

### STEP-UP DC/DC CONVERTER FOR WHITE LED BACK LIGHT

NO.EA-207-180703

#### OUTLINE

The R1201x Series are PWM control type step-up DC/DC converter ICs with low supply current.

The R1201x is fully dedicated to drive White LEDs with constant current. Each of these ICs consists of an NMOS FET, a forward diode, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), and an over-voltage protection circuit (OVP).

The R1201x can drive white LEDs in constant current with high efficiency by using an inductor, a resistor and capacitors as external components. A diode is built-in; therefore it is possible to drive up to 5 serial white LEDs without an external diode.

The LEDs current can be set by an external resistance value and can adjust the dimming of LEDs by CE pin according to the signal of PWM. Feedback voltage is 0.2V, therefore power loss by current setting resistance is small and efficiency is good. Maximum duty cycle is internally fixed, Typ. 91%. LEDs can be driven from low voltage. Protection circuits are the current limit of Lx peak current, the over voltage limit of output, and the under voltage lockout function. The oscillator frequency can be selected from 1MHz or 1.2MHz.

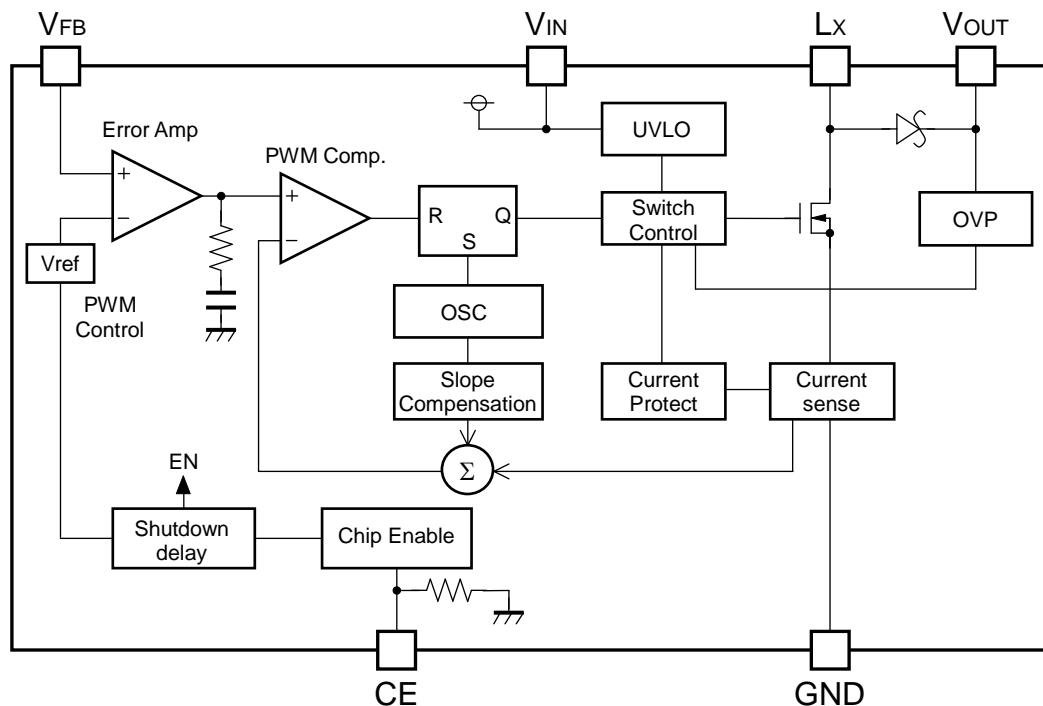
It is controllable the dimming of LEDs quickly when the PWM signal (between 200Hz to 300kHz) input to CE pin. If the CE pin input is "L" in the fixed time (Typ. 0.5ms), the IC becomes the standby mode and turns OFF LEDs.

#### FEATURES

- Supply Current ..... Typ. 450µA (R1201xxx3A/4A)  
..... Typ. 500µA (R1201xxx1A/2A)
- Standby Current ..... Max. 5µA
- Input Voltage Range ..... 1.8V to 5.5V
- Feedback Voltage ..... 0.2V
- Feedback Voltage Accuracy ..... ±10mV
- Temperature-Drift Coefficient of Feedback Voltage ..... ±150ppm/°C
- Oscillator Frequency ..... Typ. 1MHz, Typ. 1.2MHz
- Maximum Duty Cycle ..... Typ. 91%
- Switch ON Resistance ..... Typ. 1.35Ω
- UVLO Detector Threshold ..... Typ. 1.6V
- Lx Current Limit Protection ..... Typ. 700mA
- OVP Detector Threshold ..... Select from 9.5V, 14.0V, 18.5V, 20.6V, 21.6V
- Switching Control ..... PWM
- LED dimming control ..... by external PWM signal (Frequency 200Hz to 300kHz)
- Packages ..... DFN1616-6, SOT-23-6
- Ceramic capacitors are recommended ..... 0.22µF (R1201x02xA/ 03xA/ 04xA)  
..... 1µF (R1201x05xA)

#### APPLICATION

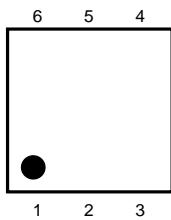
- White LED Backlight for portable equipment


## SELECTION GUIDE

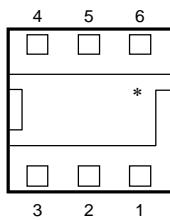
The OVP threshold voltage, and the package for the ICs can be selected at the user's request.

| Product Name     | Package   | Quantity per Reel | Pb Free | Halogen Free |
|------------------|-----------|-------------------|---------|--------------|
| R1201LxxxA-TR    | DFN1616-6 | 5,000 pcs         | Yes     | Yes          |
| R1201NxxxA-TR-FE | SOT-23-6  | 3,000 pcs         | Yes     | Yes          |

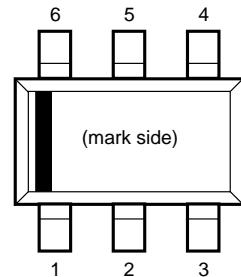
xxx : Designation of OVP detector threshold  
 (021) 9.5V threshold of OVP, Frequency 1.2MHz  
 (031) 14.0V threshold of OVP, Frequency 1.2MHz  
 (041) 18.5V threshold of OVP, Frequency 1.2MHz  
 (051) 20.6V threshold of OVP, Frequency 1.2MHz  
 (052) 21.6V threshold of OVP, Frequency 1.2MHz  
 (023) 9.5V threshold of OVP, Frequency 1MHz  
 (033) 14.0V threshold of OVP, Frequency 1MHz  
 (043) 18.5V threshold of OVP, Frequency 1MHz  
 (053) 20.6V threshold of OVP, Frequency 1MHz  
 (054) 21.6V threshold of OVP, Frequency 1MHz  
 \*As for R1201x052A/ 054A version, input voltage range is 1.8V to 4.5V.


## BLOCK DIAGRAMS




## PIN DESCRIPTIONS

### • DFN1616-6


#### Top View



#### Bottom View



### • SOT-23-6



### • DFN1616-6

| Pin No | Symbol    | Pin Description                   |
|--------|-----------|-----------------------------------|
| 1      | CE        | Chip Enable Pin ("H" Active)      |
| 2      | $V_{FB}$  | Feedback Pin                      |
| 3      | $L_x$     | Switching Pin (Open Drain Output) |
| 4      | GND       | Ground Pin                        |
| 5      | $V_{IN}$  | Input Pin                         |
| 6      | $V_{OUT}$ | Output Pin                        |

\*) Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

### • SOT-23-6

| Pin No | Symbol    | Pin Description                   |
|--------|-----------|-----------------------------------|
| 1      | CE        | Chip Enable Pin ("H" Active)      |
| 2      | $V_{OUT}$ | Output Pin                        |
| 3      | $V_{IN}$  | Input Pin                         |
| 4      | $L_x$     | Switching Pin (Open Drain Output) |
| 5      | GND       | Ground Pin                        |
| 6      | $V_{FB}$  | Feedback Pin                      |

\* R1201L (DFN1616-6) is the discontinued product and R1201N (SOT-23-6) is the non-promotion product. As of March in 2018.

NO.EA-207-180703

## ABSOLUTE MAXIMUM RATINGS

| Symbol    | Item                                                      | Rating               | Unit |
|-----------|-----------------------------------------------------------|----------------------|------|
| $V_{IN}$  | $V_{IN}$ Pin Voltage                                      | –0.3 to 6.5          | V    |
| $V_{CE}$  | $V_{CE}$ Pin Voltage                                      | –0.3 to $V_{IN}+0.3$ | V    |
| $V_{FB}$  | $V_{FB}$ Pin Voltage                                      | –0.3 to $V_{IN}+0.3$ | V    |
| $V_{OUT}$ | $V_{OUT}$ Pin Voltage                                     | –0.3 to 25.0         | V    |
| $V_{LX}$  | $V_{LX}$ Pin Voltage                                      | –0.3 to 25.0         | V    |
| $I_{LX}$  | $I_{LX}$ Pin Current                                      | 1000                 | mA   |
| $P_D$     | Power Dissipation*<br>(JEDEC STD. 51-7 Test Land Pattern) | DFN1616-6            | 2400 |
|           |                                                           | SOT-23-6             | 660  |
| $T_j$     | Operating Temperature Range                               | –40 to 125           | °C   |
| $T_{stg}$ | Storage Temperature Range                                 | –55 to 125           | °C   |

\*) Refer to *POWER DISSIPATION* for detailed information.

### ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

## RECOMMENDED OPERATING CONDITIONS

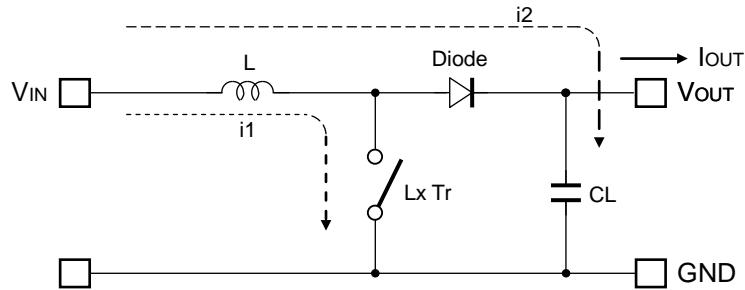
| Symbol   | Item                        | Rating                 | Unit           |
|----------|-----------------------------|------------------------|----------------|
| $V_{IN}$ | Operating Input Voltage     | R1201xxx1A, R1201xxx3A | 1.8 V to 5.5 V |
|          |                             | R1201x052A, R1201x054A | 1.8 V to 4.5 V |
| $T_a$    | Operating Temperature Range | –40 to 85              | °C             |

### RECOMMENDED OPERATING CONDITIONS

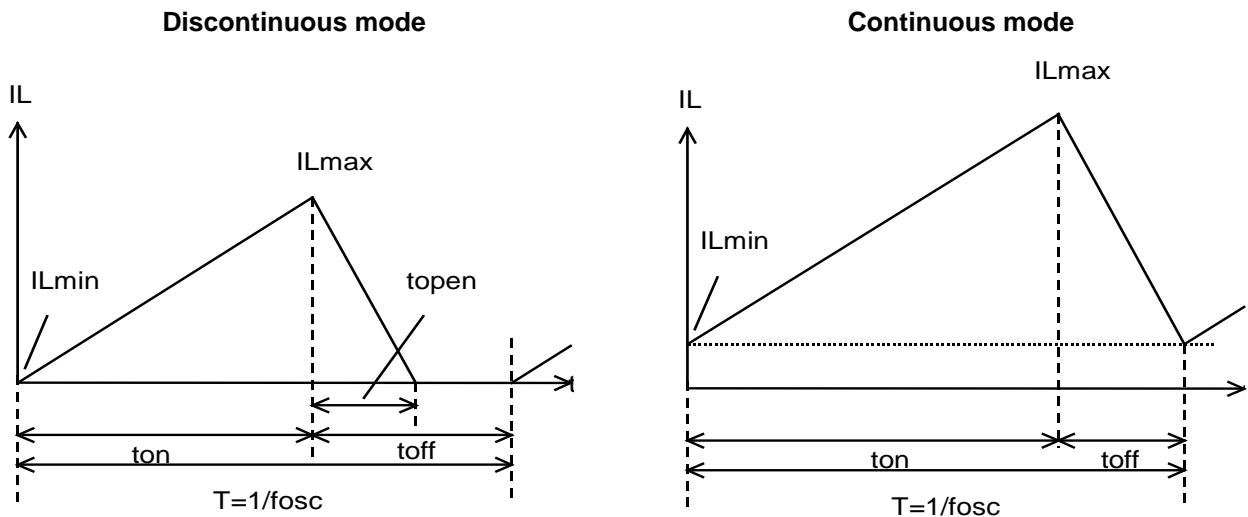
All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

## ELECTRICAL CHARACTERISTICS

### • R1201x


(Ta=25°C)

| Symbol                  | Item                                              | Conditions                                                                         |                 | Min. | Typ.                    | Max. | Unit    |
|-------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|-----------------|------|-------------------------|------|---------|
| V <sub>IN</sub>         | Operating Input Voltage                           | R1201xxx1A, R1201xxx3A                                                             |                 | 1.8  |                         | 5.5  | V       |
|                         |                                                   | R1201x052A, R1201x054A                                                             |                 | 1.8  |                         | 4.5  |         |
| I <sub>DD</sub>         | Supply Current                                    | V <sub>IN</sub> =Input voltage Max, V <sub>FB</sub> =0V, L <sub>x</sub> at no load | R1201xxx1A/2A   |      | 0.5                     | 1.0  | mA      |
|                         |                                                   |                                                                                    | R1201xxx3A/4A   |      | 0.45                    | 0.9  |         |
| I <sub>Standby</sub>    | Standby Current                                   | V <sub>IN</sub> =Input voltage Max, V <sub>CE</sub> =0V                            |                 |      | 1.0                     | 5.0  | μA      |
| V <sub>UVLO1</sub>      | UVLO Detector Threshold                           | V <sub>IN</sub> falling                                                            |                 | 1.5  | 1.6                     | 1.7  | V       |
| V <sub>UVLO2</sub>      | UVLO Released Voltage                             | V <sub>IN</sub> rising                                                             |                 |      | V <sub>UVLO1</sub>      | 1.8  | V       |
| V <sub>CEH</sub>        | CE Input Voltage "H"                              | V <sub>IN</sub> =Input voltage Max                                                 |                 | 1.5  |                         |      | V       |
| V <sub>CEL</sub>        | CE Input Voltage "L"                              | V <sub>IN</sub> =1.8V                                                              |                 |      |                         | 0.5  | V       |
| R <sub>CE</sub>         | CE Pull Down Resistance                           | V <sub>IN</sub> =3.6V                                                              |                 | 600  | 1200                    | 2200 | kΩ      |
| V <sub>FB</sub>         | V <sub>FB</sub> Voltage Accuracy                  | V <sub>IN</sub> =V <sub>CE</sub> =3.6V                                             |                 | 0.19 | 0.20                    | 0.21 | V       |
| ΔV <sub>FB</sub> /ΔTa   | V <sub>FB</sub> Voltage Temperature Coefficient   | V <sub>IN</sub> =V <sub>CE</sub> =3.6V, -40°C ≤ Ta ≤ 85°C                          |                 |      | ±150                    |      | ppm /°C |
| I <sub>FB</sub>         | V <sub>FB</sub> Input Current                     | V <sub>IN</sub> =Input voltage Max, V <sub>FB</sub> =0V or V <sub>IN</sub>         |                 | -0.1 |                         | 0.1  | μA      |
| R <sub>ON</sub>         | Switch ON Resistance                              | V <sub>IN</sub> =3.6V, I <sub>LX</sub> =100mA                                      |                 |      | 1.35                    |      | Ω       |
| I <sub>LXleak</sub>     | Switch Leakage Current                            | V <sub>LX</sub> =24V                                                               |                 |      | 0                       | 3.0  | μA      |
| I <sub>LXlim</sub>      | Switch Current Limit                              | V <sub>IN</sub> =3.6V                                                              |                 | 400  | 700                     | 1000 | mA      |
| V <sub>f</sub>          | Diode Forward Voltage                             | I <sub>DIODE</sub> =100mA                                                          |                 |      | 0.8                     |      | V       |
| I <sub>DIODEleak</sub>  | Diode Leakage Current                             | V <sub>OUT</sub> =24V, V <sub>LX</sub> =0V                                         |                 |      |                         | 10   | μA      |
| f <sub>osc</sub>        | Oscillator Frequency                              | V <sub>IN</sub> =3.6V,                                                             | R1201xxx1A/2A   | 1.0  | 1.2                     | 1.4  | MHz     |
|                         |                                                   | V <sub>OUT</sub> =V <sub>FB</sub> =0V                                              | R1201xxx3A/4A   | 0.83 | 1.0                     | 1.17 |         |
| Maxduty                 | Maximum Duty Cycle                                | V <sub>IN</sub> =3.6V, V <sub>OUT</sub> =V <sub>FB</sub> =0V                       |                 | 86   | 91                      |      | %       |
| V <sub>OVP1</sub>       | OVP Detector Threshold                            | V <sub>IN</sub> =3.6V, V <sub>OUT</sub> rising                                     | R1201x021A/023  | 8.9  | 9.5                     | 10.1 | V       |
|                         |                                                   |                                                                                    | R1201x031A/03   | 13.4 | 14.0                    | 14.6 |         |
|                         |                                                   |                                                                                    | R1201x041A/04   | 17.9 | 18.5                    | 19.1 |         |
|                         |                                                   |                                                                                    | R1201x051A/05   | 20.0 | 20.6                    | 21.2 |         |
|                         |                                                   |                                                                                    | R1201x052A/05   | 21.0 | 21.6                    | 22.2 |         |
| ΔV <sub>OVP1</sub> /ΔTa | V <sub>OVP1</sub> Voltage Temperature Coefficient | V <sub>IN</sub> =V <sub>CE</sub> =3.6V, -40°C ≤ Ta ≤ 85°C                          |                 |      | ±150                    |      | ppm /°C |
| V <sub>OVP2</sub>       | OVP Released Voltage                              | V <sub>IN</sub> =3.6V, V <sub>OUT</sub> falling                                    | R1201x021A/023A |      | V <sub>OVP1</sub> -0.5  |      | V       |
|                         |                                                   |                                                                                    | R1201x031A/033A |      | V <sub>OVP1</sub> -0.75 |      |         |
|                         |                                                   |                                                                                    | R1201x041A/043A |      | V <sub>OVP1</sub> -1.0  |      |         |
|                         |                                                   |                                                                                    | R1201x051A/053A |      | V <sub>OVP1</sub> -1.1  |      |         |
|                         |                                                   |                                                                                    | R1201x052A/054A |      | V <sub>OVP1</sub> -1.15 |      |         |


## THEORY OF OPERATION

### • Operation of Step-Up DC/DC Converter and Output Current

#### <Basic Circuit>



#### <Current through L>



There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor.

When the transistor turns ON, the voltage of inductor L becomes equal to  $V_{IN}$  voltage. The increase value of inductor current ( $i_1$ ) will be

$$\Delta i_1 = V_{IN} \times t_{on} / L \quad \text{.....Formula 1}$$

As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current ( $i_2$ ) will be

$$\Delta i_2 = (V_{OUT} - V_{IN}) \times t_{open} / L \quad \text{.....Formula 2}$$

At the PWM control-method, the inductor current become continuously when  $t_{open}=t_{off}$ , the DC/DC converter operate as the continuous mode.

In the continuous mode, the variation of current of  $i_1$  and  $i_2$  is same at regular condition.

$$V_{IN} \times t_{on} / L = (V_{OUT} - V_{IN}) \times t_{off} / L \dots \text{Formula 3}$$

The duty at continuous mode will be

$$\text{duty (\%)} = t_{on} / (t_{on} + t_{off}) = (V_{OUT} - V_{IN}) / V_{OUT} \dots \text{Formula 4}$$

The average of inductor current at  $t_f = t_{off}$  will be

$$I_{L(Ave.)} = V_{IN} \times t_{on} / (2 \times L) \dots \text{Formula 5}$$

If the input voltage = output voltage, the  $I_{OUT}$  will be

$$I_{OUT} = V_{IN}^2 \times t_{on} / (2 \times L \times V_{OUT}) \dots \text{Formula 6}$$

If the  $I_{OUT}$  value is large than above the calculated value (Formula 6), it will become the continuous mode, at this status, the peak current ( $IL_{max}$ ) of inductor will be

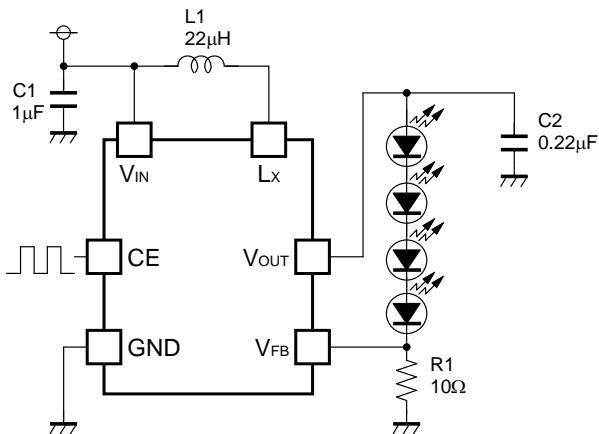
$$IL_{max} = I_{OUT} \times V_{OUT} / V_{IN} + V_{IN} \times t_{on} / (2 \times L) \dots \text{Formula 7}$$

$$IL_{max} = I_{OUT} \times V_{OUT} / V_{IN} + V_{IN} \times T \times (V_{OUT} - V_{IN}) / (2 \times L \times V_{OUT}) \dots \text{Formula 8}$$

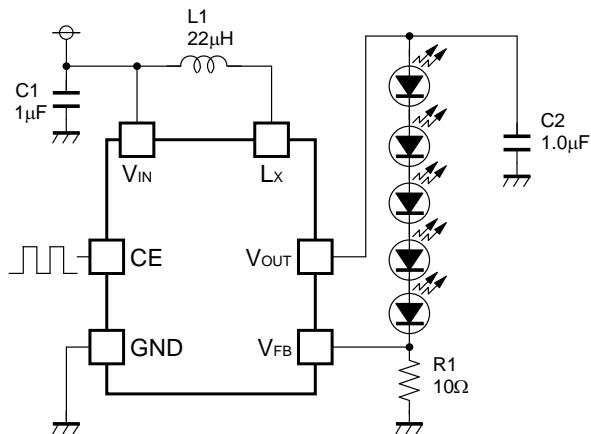
The peak current value is larger than the  $I_{OUT}$  value. In case of this, selecting the condition of the input and the output and the external components by considering of  $IL_{max}$  value.

The explanation above is based on the ideal calculation, and the loss caused by  $L_x$  switch and the external components are not included.

The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the  $IL$  is large or  $V_{IN}$  is low, the loss of  $V_{IN}$  is generated with on resistance of the switch. Moreover, it is necessary to consider  $V_f$  of the diode (approximately 0.8V) about  $V_{OUT}$ .


#### ● Soft-Start

The output of the error amplifier starts from 0V and the inrush current is suppressed when starting by the CE pin "H" input.


Moreover, the inrush current can be suppressed by gradually enlarging Duty of the PWM signal to the CE pin.

## APPLICATION INFORMATION

### • Typical Applications



R1201x02xA/03xA/04xA



R1201x05xA

### • Selection of Inductors

The peak current of the inductor at normal mode can be estimated as the next formula when the efficiency is 80%.

$$IL_{max} = 1.25 \times I_{OUT} \times V_{OUT} / V_{IN} + 0.5 \times V_{IN} \times (V_{OUT} - V_{IN}) / (L \times V_{OUT} \times f_{osc})$$

In the case of start-up or dimming control by CE pin, inductor transient current flows, and the peak current of it must be equal or less than the current limit of the IC. The peak current should not beyond the rated current of the inductor. The recommended inductance value is 10 μH - 22 μH.

Table 1 Peak current value in each condition

| Condition           |                      |                       |        |                        |
|---------------------|----------------------|-----------------------|--------|------------------------|
| V <sub>IN</sub> (V) | V <sub>OUT</sub> (V) | I <sub>OUT</sub> (mA) | L (μH) | I <sub>Lmax</sub> (mA) |
| 3                   | 14                   | 20                    | 10     | 215                    |
| 3                   | 14                   | 20                    | 22     | 160                    |
| 3                   | 21                   | 20                    | 10     | 280                    |
| 3                   | 21                   | 20                    | 22     | 225                    |

Table 2 Recommended inductors

| L (μH) | Part No.      | Rated Current (mA) | Size (mm)    |
|--------|---------------|--------------------|--------------|
| 10     | LQH32CN100K53 | 450                | 3.2x2.5x1.55 |
| 10     | LQH2MC100K02  | 225                | 2.0x1.6x0.9  |
| 10     | VLF3010A-100  | 490                | 2.8x2.6x0.9  |
| 10     | VLS252010-100 | 520                | 2.5x2.0x1.0  |
| 22     | LQH32CN220K53 | 250                | 3.2x2.5x1.55 |
| 22     | LQH2MC220K02  | 185                | 2.0x1.6x0.9  |
| 22     | VLF3010A-220  | 330                | 2.8x2.6x0.9  |

#### ● Selection of Capacitors

Set  $1\mu\text{F}$  or more value bypass capacitor C1 between  $V_{IN}$  pin and GND pin as close as possible.

Set  $0.22\mu\text{F}$  or more capacitor C2 between  $V_{OUT}$  and GND pin. ( $1\mu\text{F}$  for R1201x05xA)

The rated voltage of C2 should be 25V or more.

**Table 3 Recommended components**

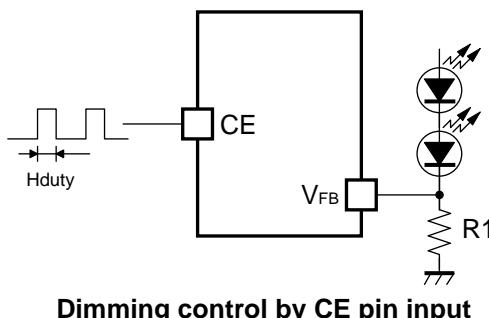
|    | <b>Rated voltage (V)</b> | <b>Part No.</b> |
|----|--------------------------|-----------------|
| C1 | 6.3                      | CM105B105K06    |
| C2 | 25                       | GRM21BR11E224   |

#### ● LED Current setting

When CE pin input is "H" (Duty=100%), LED current can be set with feedback resistor (R1)

$$I_{LED} = V_{FB} / R1$$

#### ● LED Dimming Control


The LED brightness can be controlled by inputting the PWM signal to the CE pin. If the CE pin input is "L" in the fixed time (Typ.0.5ms), the IC becomes the standby mode and turns OFF LEDs.

The current of LEDs when the CE pin is "H" input (Duty=100%) is shown by the above expression. The current of LEDs can be controlled by Duty of the PWM signal of the input CE pin. The current of LEDs when High-Duty of the CE input is Hduty reaches the value as calculatable following formula.

$$I_{LED} = Hduty \times V_{FB} / R1$$

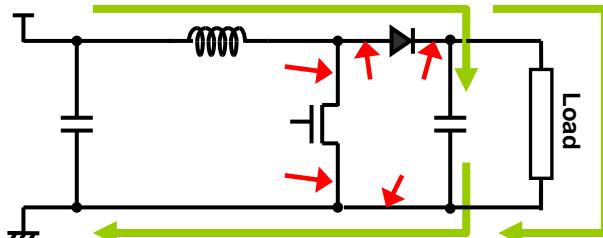
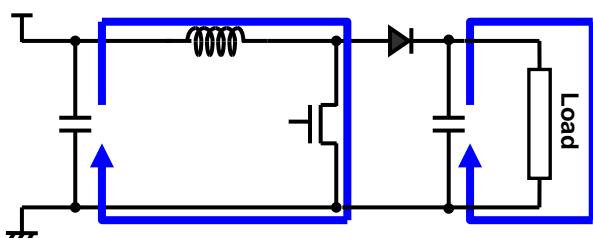
The frequency of the PWM signal is using the range between 200Hz to 300kHz.

When controlling the LED brightness by the PWM signal of 20kHz or less; The increasing or decreasing of the inductor current might be make a sounds in the hearable sound wave area. In that case, please use the PWM signal in the high frequency area.



**Dimming control by CE pin input**

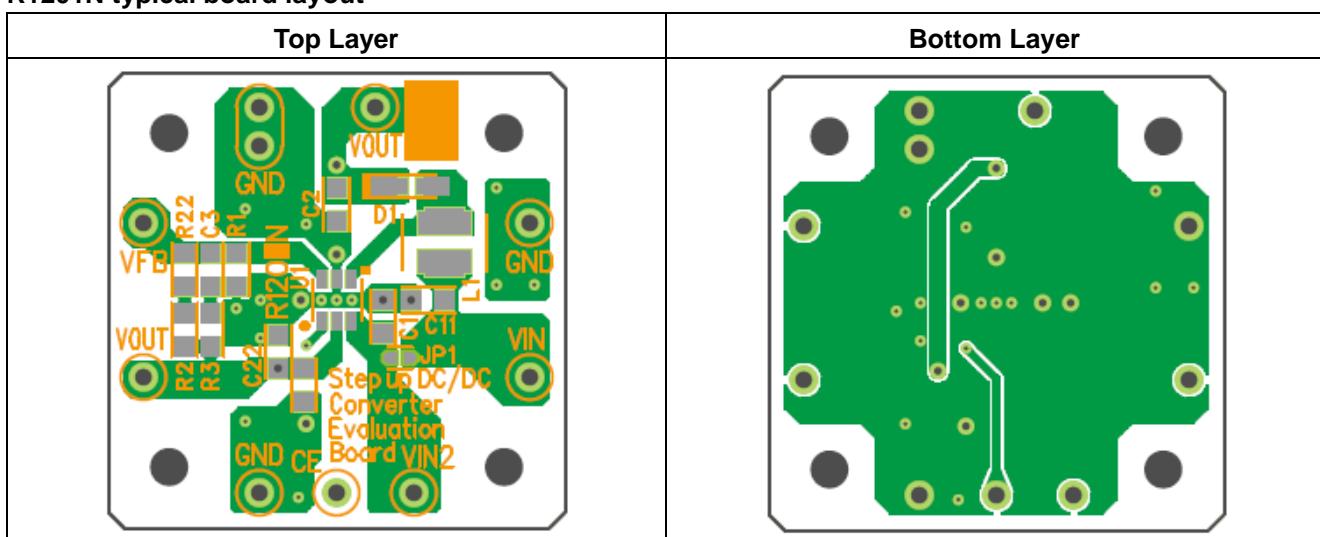
## TECHNICAL NOTES



### • Current Path on PCB

The current paths in an application circuit are shown in Fig. 1 and 2.

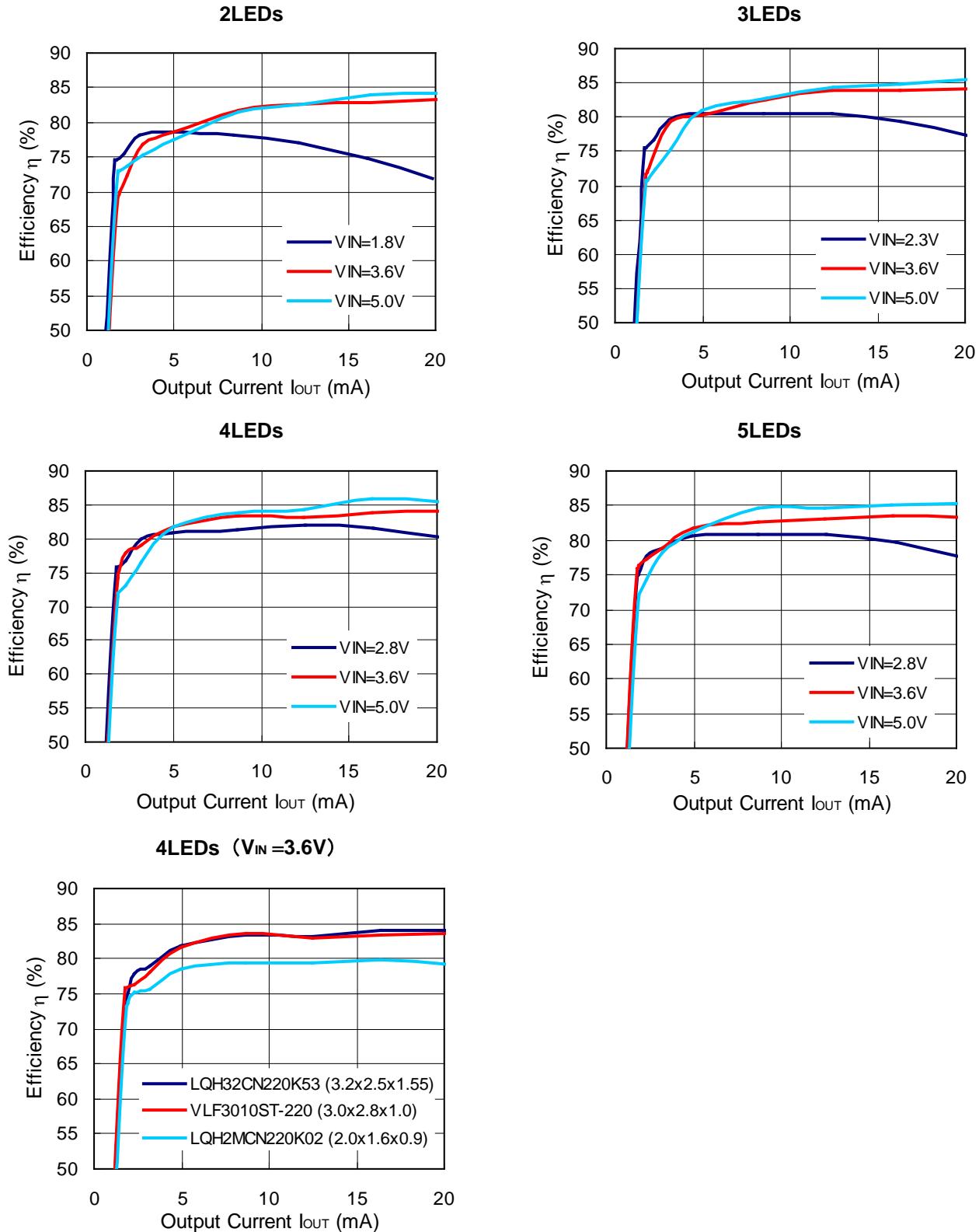
A current flows through the paths shown in Fig. 1 at the time of MOSFET-ON, and shown in Fig. 2 at the time of MOSFET-OFF. In the paths pointed with red arrows in Fig. 2, current flows just in MOSFET-ON period or just in MOSFET-OFF period. Parasitic impedance / inductance and the capacitance of these paths influence stability of the system and cause noise outbreak. So please minimize this side effect. In addition, please shorten the wiring of other current paths shown in Fig. 1 and 2 except for the paths of LED load.

### • Layout Guide for PCB


- Please shorten the wiring of the input capacitor (C1) between  $V_{IN}$  pin and GND pin of IC. The GND pin should be connected to the strong GND plane.
- The area of  $L_x$  land pattern should be smaller.
- Please put output capacitor (C2) close to the  $V_{OUT}$  pin.
- Please make the GND side of output capacitor (C2) close to the GND pin of IC.



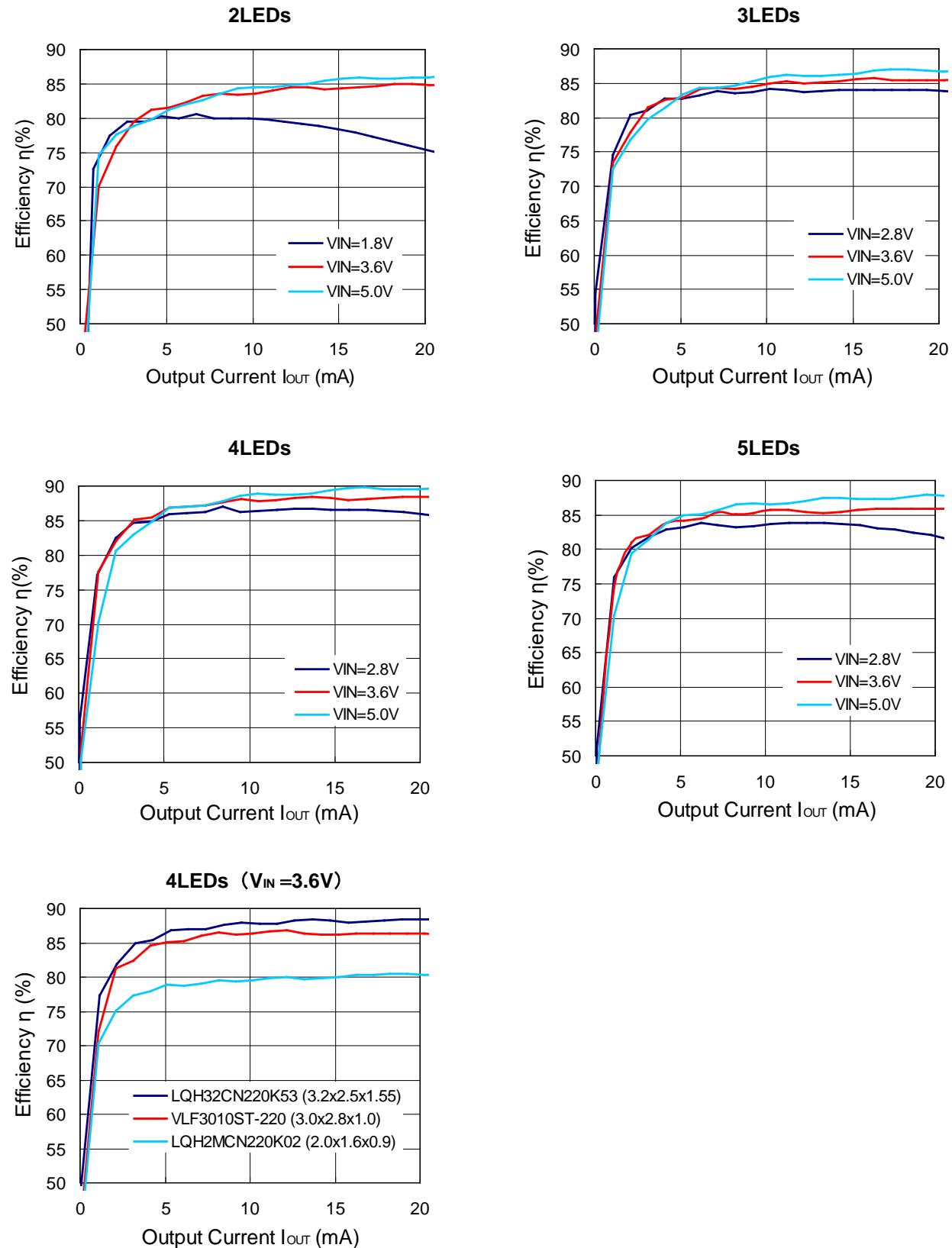
### • PCB Layout


#### ▪ PKG:SOT-23-6pin

#### R1201N typical board layout



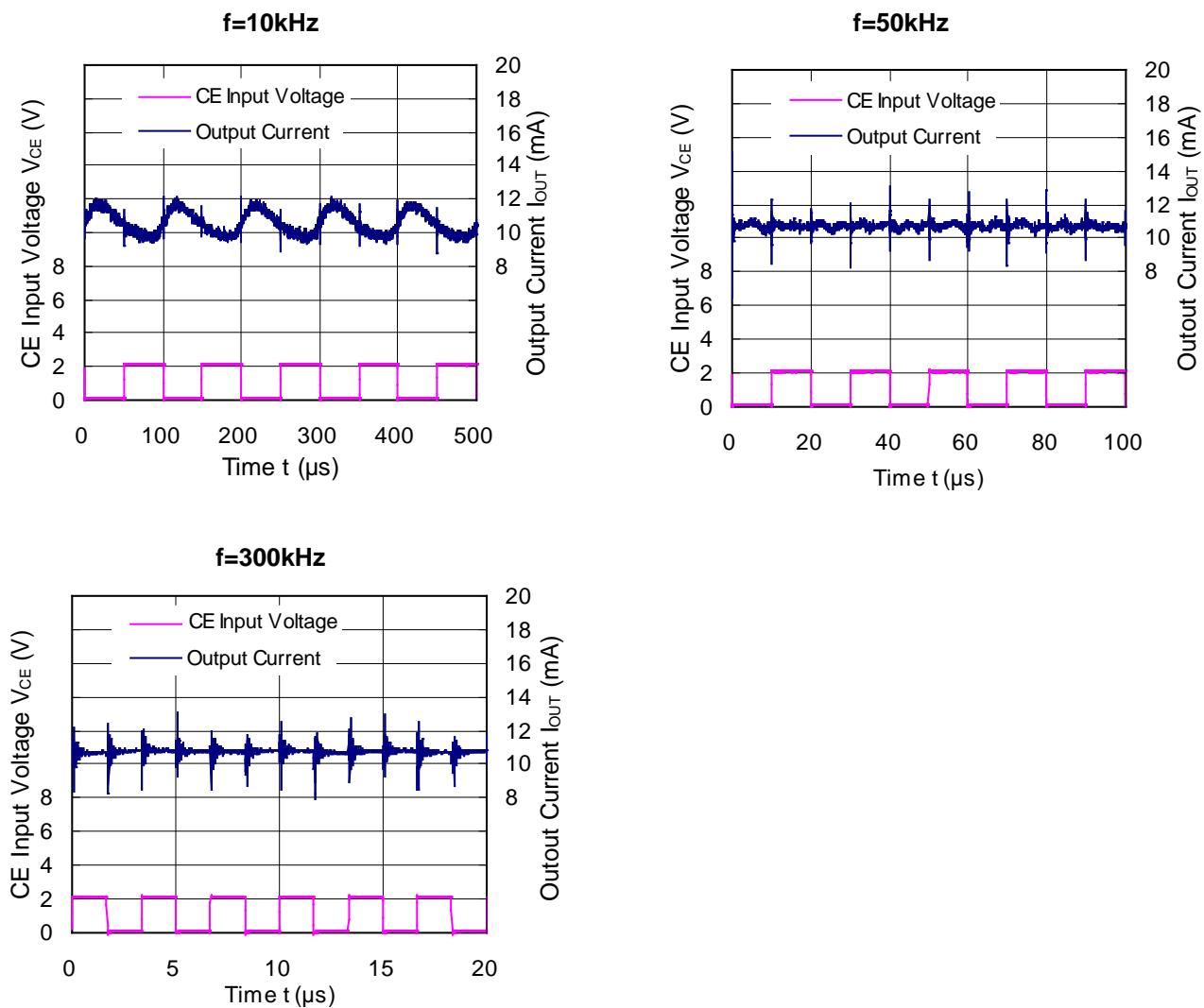
## TYPICAL CHARACTERISTICS


### 1) Efficiency vs. Output Current Characteristics ( $f_{osc}=1.2\text{MHz}$ )



\* R1201L (DFN1616-6) is the discontinued product and R1201N (SOT-23-6) is the non-promotion product. As of March in 2018.

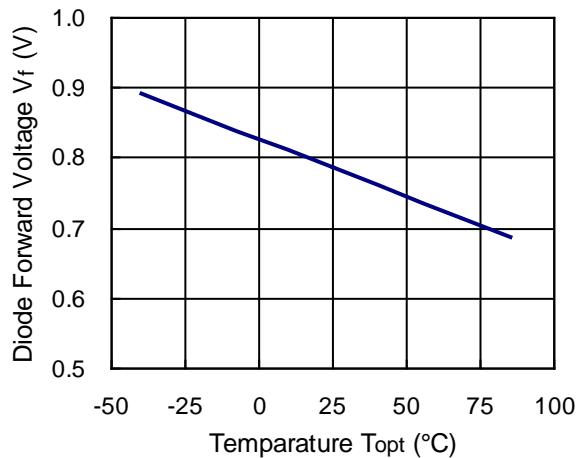
NO.EA-207-180703


## 2) Efficiency vs. Output Current Characteristics ( $f_{osc}=1.0\text{MHz}$ )

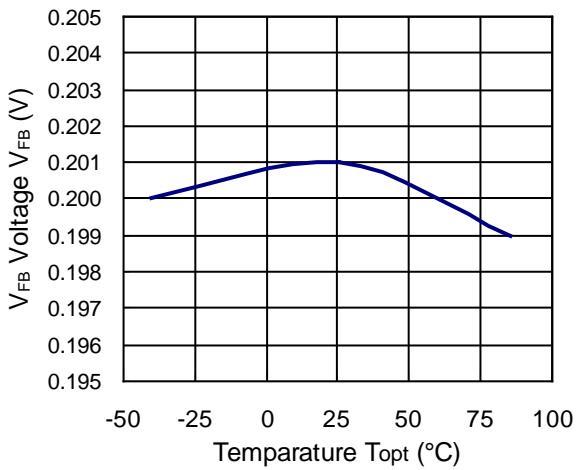


### 3) PWM Dimming Duty Cycle vs. Output Current (R1=10Ω)

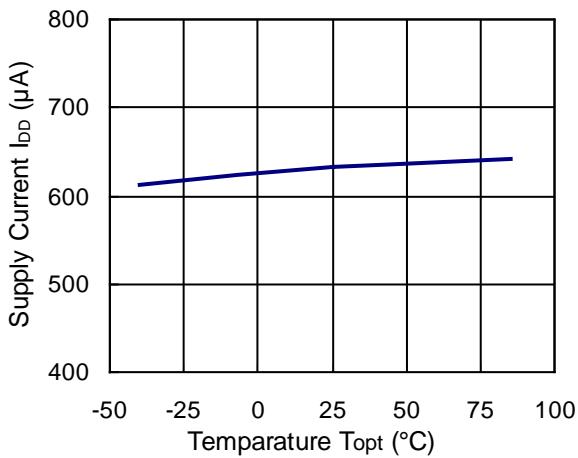



### 4) Output Current Ripple during PWM Dimming

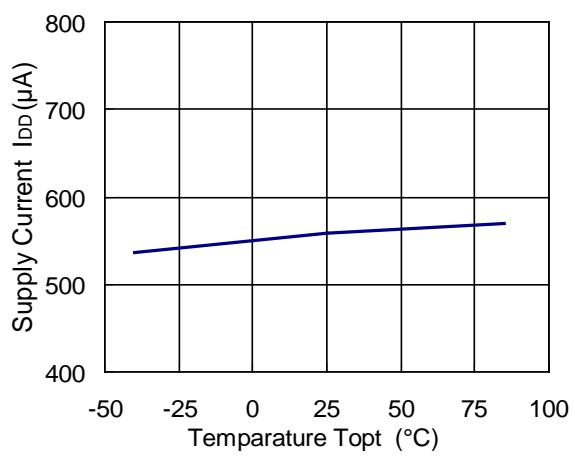



\* R1201L (DFN1616-6) is the discontinued product and R1201N (SOT-23-6) is the non-promotion product. As of March in 2018.

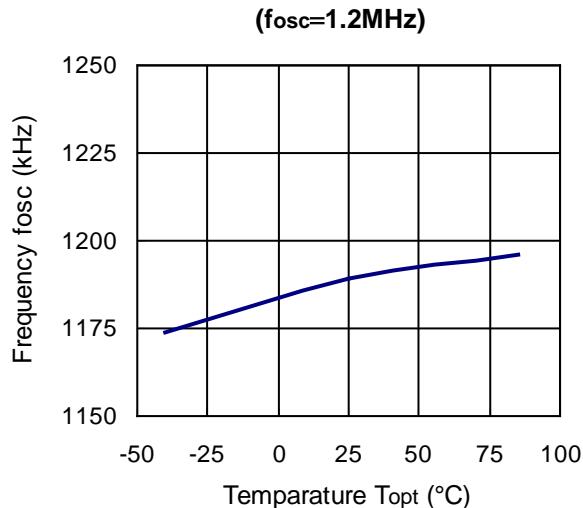
NO.EA-207-180703


### 5) Diode Forward Voltage vs. Temperature




### 6) $V_{FB}$ Voltage vs. Temperature

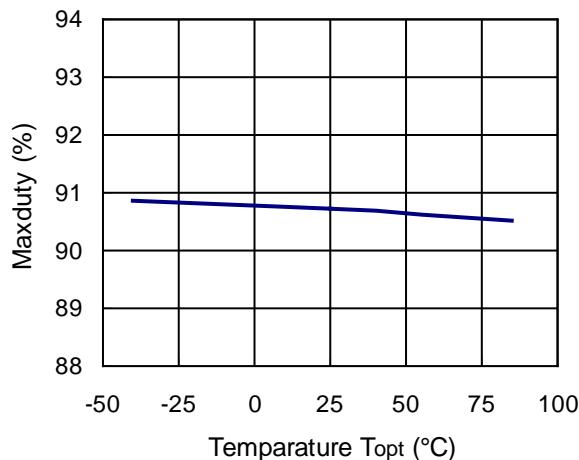



### 7) Supply Current vs. Temperature ( $f_{osc}=1.2MHz$ )

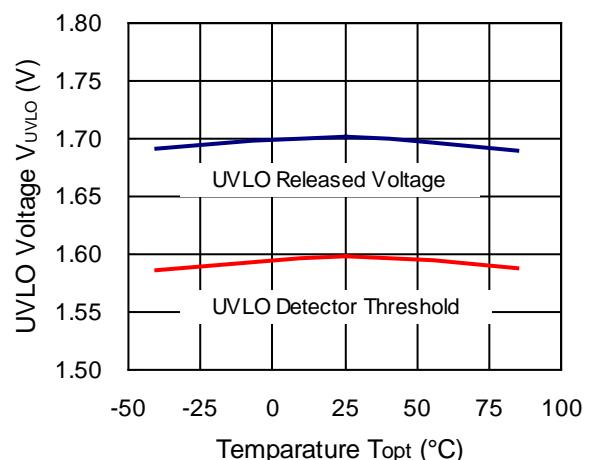



### 8) Supply Current vs. Temperature( $f_{osc}=1.0MHz$ )



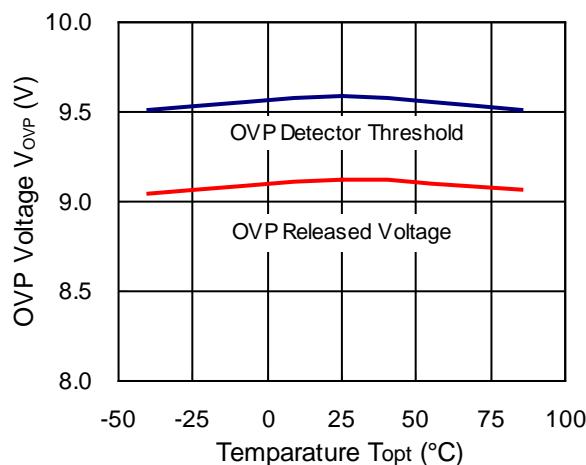

### 9) Oscillator Frequency vs. Temperature



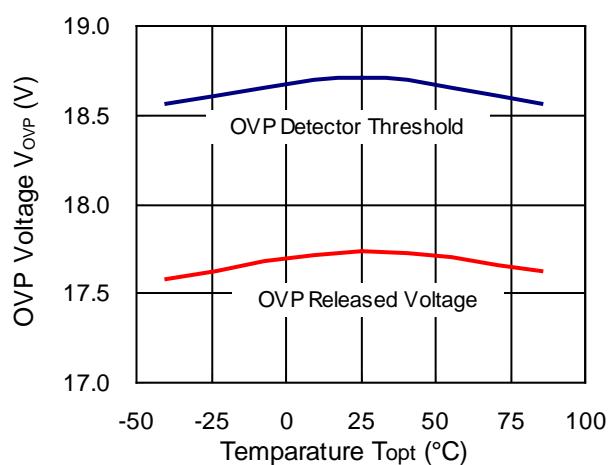

### 10) Oscillator Frequency vs. Temperature



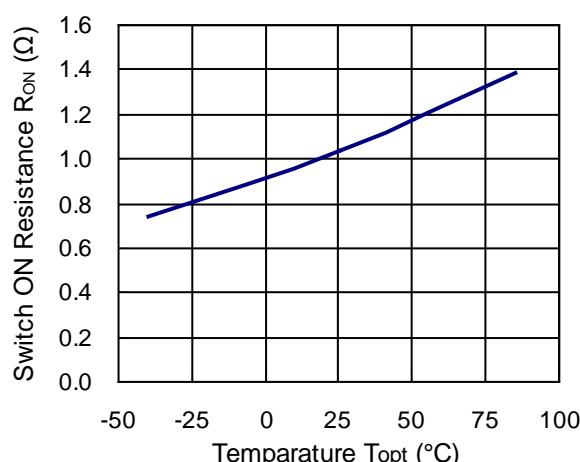
**11) Maxduty vs. Temperature**




**12) UVLO Output Voltage vs. Temperature**




**13) OVP Voltage vs. Temperature**

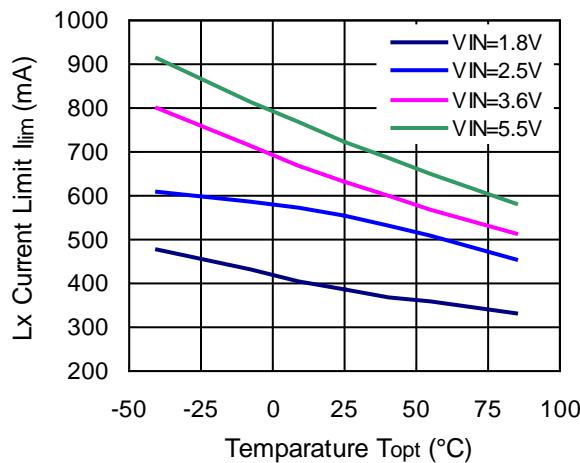

R1201x02xA



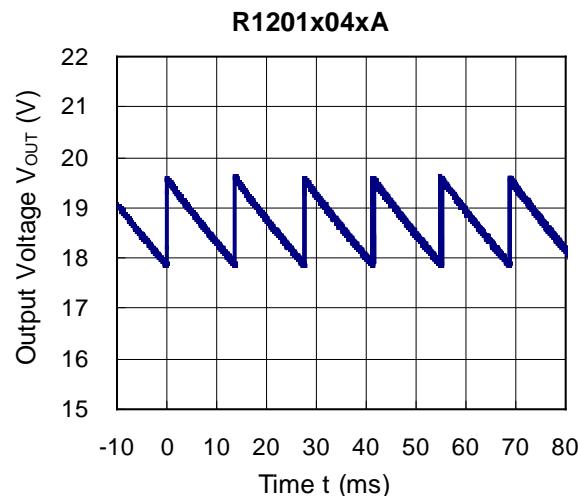
R1201x04xA



**14) Switch ON Resistance vs. Temperature**




\* R1201L (DFN1616-6) is the discontinued product and R1201N (SOT-23-6) is the non-promotion product. As of March in 2018.


---

NO.EA-207-180703

### 15) Lx Current Limit vs. Temperature



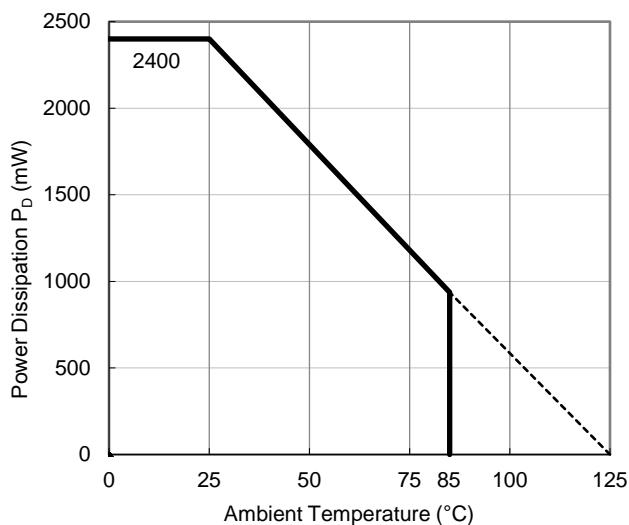
### 16) OVP Operating Output Voltage Waveform



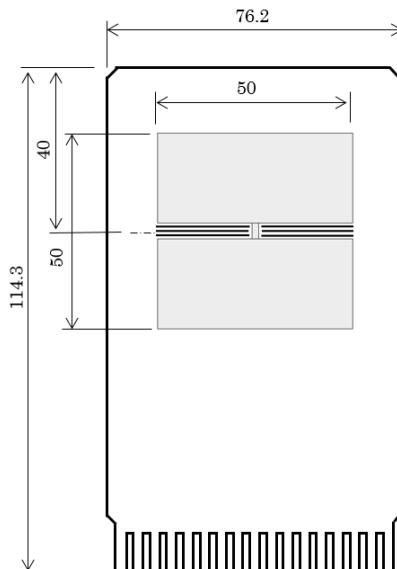
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

### Measurement Conditions

| Item             | Measurement Conditions (JEDEC STD. 51-7)                                                       |
|------------------|------------------------------------------------------------------------------------------------|
| Environment      | Mounting on Board (Wind Velocity = 0 m/s)                                                      |
| Board Material   | Glass Cloth Epoxy Plastic (Four-Layer Board)                                                   |
| Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm                                                                    |
| Copper Ratio     | 1st Layer: Less than 95% of 50 mm Square<br>2nd, 3rd, 4th Layers: Approx. 100% of 50 mm Square |
| Through-holes    | Ø 0.2 mm × 15 pcs                                                                              |


### Measurement Result

( $T_a = 25^\circ\text{C}$ ,  $T_{j\max} = 125^\circ\text{C}$ )

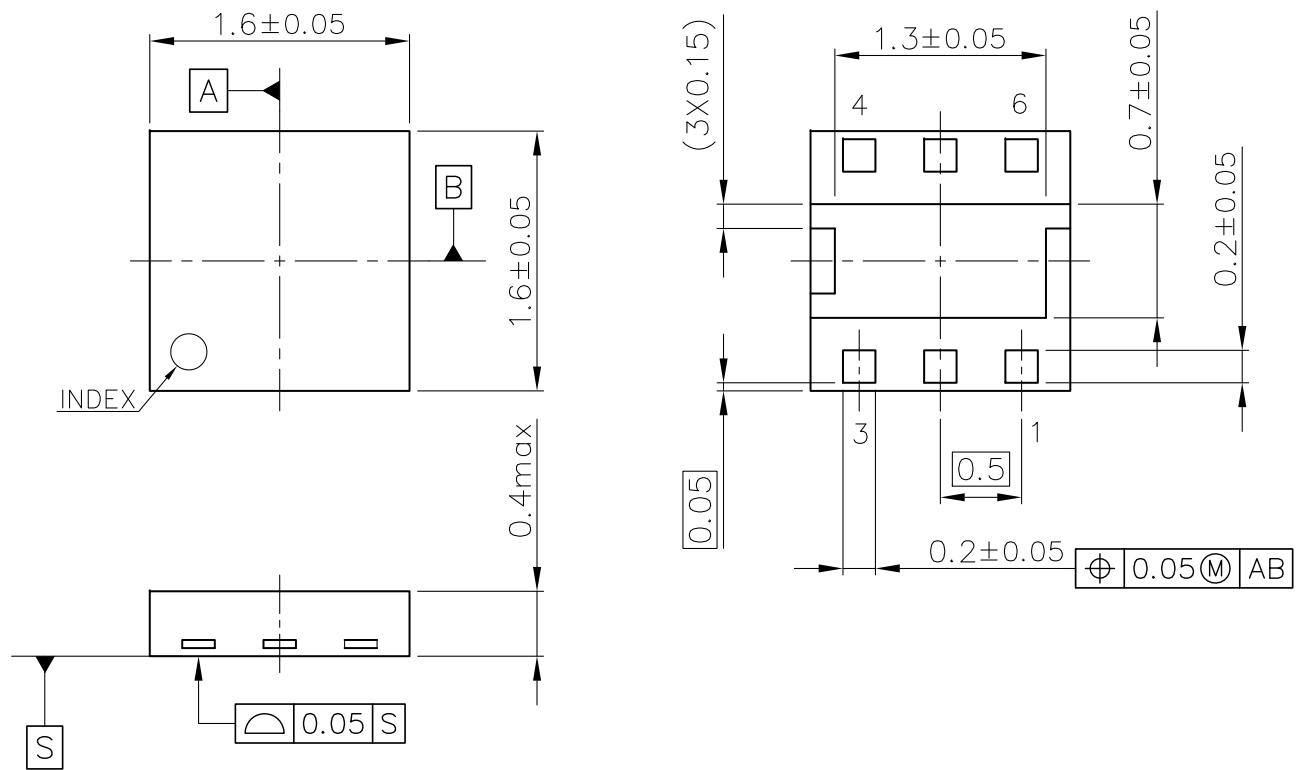

| Item                                               | Measurement Result                        |
|----------------------------------------------------|-------------------------------------------|
| Power Dissipation                                  | 2400 mW                                   |
| Thermal Resistance ( $\theta_{ja}$ )               | $\theta_{ja} = 41^\circ\text{C}/\text{W}$ |
| Thermal Characterization Parameter ( $\psi_{jt}$ ) | $\psi_{jt} = 11^\circ\text{C}/\text{W}$   |

$\theta_{ja}$ : Junction-to-ambient thermal resistance.

$\psi_{jt}$ : Junction-to-top of package thermal characterization parameter.



Power Dissipation vs. Ambient Temperature




Measurement Board Pattern

# PACKAGE DIMENSIONS

DFN1616-6

Ver. A



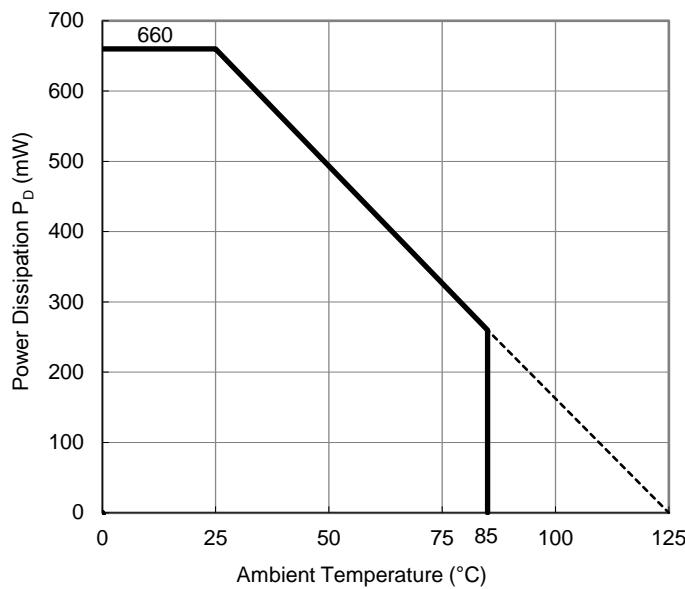
DFN1616-6 Package Dimensions (Unit: mm)

\* The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating.

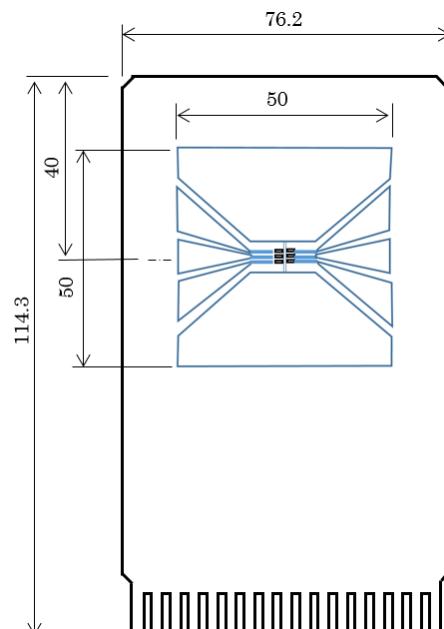
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

#### Measurement Conditions

| Item             | Measurement Conditions (JEDEC STD. 51-7)                                                        |
|------------------|-------------------------------------------------------------------------------------------------|
| Environment      | Mounting on Board (Wind Velocity = 0 m/s)                                                       |
| Board Material   | Glass Cloth Epoxy Plastic (Four-Layer Board)                                                    |
| Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm                                                                     |
| Copper Ratio     | 1st Layer : Less than 95% of 50 mm Square<br>2nd, 3rd, 4th Layers: Approx. 100% of 50 mm Square |
| Through-holes    | φ 0.3 mm × 7 pcs                                                                                |


#### Measurement Result

(Ta = 25°C, Tjmax = 125°C)

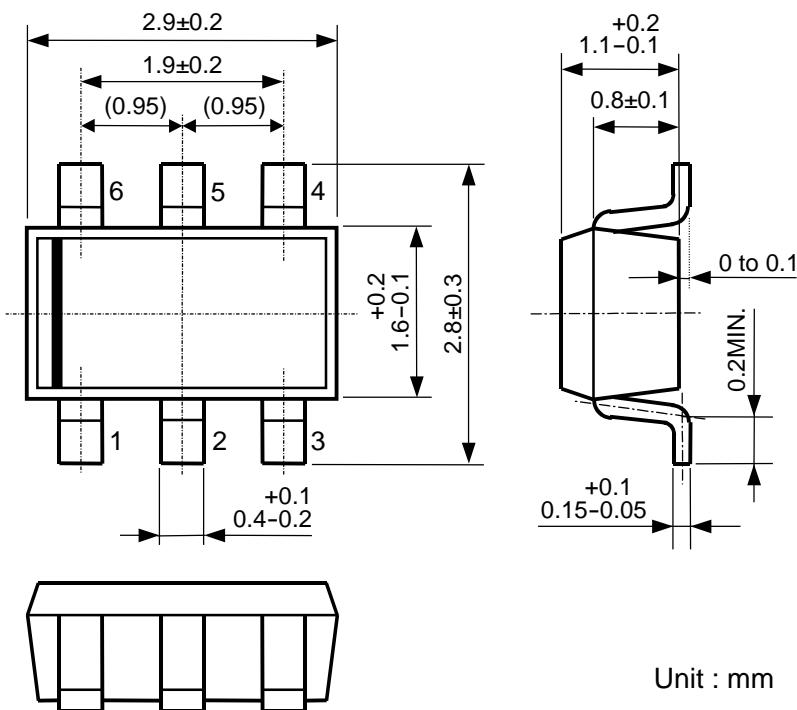

| Item                                               | Measurement Result                         |
|----------------------------------------------------|--------------------------------------------|
| Power Dissipation                                  | 660 mW                                     |
| Thermal Resistance ( $\theta_{ja}$ )               | $\theta_{ja} = 150^\circ\text{C}/\text{W}$ |
| Thermal Characterization Parameter ( $\psi_{jt}$ ) | $\psi_{jt} = 51^\circ\text{C}/\text{W}$    |

$\theta_{ja}$ : Junction-to-ambient thermal resistance.

$\psi_{jt}$ : Junction-to-top of package thermal characterization parameter



Power Dissipation vs. Ambient Temperature




Measurement Board Pattern

## PACKAGE DIMENSIONS

**SOT-23-6**

Ver. A



Unit : mm

**SOT-23-6 Package Dimensions**



1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.



**Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.**

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

## **RICOH RICOH ELECTRONIC DEVICES CO., LTD.**

<https://www.e-devices.ricoh.co.jp/en/>

### **Sales & Support Offices**

#### **Ricoh Electronic Devices Co., Ltd.**

##### **Shin-Yokohama Office (International Sales)**

2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan

Phone: +81-50-3814-7687 Fax: +81-45-474-0074

#### **Ricoh Americas Holdings, Inc.**

675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.

Phone: +1-408-610-3105

#### **Ricoh Europe (Netherlands) B.V.**

##### **Semiconductor Support Centre**

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands

Phone: +31-20-5474-309

#### **Ricoh International B.V. - German Branch**

##### **Semiconductor Sales and Support Centre**

Oberrather Strasse 6, 40472 Düsseldorf, Germany

Phone: +49-211-6546-0

#### **Ricoh Electronic Devices Korea Co., Ltd.**

3F, Haesung Bldg. 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea

Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

#### **Ricoh Electronic Devices Shanghai Co., Ltd.**

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203,

People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

#### **Ricoh Electronic Devices Shanghai Co., Ltd.**

##### **Shenzhen Branch**

1205, Block D (Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,

Shenzhen, China

Phone: +86-755-8348-7600 Ext 225

#### **Ricoh Electronic Devices Co., Ltd.**

##### **Taipei office**

Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan

Phone: +886-2-2313-1622 Fax: +886-2-2313-1623