

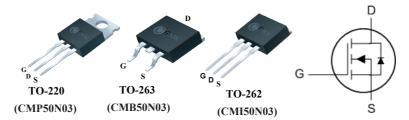
N-Ch 30V Fast Switching MOSFETs

General Description

The 50N03 is N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

Features

- Simple Drive Requirement
- Fast Switching
- Low On-Resistance


Product Summary

BVDSS	RDSON	ID
30V	12mΩ	50A

Applications

- LED POWER CONTROLLER
- DC-DC & DC-AC CONVERTERS
- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- MOTOR CONTROL, AUDIO AMPLIFIERS

TO-220/263/262 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current ¹	50	Α
I _D @T _C =100°C	Continuous Drain Current ¹	40	Α
I _{DM}	Pulsed Drain Current ²	150	Α
EAS	Single Pulse Avalanche Energy ³	45	mJ
I _{AS}	Avalanche Current	50	Α
P _D @T _C =25°C	Total Power Dissipation	64	W
T _{STG}	Storage Temperature Range	-55 to 175	°C
TJ	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
$R_{ heta JA}$	Thermal Resistance Junction-ambient ¹		62	°C/W	
R _{θJC}	Thermal Resistance Junction-case		1.5	°C/W	

CMP50N03/CMB50N03/CMI50N03

N-Ch 30V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.025		V/°C
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =25A		10.5	12	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =25A		16	20	
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250uA	1		3	V
,	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V			1	
I _{DSS}		V _{DS} =24V , V _{GS} =0V, T _C =125°C			25	· uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm 20V$, V_{DS} = $0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5 V , I _D =25A		50		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.3		Ω
Qg	Total Gate Charge	I _D =25 A		23		
Q_{gs}	Gate-Source Charge	V _{DS} = 15V		8.6		nC
Q_gd	Gate-Drain Charge	V _{GS} =4.5V		7.3		
T _{d(on)}	Turn-On Delay Time	V _{DS} =15V		12.2		
T _r	Rise Time	I _D =1A		10		20
$T_{d(off)}$	Turn-Off Delay Time	$R_G=6\Omega$		45		ns
T _f	Fall Time	V _{GS} =10V		15.5		
Ciss	Input Capacitance			2050		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		389		pF
C _{rss}	Reverse Transfer Capacitance			153		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ¹	V _G =V _D =0V , Force Current			50	Α
I _{SM}	Pulsed Source Current ²				150	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =25 A , T _J =25 ℃			1.3	V

Note

1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH,I $_{D}$ =12A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.