在指令执行之后
	C=1 W=4AH f=95H

SLEEP	晶振停止
指令格式	SLEEP
操作	CPU 晶振停止
标志位	PD
描述	CPU 晶振停止。CPU 通过外部中断源重启
周期	1

SUBLW	立即数减工作寄存器的值
指令格式	SUBLW K 0<=K<=FFH

第93页,共100页

操作	(W) <k-(w)< th=""></k-(w)<>
标志位	C, DC, Z
描述	8bit 的立即数减去工作寄存器的值,结果保存到工作寄存器中
周期	1
例子	在指令执行之前
SUBLW 02H	W=01H
	在指令执行之后
	W=01H C=1(代表没有借位) Z=0(代表结果非零)
例子 2	在指令执行之前
SUBLW 02H	W=02H
	在指令执行之后
	W=00H C=1(代表没有借位) Z=1(代表结果为零)
例子 2	在指令执行之前
SUBLW 02H	W=03H
	在指令执行之后
	W=FFH C=0(代表有借位) Z=0(代表结果非零)

CLIDAVE	C的 体牙 T II 中 方 T III 的 II
SUBWF	f的值减工作寄存器的值
指令格式	SUBWF f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(f)-(W)
标志位	C, DC, Z
描述	f的值减去工作寄存器的值。
	如果 d 为 0,结果保存到工作寄存器
	如果 d 为 1, 结果保存到 f 中
周期	1
例子	在指令执行之前
SUBWF f, 1	f=33H W=01H
	在指令执行之后
	f=32H C=1 Z=0
例子 2	在指令执行之前
SUBWF f, 1	f=01H W=01H
	在指令执行之后
	f=00H C=1 Z=1
例子 3	在指令执行之前
SUBWF f, 1	f=04H W=05H
	在指令执行之后
	f=FFH C=0 Z=0

36

30	
SUBWFC	带借位的减法
指令格式	SUBWFC f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(f)-(W)-1+C
标志位	C, DC, Z
描述	f的值减去工作寄存器的值
	如果 d 为 0, 结果保存到工作寄存器
	如果 d 为 1, 结果保存到 f 中
周期	1
例子	在指令执行之前
SUBWFC f, 1	W=01H f=33H C=1
	在指令执行之后
	f=32H C=1 Z=0
例子 2	在指令执行之前
SUBWFC f, 1	W=01H f=02H C=0
	在指令执行之后
	f=00H C=1 Z=1
例子 3	在指令执行之前

Rev.1.0

第94页,共100页

SUBWFC f, 1	W=05H f=04H C=0
	在指令执行之后
	f=FEH C=0 Z=0

TBLP	将 OTP 的{EADRL}的地址写入{WORK}中的数据	
指令格式	TBLP k	
操作	OTP({EADRL})<({WORK})	
标志位	无	
描述	将 OTP 的{EADRL}的地址写入{WORK}中的数据	
周期	与工作时钟有关	
例子	在指令执行之前	
TBLP 100	OTP memory:	
	17H= FFH	
	EADRL = 17H	
	WORK = 05H	
	在指令执行之后	
	OTP memory:	
	17H = 05H	

38

XORLW	工作寄存器的值与立即数异或
指令格式	XORLW K 0<=K<=FFH
操作	(W)<(W)^K
标志位	Z
描述	8bit 的立即数与工作寄存器的值异或,结果保存在工作寄存器中
周期	1
例子	在指令执行之前
XORLW 5FH	W=ACH
	在指令执行之后
	W=F3H

39

XORWF	f的值与工作寄存器的值异或	
指令格式	XORWF f, d 0<=f<=FFH d=0,1	
操作	(目标地址)<一(W)^(f)	
标志位	Z	
描述	F的值与工作寄存器的值异或,	
	当 d 为 0 时,结果保存到工作寄存器中	
	当d为1时,结果保存到f中	
周期	1	
例子	在指令执行之前	
XORWF f, 1	W=ACH f=5FH	
	在指令执行之后	
	f=F3H	

5 电气特性

5.1 最大极限值

表 5-1 CSU8RP1186B 最大极限值

参数	范围	单位
电源 DVDD,AVDD	2.4~3.6	V
引脚输入电压	-0.3~DVDD+0.3	V
	-0.3~AVDD+0.3	
工作温度	-40~+85	°C
存贮温度	-55~+150	°C

5.2 直流特性 (DVDD, AVDD = 3.3V, $T_A = 25^{\circ}C$, 如无其他说明则都是此条件)

表 5-2 CSU8RP1186B 直流特性

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	工作电源		2.4	3	3.6	V
IDD1	电源电流 1	指令周期 = 500KHz 电荷泵、ADC 打开		1.5		mA
ISLEEP	睡眠模式下电源电流	睡眠指令	1.2	1.5	3.5	uA
VIH	数字输入高电平	PT2.0\ PT2.1	0.7*VDD			V
VIL	数字输入低电平	PT2.0\ PT2.1			0.3*VDD	V
VIH	数字输入高电平	PT1,PT2(除 PT2.0\ PT2.1)	0.6*VDD			V
VIL	数字输入低电平	PT1,PT2(除 PT2.0\ PT2.1)			0.4*VDD	V
IPU	上拉电流	PT1,2 Vin = 0		30		uA
IOH	高电平输出电流	VOH=DVDD-0.3V		3		mA
IOL	低电平输出电流	VOL=0.3V		3		mA
ЮН	高电平输出电流	VOH=DVDD-0.3V (PT2.2、PT2.3)		10		mA
IOL	低电平输出电流	VOL=0.3V (PT2.2、PT2.3)		10		mA
IREG	VS 稳压器输出电流	AVDD=3.3V VS=2.35V		2		mA
VLREF	用于低电压检测的内部参考 电压			1.20		V
TCLREF	用于低电压检测的 内部参考电压温度系数	$T_{A} = -40 \sim 80^{\circ} C$		50		ppm/°C
	低电池检测电压	SILB[2:0]=000		2.4		
		SILB[2:0]=001		2.5		
		SILB[2:0]=010		2.6		
VLBAT		SILB[2:0]=011		2.7		V
VEBAT		SILB[2:0]=100		2.8		
		SILB[2:0]=101		3.6		
		SILB[2:0]=110		1.20 3.6		
FRC	内置 RC 振荡器	SILB[2:0]=111	15.68		16.22	MHz
				16	16.32	
FWDT	内置看门狗时钟		1.6	3.2	4.8	KHz

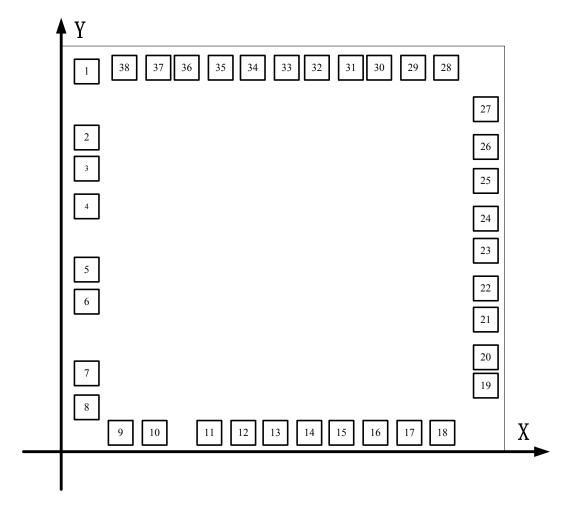

5.3 ADC 的特性 (VREF= 3V, $T_A = 25$ °C, 如无其他说明则都是此条件)

表 5-3 CSU8RP1186B ADC 的特性

参数		条件	最小值	典型值	最大值	单位
模拟	模拟输入范围		AGND-0.1		AVDD+0.1	V
	共模输入电压		VREF/3		VREF*2/3	V
	满幅输入电压				±VREF/PGA	V
	(AIN+)-(AIN-) 差分输入阻抗			8/PGA		ΜΩ
	分辨率	无失码		24		Bits
	输入噪声 (rms)	增益=1		9		uv
	制入噪户(fms)	增益=64		290		nV
系统	积分线性度	增益=64		± 0.02		% of FS
が 性能	失调误差	增益=64		5		uV
江用匕	失调误差漂移	增益=64		-0.03		uV/℃
	增益误差	增益=64		-8		%
	增益误差漂移	增益=64 TEMPC=11100000		-100		ppm/°C
参考电压	VS	LDOS[1:0]=11	2.25	2.35	2.45	- V
		LDOS[1:0]= 10	2.35	2.45	2.55	
		LDOS[1:0]=01	2.7	2.8	2.9	
		LDOS[1:0]=00		3.0		
	参考电压温度系数			100		ppm/℃

6 Bonding 说明

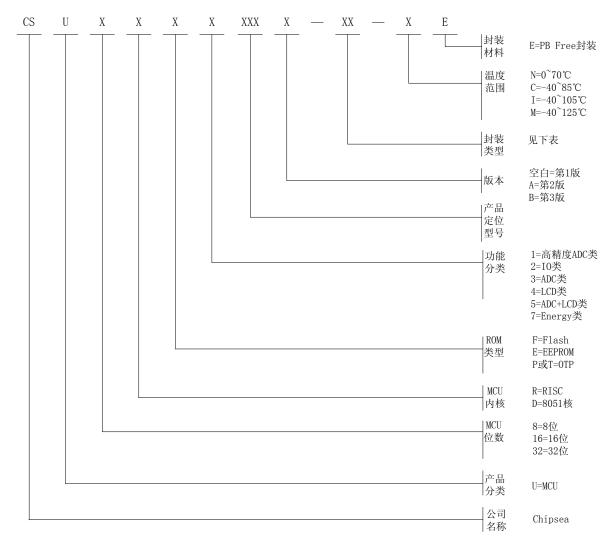
6.1 PIN 排布

注意: 衬底必须接到 DGND

36pin-die

X=1310um Y=1210um PAD 大小: 70um*70um

其中 DVDD pad 上方有箭头标示:



6.2 Pin 坐标

No.	PAD Name	(x,y)	
1	DVDD	53,1155	
2	DGND	53,955	
3	PT1.2/XIN	53,853	
4	PT1.3/XOUT	53,747	
5	VPP	50,550	
6	AGND	50,450	
7	AVDD	50,233	
8	VS/REF	53,128	
9	AIN0	151,53	
10	AIN1	251,53	
11	PT2[4]/RX/INT1	426,53	
12	PT2[5]/TX/INT1	526,53	
13	PT1[4]/LPD	626,53	
14	PT1[5]/INT0	726,53	
15	PT1[6]	826,53	
16	PT1[7]	926,53	
17	PT2[0]/RX/INT0	1026,53	
18	PT2[1]/TX/INT1	1126,53	
19	PT2[2]	1257,196	
20	PT2[3]/BZ	1257,296	
21	PT2[6]	1257,396	
22	PT2[7]/BZ	1257,496	
23	SEG12	1257,606	
24	SEG11	1257,712	
25	SEG10	1257,815	
26	SEG9	1257,920	
27	SEG8	1257,1026	
28	SEG7	1130,1157	
29	SEG6	1033,1157	
30	SEG5	938,1157	
31	SEG4	842,1157	
32	SEG3	745,1157	
33	SEG2	650,1157	
34	SEG1	553,1157	
35	COM4	455,1157	
36	COM3	360,1157	
37	COM2	264,1157	
38	COM1	169,1157	

7 单片机产品命名规则

7.1 产品型号说明

标示符	封装类型
BD	Bonding
DI	DIP
SD	SDIP
SO	SOP
SS	SSOP
TS	TSSOP
QF	QFP
LQ	LQFP
TQ	TQFP
ON	OFN

Rev.1.0

第100页,共100

