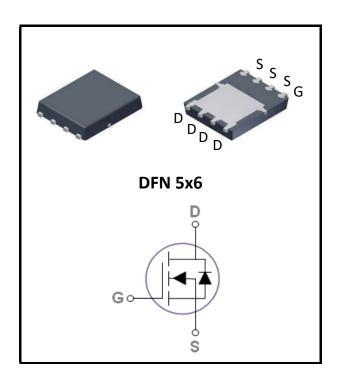


Major ratings and characteristics


Characteristics	Values	Units
V _{DS}	60	V
I _D ⁶ (T _C =25°C)	60	Α
Max. R _{DS(ON)} @V _{GS} =10V	2.6	mΩ
Max. R _{DS(ON)} @V _{GS} =4.5V	3.6	mΩ
TJ Operating Junction Temperature	-55 to +150	ဇ

General Description

The N-Channel enhancement mode power field effect transistor is using trench DMOS technology. This advanced technology has been especially tailored to minimize onstate resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. The device is well suited for high efficiency fast switching applications.

Typical Applications

- Charger Adapter
- Power Tools
- LED Lighting

Features

- Max. $R_{DS(ON)}=2.6m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- 100% Eas Guaranteed
- Green Device Available

1. Characteristics

Maximum Ratings Characteristics

($T_A = 25$ °C unless otherwise specified)

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	60	V
V _G s	Gate-Source Voltage	±20	V
I _D ⁵	Drain Current – Continuous (Tc=25°C)	150	Α
ID	Drain Current – Continuous (Tc=100°C)	95	Α
I _D 6	Drain Current – Continuous (TC=25°ℂ)	60	Α
I _{DM}	Drain Current – Pulsed ¹	240	Α
Eas	Single Pulse Avalanche Energy ²	104	mJ
I _{AS}	Single Pulse Avalanche Current ²	46	Α
D-	Power Dissipation (T _C =25°C)	104	W
P _D	Power Dissipation – Derate above 25°C	0.8	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction to ambient		50	°C/W
Rejc	Thermal Resistance Junction to Case		1.2	°C/W

Electrical Characteristics

($T_J = 25$ °C unless otherwise specified)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	60			V
I _{DSS} Drain-Source Leakage Current	Drain Course Leakage Current	V _{DS} =60V, V _{GS} =0V, T _J =25°C			1	uA
	V _{DS} =48V, V _{GS} =0V, T _J =125°C			10	uA	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA

On Characteristics

RDS(ON) Static Drain-Source On-Resistance	V _{GS} =10V, I _D =20A		2.2	2.6	mΩ	
	V _{GS} =4.5V, I _D =10A		3.0	3.6	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.0	1.7	2.5	V
G fs	Forward Transconductance	V _{DS} =5V, I _D =10A		51		S

Dynamic and switching Characteristics

Qg	Total Gate Charge ^{3, 4}		 80	
Q_{gs}	Gate-Source Charge ^{3,4}	V_{DS} =30V, V_{GS} =10V, I_{D} =20A	 15.5	 nC
Q_gd	Gate-Drain Charge ^{3, 4}		 13.8	
T _{d(on)}	Turn-On Delay Time ^{3, 4}		 20	
Tr	Turn-On Rise Time ^{3,4}	V_{DD} =30V, V_{GS} =10V, R_{G} =3 Ω	 81	 no
T _{d(off)}	Turn-Off Delay Time ^{3, 4}	I _D =10A	 48	 ns
T _f	Turn-Off Fall Time ^{3, 4}		 14	
C _{iss}	Input Capacitance		 4793	
Coss	Output Capacitance	V _{DS} =30V, V _{GS} =0V, f=1MHz	 1399	 pF
C_{rss}	Reverse Transfer Capacitance		 43	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	 0.8	 Ω

Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Voltage	V _{GS} =0V, I _S =1A	 	1	V
t _{rr}	Reverse Recovery Time	1 004 4:/44 4004/	 45		ns
Qrr	Reverse Recovery Charge	I _S =20A, di/dt=100A/us	 54		nC

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. VDD=50V, VGS=10V, L=0.1mH, RG=25 Ω , Starting TJ=25 $^{\circ}$ C
- 3. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 4. Essentially independent of operating temperature.
- 5. Silicon limited.
- 6. Package limited.

2. Characteristics Curves

Ratings and Characteristics Curves

(T_A = 25° unless otherwise specified)

Figure 1: Power Dissipation

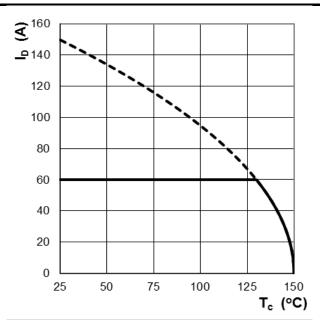


Figure 2: Continuous Drain Current vs. Tc

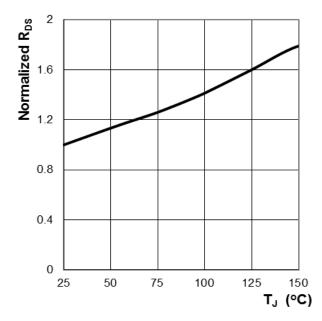


Figure 3: Normalized RDS(ON) vs. TJ

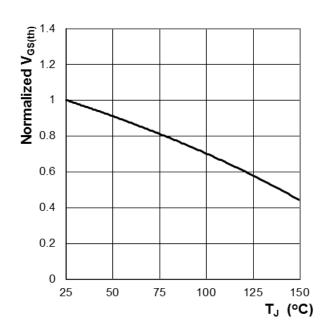


Figure 4: Normalized Vth vs. T_J

(T_A = 25°C unless otherwise specified)

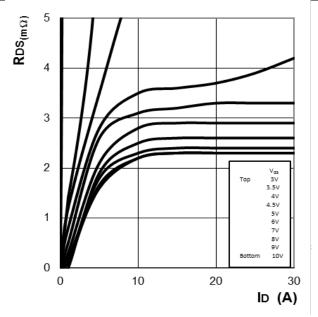


Figure 5: RDS(ON) vs. Drain Current and Gate Voltage

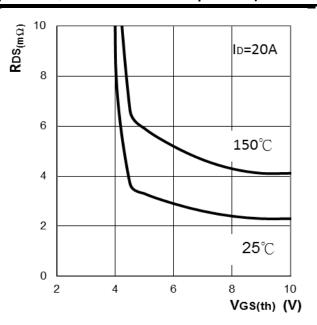


Figure 6: RDS(ON) vs. Gate Voltage

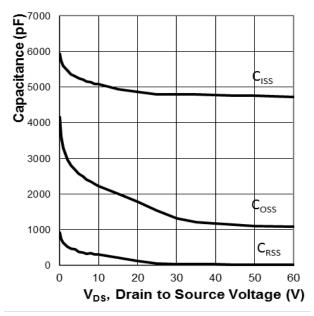


Figure 7: Typ. Capacitance Characteristics

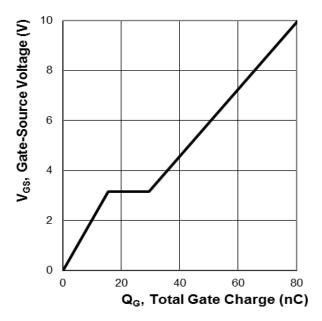
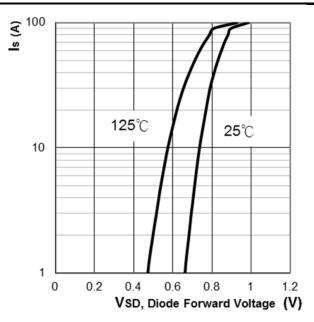



Figure 8: Typ. Gate Charge Characteristics

($T_A = 25^{\circ}$ C unless otherwise specified)

Figure 9: Body Diode Characters

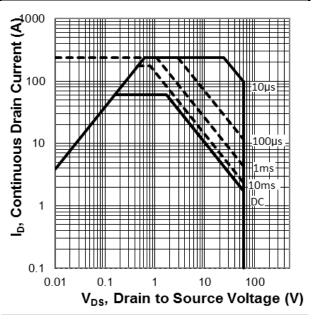


Figure 10: Maximum Safe Operation Area

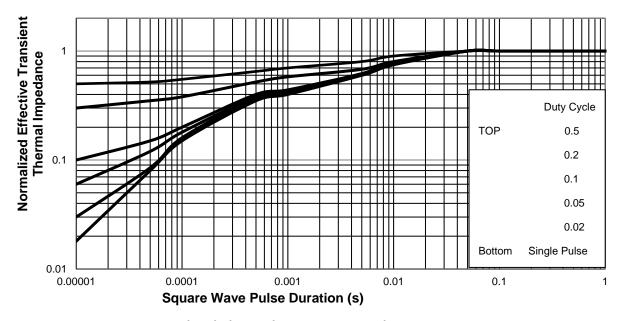
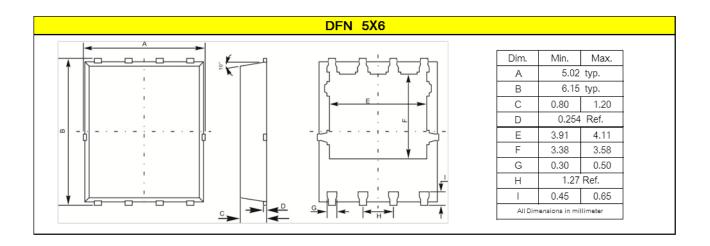



Figure 11: Normalized Thermal Transient Impedance, Junction-to-Case

3. Package information

Package Outline Dimensions millimeters

Contact Information

Viva Electronics Incorporated

10F-1, No. 32, Gaotie 2nd Rd., Zhubei City, Hsinchu County, Taiwan, R.O.C.

Tel: 886-3-6579508 Fax: 886-3-6579509

WWW: http://www.viva-elec.com.tw Sales: sales@viva-elec.com.tw FAE Support: fae@viva-elec.com.tw