MLX90425 Triaxis® Position Sensor IC Datasheet # **Features and Benefits** - Triaxis® Hall Technology - On Chip Signal Processing for Robust Absolute Position Sensing - ISO26262 ASIL-B Safety Element out of Context - AEC-Q100 Qualified (Grade 0) - Robust to external magnetic stray fields - Programmable Measurement Range - Programmable Linear Transfer Characteristic up to 17 points - Ratiometric analog or PWM output - Packages RoHS compliant - Single Die SOIC-8 - PCB-less Single Die SMP-3 # **Application Examples** - Pedal Position Sensor - Throttle Position Sensor - Ride Height Position Sensor - Transmission Position Sensor - Steering Wheel Position Sensor - Non-Contacting Potentiometer # **Description** The MLX90425 is a monolithic magnetic position sensor IC. It consists of a Triaxis® Hall magnetic front end, an analog to digital signal conditioner, a DSP for advanced signal processing and a programmable output stage driver. The MLX90425 is sensitive to the differential magnetic field perpendicular to the IC surface (Z-axis). This allows the MLX90425, with the correct magnetic design, to decode the absolute position of a rotating on-axis magnet above or below the sensor (e.g. rotary position from 0° to 360°). It enables the design of non-contacting position sensors that are frequently required in automotive and industrial applications. The MLX90425 provides either a ratiometric analog or a pulse width modulated (PWM) output. Programming the sensor, after assembly into the application, increases the accuracy of the system thanks to the multi-point programmable linearization function. Angular Rotary – 360° Stray field Robust # **Ordering Information** | Product | Temp. | Package | Option Code | Packing
Form | Definition | |----------|-------|---------|-------------|-----------------|--| | MLX90425 | G | DC | ABA-600 | RE | Angular Rotary 360° Stray field
Robust Analog / PWM version | | MLX90425 | G | VE | ABA-600 | RE/RX | Angular Rotary 360° Stray field
Robust Analog / PWM version | Table 1 – Ordering codes | Temperature Code: | G: from -40°C to 160°C Some parts can be exposed to higher temperatures for a limited time (1) | |--------------------------------|---| | Package Code: | DC: SOIC-8 package (see 17.1) VE: SMP-3 package (PCB-less single mold, see 17.2) | | Option Code - Chip
revision | AAA-123 : Chip Revision ABA: MLX90425 production version | | Option Code - Application | AAA-123: 1-Application - Magnetic configuration 6: Angular Rotary 360° Stray field Robust | | Option Code | AAA-123: 2-Programming Option O: Standard (Analog output) | | Option Code - Trim &
Form | AAA-123: 3-Package Option O: Standard | | Packing Form: | -RE: Tape & Reel VE: 2500 pcs/reel DC: 3000 pcs/reel -RX: Tape & Reel, similar to RE with parts face-down | | Ordering Example: | MLX90425GDC-ABA-600-RE For an analog version in SOIC-8 package, delivered in reels of 3000pcs. | Table 2 - Ordering codes information REVISION 1.0 - 25 MAY 2022 Page 2 of 49 ¹ The devices can be used up-to an ambient temperature of +180°C. For a description of the conditions, refer to the sub-sections labelled "High-temperature Extension" (4.1, 5.1, 8.2.1, 10.1.1, 10.2.3, 12.5.4). # **Contents** | Features and Benefits | 1 | |---|----| | Application Examples | 1 | | Description | 1 | | Ordering Information | 2 | | Functional Diagram and Application Modes | 5 | | 2. Glossary of Terms | 6 | | 3. Pin Definitions and Descriptions | 7 | | 3.1. Pin Definition for SOIC-8 | 7 | | 3.2. Pin Definition for SMP-3 | 7 | | 4. Absolute Maximum Ratings | 8 | | 4.1. High-Temperature Extension Absolute Maximum Ratings | 9 | | 5. General Electrical Specifications | 9 | | 5.1. High-Temperature Extension Electrical Specifications | 11 | | 6. Timing Specifications | 12 | | 6.1. General Timing Specifications | 12 | | 6.2. Continuous Acquisition Mode | 12 | | 6.3. Timing Definitions | 13 | | 6.4. Analog Output Timing Specifications | 15 | | 6.5. PWM Output Timing Specifications | 16 | | 7. Magnetic Field Specifications | 17 | | 8. Accuracy Specifications | 18 | | 8.1. Definitions | 18 | | 8.2. Performances | 19 | | 9. Memory Specifications | 20 | | 10. Output Protocol Description | 20 | | 10.1. Analog Output Description | 20 | | 10.2. PWM Output Description | 21 | | 11. End-User Programmable Items | 23 | | 12. Description of End-User Programmable Items | 26 | | 12.1. Output modes and protocols | 26 | | 12.2. Output Transfer Characteristic | 27 | | 12.3. Sensor Front-End | 31 | | 12.4. Filtering | 32 | #### MLX90425 Triaxis® Position Sensor IC | 12.5. Programmable Diagnostics Settings | 33 | |--|----| | 13. Functional Safety | 36 | | 13.1. Safety Manual | 36 | | 13.2. Safety Mechanisms | 36 | | 13.3. Fault Handling Time Interval | 40 | | 14. Recommended Application Diagrams | 41 | | 14.1. Wiring with the MLX90425 in SOIC-8 Package | 41 | | 14.2. Wiring with the MLX90425 in SMP-3 Package (built-in capacitors) | 42 | | 15. Standard information regarding manufacturability of Melexis products w soldering processes | | | 16. ESD Precautions | 43 | | 17. Package Information | 44 | | 17.1. SOIC-8 - Package Information | 44 | | 17.2. SMP-3 - Package Information | 46 | | 17.3. Packages Thermal Performances | 48 | | 18. Contact | 49 | | 19. Disclaimer | 40 | # 1. Functional Diagram and Application Modes Figure 1 - MLX90425 Block diagram Figure 2 - Angular Rotary – 360° Stray field Robust **REVISION 1.0 - 25 MAY 2022** Page 5 of 49 # 2. Glossary of Terms | Name | Description | |-----------|--| | ADC | Analog-to-Digital Converter | | AWD | Absolute Watchdog | | CPU | Central Processing Unit | | CRC | Cyclic Redundancy Check | | DAC | Digital-to-Analog Converter | | %DC | Duty Cycle of the output signa, li.e. T_{ON} /(T_{ON} + T_{OFF}) | | DP | Discontinuity Point | | DCT | Diagnostic Cycle Time | | DSP | Digital Signal Processing | | ECC | Error Correcting Code | | EMC | Electro-Magnetic Compatibility | | EoL | End of Line | | FHTI | Fault Handling Time Interval | | FIR | Finite Impulse Response | | Gauss (G) | Alternative unit for the magnetic flux density (10G = 1mT) | | HW | Hardware | | IMC | Integrated Magnetic Concentrator | | INL / DNL | Integral Non-Linearity / Differential Non-Linearity | | IWD | Intelligent Watchdog | | LSB / MSB | Least Significant Bit / Most Significant Bit | | N.C. | Not Connected | | NVRAM | Non-Volatile RAM | | PCB | Printed Circuit Board | | POR | Power-On Reset | | PSF | Product Specific Functions | | PWL | Piecewise Linear | | PWM | Pulse Width Modulation | | RAM | Random Access Memory | | ROM | Read-Only Memory | | SEooC | Safety Element out of Context | | SMP | Single-Mold Package with integrated discrete components (capacitors) | | тс | Temperature Coefficient (generally in ppm/°C) | | Tesla (T) | SI-derived unit for the magnetic flux density (Vs/m²) | # 3. Pin Definitions and Descriptions ### 3.1. Pin Definition for SOIC-8 | Pin # | Name | Description | |-------|-------------------|--------------------------| | 1 | V_{DD} | Supply | | 2 | Test ₁ | For Melexis factory test | | 3 | Test ₂ | For Melexis factory test | | 4 | N.C. | Not connected | | 5 | OUT | Output | | 6 | N.C. | Not connected | | 7 | V_{DEC} | Decoupling pin | | 8 | V_{SS} | Ground | Table 4 - SOIC-8 pins definition and description Test pins are internally grounded when in application mode. For optimal EMC behavior always connect the Test and N.C. pins to the ground of the PCB. #### 3.2. Pin Definition for SMP-3 SMP-3 package offers advanced components integration in a single mold compact form. | Pin # | Name | Description | |-------|----------|-------------| | 1 | V_{DD} | Supply | | 2 | OUT | Output | | 3 | V_{SS} | Ground | Table 5 - SMP-3 pins definition and description REVISION 1.0 - 25 MAY 2022 Page 7 of 49 # 4. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | Condition | |--|------------------------|------------|----------|------|---| | Supply Voltage | V_{DD} | | 28
37 | V | < 48h
< 60s; T _{AMB} ≤ 35°C | | Reverse Voltage Protection | V_{DD-rev} | -14
-18 | | V | < 48h
< 1h | | Positive Output Voltage | V _{OUT} | | 28
34 | V | < 48h
< 1h | | Reverse Output Voltage | $V_{OUT ext{-rev}}$ | -14
-18 | | V | < 48h
< 1h | | Internal Voltage | V_{DEC} | | 3.6 | V | < 1h | | | $V_{DEC\text{-rev}}$ | -0.3 | | V | < 1h | | Positive Test ₁ pin Voltage | V_{Test1} | | 6 | V | < 1h | | Reverse Test ₁ pin Voltage | $V_{\text{Test1-rev}}$ | -3 | | V | < 1h | | Positive Test ₂ pin Voltage | V_{test2} | | 3.6 | V | < 1h | | Reverse Test ₂ pin Voltage | $V_{\text{test2-rev}}$ | -0.3 | | V | < 1h | | Operating Temperature | T_{AMB} | -40 | +160 | °C | | | Junction Temperature (2) | TJ | | +175 | °C | | | Storage Temperature | T_{ST} | -55 | +170 | °C | | | Magnetic Flux Density | B_{max} | -1 | 1 | Т | | Table 6 - Absolute maximum ratings Exceeding any of the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. **REVISION 1.0 - 25 MAY 2022** ² Find package thermal dissipation values in section 17.2 ### 4.1. High-Temperature Extension Absolute Maximum Ratings The MLX90425 can be exposed to high-temperature within the range [160, 180] °C for a limited duration. The device continues to operate with degraded performances according to the values listed in the following table. This extension is only valid for the SMP-3 package. | Parameter
| Symbol | Min | Max | Unit | Condition | |----------------------------|----------------------|-----|-----|------|--| | Supply Voltage | V_{DD} | | 5.5 | V | $T_{AMB} = 180$ °C, see ⁽³⁾ | | Reverse Voltage Protection | $V_{\text{DD-rev}}$ | -14 | | V | T _{AMB} = 180°C, < 1h | | Positive Output Voltage | V_{OUT} | | 26 | V | T _{AMB} = 180°C, < 1h | | Reverse Output Voltage | $V_{OUT\text{-rev}}$ | -14 | | V | T _{AMB} = 180°C, < 1h | | Operating Temperature | T_{AMB} | -40 | 180 | °C | < 250h | | Junction Temperature | TJ | | 190 | °C | < 250h | | Storage Temperature | T_{ST} | -55 | 190 | °C | < 250h | Table 7 - High-temperature extension absolute maximum ratings Exceeding any of the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. # 5. General Electrical Specifications General electrical specifications are valid for temperature range [-40, 160] °C and supply voltage range [4.5, 5.5] V unless otherwise noted. | Electrical Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |------------------------------------|--------------------|------|------|------|------|------------------------------| | Supply Voltage | V_{DD} | 4.5 | 5 | 5.5 | V | | | Supply Current | I_{DD} | 8.5 | 10 | 11.5 | mA | | | Start-up Level (rising) | $V_{DDstartH}$ | 3.85 | 4.00 | 4.15 | V | | | Start-up Hysteresis | $V_{DDstartHyst}$ | | 100 | | mV | | | PTC Entry Level (rising) | V_{PROV0} | 5.85 | 6.05 | 6.25 | V | Supply overvoltage detection | | PTC Entry Level Hysteresis | $V_{PROV0Hyst}$ | 100 | 175 | 250 | mV | | | Under voltage detection | V_{DDUVL} | 3.75 | 3.90 | 4.05 | V | Supply voltage low threshold | | Under voltage detection hysteresis | $V_{DDUVHyst}$ | | 100 | | mV | | | Regulated Voltage | V_{DEC} | 3.2 | 3.3 | 3.4 | V | Internal analog voltage | Table 8 - Supply system electrical specifications Page 9 of 49 REVISION 1.0 - 25 MAY 2022 $^{^{3}}$ Higher supply voltages will increase the die temperature above the max junction temperature T_{J} #### MLX90425 Triaxis® Position Sensor IC | Electrical Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |---|--------------------------|-----------------|--------------|-----------------------|-------------------|--| | External Pull-up
Voltage | V_ext | | | 18
V _{DD} | V | Output Pull-up voltage in open-drain NMOS mode or analog mode Output Pull-up voltage in digital Push-Pull mode | | Output Short Circuit
Current Limit | $I_{OUTshort}$ | 10 | | 35 | mA | | | | | 5 | 10 | | kΩ | Analog output | | Output Load | R∟ | 5 | | 100 | kΩ | Digital output in Push-Pull mode PWM pull-up to V _{DD} , PWM pull-down to V _{SS} | | | | 1.5
5
1.5 | | 25
18
25 | kΩ | Digital output in open-drain mode PMOS, pull-down to V_{SS} NMOS, pull-up to $V_{ext} \le 18V$ NMOS, pull-up to $V_{ext} = V_{DD}$ | | Analog output
Saturation Level ⁽⁴⁾ | V_{satA_lo} | | 0.5
3.3 | 1.2
7.4 | %V _{DD} | Pull-up to V_{ext} $R_L \geq 10 \; k\Omega, \; V_{ext} \leq V_{DD}$ $R_L \geq 5 \; k\Omega \; to \; V_{ext} \leq 18 V$ | | | V_{satA_hi} | 97.0
95.0 | 99.0
98.0 | | %V _{DD} | Pull-down to V_{SS} $R_L \geq 10 \; k\Omega$ $R_L \geq 5 \; k\Omega$ | | Digital output level push-pull mode (4) | V_{satD_lopp} | | | 1.2 | %V _{DD} | Pull-up to $V_{ext} \le V_{DD}, \ R_L \ge 10 \ k\Omega$ | | | V_{satD_hipp} | 97.0
95.0 | | | %V _{DD} | Pull-down to $V_{SS},~R_L \geq 10~k\Omega$ Pull-down to $V_{SS},~R_L \geq 5~k\Omega$ | | Digital output level open-drain mode | $V_{satLoOd}$ | 0 | | 10 | %V _{ext} | Pull-up to $V_{ext} \le 18V$, $I_L \le 3.4mA$ | | | $V_{satHiOd}$ | 90 | | 100 | $%V_{DD}$ | Pull-down to V_{SS} , $I_L \le 3.4 mA$ | | Digital output
leakage open-drain
mode ⁽⁵⁾ | ${\sf I}_{\sf leakpuOd}$ | | | 100 | μΑ | Pull-up to V _{ext} > V _{DD} | | | | | | 20 | μΑ | Pull-up to $V_{ext} = V_{DD}$ | | | | | | 20 | μΑ | Pull-down to V _{SS} | | Digital output
Resistance | R_{on} | 27 | 50 | 130 | Ω | Valid for high and low digital levels | $^{^4}$ Typical values are representative of a temperature of 35°C and a supply voltage of 5V. Min-Max values are representative of a temperature of 160°C and a supply voltage of 4.5V. REVISION 1.0 - 25 MAY 2022 Page 10 of 49 $^{^{5}}$ Measured leakage when the open-drain transistor is inactive. The digital output level depends on V_{ext} , R_{L} and the leakage current. | Electrical Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |--|---------------------|--------------|--------------|------------|-------------------|--| | Passive Diagnostic
Output Level
(Broken-Wire
Detection) | BV _{SS} PD | | 1.2
0.5 | 4.0
1.6 | %V _{DD} | Broken V_{SS} line and Pull-down to V_{SS} , $R_L \le 25 \text{ k}\Omega$ Pull-down to V_{SS} , $R_L \le 10 \text{ k}\Omega$ | | | BV _{SS} PU | 99.5 | 100 | | %V _{ext} | Broken V_{SS} line and $\label{eq:Pull-up} \text{Pull-up to } V_{\text{ext}}\text{, } R_L \geq 1 k\Omega$ | | | $BV_{DD}PD$ | | 0 | 0.5 | %V _{DD} | Broken V_{DD} line and $Pull\mbox{-}down\ to\ V_{SS},\ R_L \geq 1\ k\Omega \label{eq:pull}$ | | | BV_DDPU | 92.5
97.0 | 98.5
99.5 | | %V _{ext} | Broken V_{DD} line and Pull-up to V_{ext} , $R_L \le 25~k\Omega$ Pull-up to V_{ext} , $R_L \le 10~k\Omega$ | Table 9 - Output electrical specifications ### 5.1. High-Temperature Extension Electrical Specifications When the MLX90425 is exposed to high-temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the output pull-up voltage range shall remain within the limits of the supply voltage. | Electrical Parameter | Symbol | Min | Тур | Max | Unit | Condition | |--------------------------|-----------|-----|-----|----------|------|---| | External Pull-up Voltage | V_{ext} | | | V_{DD} | V | Output Pull-up voltage in open-drain NMOS mode or analog mode | Table 10 - High-temperature electrical specifications **REVISION 1.0 - 25 MAY 2022** Page 11 of 49 # 6. Timing Specifications Timing specifications are valid for temperature range [-40, 160] °C and supply voltage range [4.5, 5.5] V unless otherwise noted. ### 6.1. General Timing Specifications | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |--|--------------------------|------------|------|-----------|-------------------------|---| | Main Clock Frequency | F _{CK} | 22.8
-5 | 24 | 25.2
5 | MHz
%F _{ck} | Including thermal and lifetime drift | | Main Clock initial tolerances | $\Delta F_{CK,0}$ | -1 | | 1 | %F _{ck} | T=35°C, trimming resolution | | Main Clock Frequency
Thermal Drift | $\Delta F_{\text{CK,T}}$ | -3.5 | | 3.5 | %F _{ck} | Relative to clock frequency at 35°C. Ageing effect not included | | 1MHz Clock Frequency | F_{1M} | 0.95
-5 | 1 | 1.05
5 | MHz
%F _{1M} | Including thermal and lifetime drift | | Analog Diagnostics DCT ⁽⁶⁾ | DCT _{ANA} | | 11.8 | 12.4 | ms | Continuous acquisition mode (see 6.2), for analog and PWM. | | Digital Diagnostics DCT ⁽⁶⁾ | DCT_{DIG} | | 18.7 | 19.7 | ms | | | Fail Safe state duration (7) | T_{FSS} | 5 | | 33 | ms | For digital single-event faults | Table 11 - General timing specifications ### 6.2. Continuous Acquisition Mode In this mode, the sensor continuously acquires an angle at a fixed rate and updates its output when the information is ready. The acquisition rate is defined by the angle measurement period T_{angleMeas}. The PWM output frequency is asynchronous with the angle measurement sequence and controlled by the T_FRAME parameter. Figure 3 - Continuous Acquisition Timing Mode REVISION 1.0 - 25 MAY 2022 Page 12 of 49 ⁶ Max value includes the clock tolerances ⁷ Programmable parameter. Defines the time between a reset due to digital fault to the first valid data. Min. value defined by OUT_DIAG_HIZ_TIME (see Table 24 in chapter 11 for details). | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |--------------------------------------|-----------------|-----|------|-----|------|--------------------------| | Angle acquisition time | $T_{angleAcq}$ | | 210 | | μs | Default factory settings | | Internal Angle
Measurement Period | $T_{angleMeas}$ | | 512 | | μs | Default factory settings | Table 12 - Continuous acquisition timing mode ### 6.3. Timing Definitions #### 6.3.1. Startup Time In analog mode, the start-up time τ_{SU} is defined by the duration between rising of the supply voltage and the output being set to the voltage level of the measured angle. During the start-up phase, the sensor output remains in a high impedance state. The output driver is enabled only when the sensor is able to transmit a valid angle. In PWM mode, the start-up phase consists of three phases of durations $T_{stup[1:3]}$. The first phase ends when the sensor output leaves high impedance state and starts to drive a voltage. The end of the second phase T_{stup2} is reached when an angle is ready to be transmitted and indicated by the first synchronization edge of the PWM signal. The start-up phase is considered complete after T_{stup3} when the first angle has been transmitted, which happens one PWM period after T_{stup2} . These definitions are illustrated in the following figure (Figure 4) where τ_{init} represents the sensor internal initialization sequence.
Figure 4 - Startup time definition REVISION 1.0 - 25 MAY 2022 Page 13 of 49 Datasheet #### 6.3.2. Latency (average) The sensor latency is the average lag between the movement of the detected object (magnet) and the response of the sensor output. This value is representative of the time constant of the MLX90425 when used in a regulation loop. Figure 5 - Definition of latency #### 6.3.3. Step Response (worst-case) The Step Response T_{wcStep} is defined as the maximal delay between a change of position of the magnet and the 100% settling time of the sensor output, with full angle accuracy with regards to filtering. This worst-case is happening when the movement of the magnet occurs just after a measurement sequence has begun. The Step Response consists of the sum of: - δ_{mag,measSeq}, the delay between the magnetic step and the end of the measurement sequence - T_{angleMeas}, the internal angle measurement period - $\delta_{\text{measSeq,trans}}$, the delay between the end of the measurement sequence and the beginning of the transmission of the angle information - T_{trans}, the duration of the transmission of the angle information, which depends on the output protocol The worst-case occurs when the magnetic step is just after the beginning of a measurement sequence. In other words, when $\delta_{mag,measSeq}$ equals the length of the measurement sequence $\tau_{measSeq}$. This gives: $$T_{wcStep} = \tau_{measSeq} + T_{angleMeas} + \delta_{measSeq,trans} + T_{trans}$$ In analog output mode, the angle information is immediately available after the end of the internal measurement period and the transmission delay is negligible. The last two terms of the above equation can be nulled. When using a PWM output protocol, the last two terms of the equation are, in the worst-case condition, both equal to a PWM frame duration T_{PWM} . The Figure 6 shows a practical case of a step response for both an analog and PWM output. REVISION 1.0 - 25 MAY 2022 Page 14 of 49 Figure 6 - Step response definition ### 6.4. Analog Output Timing Specifications | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |----------------------------------|-----------------|-----|------|------------|------|--| | Output refresh period (8) | $T_{angleMeas}$ | | 512 | 538 | μs | Default factory setting | | Latency | $ au_{L}$ | | 225 | 237 | μs | Filter 0 | | | | | 837 | 879 | | Filter 0, | | Step response | T_{wcStep} | | 1349 | 1416 | μs | Filter 1, | | | | | 2373 | 2492 | | Filter 2 (see 12.4 Filtering) | | Start-up time | $ au_{SU}$ | | 4.0 | 4.5 | ms | | | Safe startup time ⁽⁶⁾ | $T_{SafeStup}$ | | 16.8 | 17.7 | ms | COLD_SAFE_STARTUP_EN = 1
(see Table 24) | | Slew-rate | S_R | | | 120
200 | V/ms | $C_{OUT} = 100nF$ $C_{OUT} = 10nF$ | Table 13 - Analog output timing specifications ⁸ In analog mode, the output refresh period matches the internal angle measurement period. ### 6.5. PWM Output Timing Specifications For the parameters in below table, maximum timings correspond to minimal frequencies and vice versa. | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |----------------------------------|---------------------------|------|------|------|-------------------|--| | PWM Frequency | F_{PWM} | 100 | | 2000 | Hz | | | PWM Frequency Initial Tolerances | $\Delta F_{PWM,0}$ | -1 | | 1 | %F _{PWM} | T=35°C, can be trimmed at EOL | | PWM Frequency Thermal Drift | $\Delta F_{\text{PWM,T}}$ | -3.5 | | 3.5 | %F _{PWM} | | | PWM Frequency Drift | ΔF_{PWM} | -5 | | 5 | %F _{PWM} | Over temperature and lifetime | | PWM startup time (9) | T_{stup1} | | 4.1 | | ms | Default factory setting Up to output ready | | | T _{stup2} | | 5.2 | | ms | Default factory setting Up to first sync. Edge $T_{stup1} + T_{PWM}$ | | | T_{stup3} | | 6.3 | | ms | Default factory setting Up to first data received $T_{stup2} + T_{PWM}$ | | PWM Safe startup time | | | 18.5 | 19.5 | ms | F _{PWM} = 1kHz, up to first edge.
COLD_SAFE_STARTUP_EN = 1
(see Table 24) | Table 14 - PWM timing specifications REVISION 1.0 - 25 MAY 2022 Page 16 of 49 ⁹ Typ. value specified according to the typical PWM frequency. Max. value can be obtained by scaling with the PWM frequency drift accordingly. # 7. Magnetic Field Specifications Magnetic field specifications are valid for temperature range [-40, 160] °C unless otherwise noted. | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |--------------------------------------|-------------------------|--------------------|------|-------|-------------------------------|--| | Number of magnetic poles | N_{P} | | 2 | | | | | Magnetic Flux Density in Z | B _z | | | 200 | mT | in absolute value | | Useful Magnetic Flux
Density Norm | ΔB_z | 10 ⁽¹⁰⁾ | 20 | 240 | mT
mm | $\sqrt{\left(\frac{\Delta B_Z}{\Delta X}\right)^2 + \left(\frac{\Delta B_Z}{\Delta Y}\right)^2} (\Delta B_Z \text{ mode})$ see 12.3 for sensing mode description. | | Hall Plates spacing | ΔΧ, ΔΥ | | 1.70 | | mm | Distance between the two hall plates of a measurement axis. | | Magnet Temperature
Coefficient | TC_m | -2400 | | 0 | ppm
°C | | | Fieldstrength Resolution | $\Delta B_{z,norm}$ | 0.075 | 0.1 | 0.125 | $\frac{mT}{mm \ LSB}$ | | | Field Too Low Threshold | $\Delta B_{Z,TH_LOW}$ | 2 | 3 | 15 | $\frac{\text{mT}}{\text{mm}}$ | Typ. is recommended value to be set by user (see 12.5.5) | | Field Too High Threshold | $\Delta B_{Z,TH_HIGH}$ | 100 | 310 | 310 | $\frac{\text{mT}}{\text{mm}}$ | Typ. is recommended value to be set by user (see 12.5.5) | Table 15 - Magnetic specifications for standard application The magnetic performances are listed in chapter 8.2. The Figure 7 defines under which conditions nominal or high-temperature performances apply. Figure 7 - Useful magnetic signal definition REVISION 1.0 - 25 MAY 2022 Page 17 of 49 ¹⁰ Only valid under the conditions of Figure 7. Outside of the "Limited Performances" zone, the performances are further degraded due to a reduction of the signal-to-noise ratio and signal-to-offset ratio. # 8. Accuracy Specifications Accuracy specifications are valid for temperature range [-40, 160] °C and supply voltage range [4.5, 5.5] V unless otherwise noted. #### 8.1. Definitions #### 8.1.1. Intrinsic Linearity Error Figure 8 - Sensor accuracy definition The illustration of Figure 8 depicts the intrinsic linearity error in new parts. The Intrinsic Linearity Error refers to the error sources of the IC (offset, sensitivity mismatch, orthogonality error) considering an ideal magnetic field. Once associated to a practical magnetic construction and its respective mechanical and magnetic tolerances, the output linearity error increases. The linearity error can be improved with the multi-point end-user calibration (see 12.2). As a consequence, this error is not the critical factor in application when it is calibrated away. #### 8.1.2. Total Angle Drift After calibration, the output angle of the sensor might still change due to temperature change and aging. This error is defined as the total drift $\partial\theta_{TT}$: $$\partial \theta_{TT} = \max\{\theta(\theta_{IN}, T, t) - \theta(\theta_{IN}, T_{RT}, t_0)\}$$ where θ_{IN} is the input angle, T is the temperature, T_{RT} is the room temperature, and t is the elapsed lifetime after calibration. t_0 represents the start of the sensor operating life. Note that the total drift $\partial\theta_{TT}$ is always defined with respect to the angle at room temperature. In this datasheet, T_{RT} is typically defined at 35°C unless stated otherwise. The total drift is valid for all angles along the full mechanical stroke. REVISION 1.0 - 25 MAY 2022 Page 18 of 49 #### 8.2. Performances Valid before EoL calibration and for all applications under nominal performances conditions described in chapter 5 and chapter 7. | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |---------------------------|---------------------------------|------|----------------------|----------------------|------|---| | Intrinsic Linearity Error | $L_{\text{E}_\Delta\text{BZ}}$ | -1.2 | | 1.2 | Deg. | | | Noise (11) | | | 0.40
0.19
0.20 | 0.50
0.24
0.25 | Deg. | Filter = 0, $\Delta B_z \ge 10 mT/mm$
Filter = 0, $\Delta B_z \ge 20 mT/mm$
Filter = 2, $\Delta B_z \ge 10 mT/mm$ | | Total Drift (12) | $\partial heta_{TT_XY}$ | -0.9 | | 0.9 | Deg. | Relative to 35°C | | Hysteresis (13) | | | | 0.1 | Deg. | $\Delta B_z \ge 10 mT$ | | Stray Field Immunity | | | | 0.35 | Deg. | $\Delta B_z \ge 20 mT/mm$
In accordance with ISO11452-8:2015, at 30°C with stray field of 4kA/m from any direction | Table 16 - Nominal magnetic performances ### 8.2.1. High-Temperature Extension Performances When the MLX90425 is exposed to high-temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the following magnetic performances apply. | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |---------------------------|---------------------------------|------|----------------------|----------------------|------|---| | Intrinsic Linearity Error | $L_{\text{E}_\Delta\text{BZ}}$ | -1.4 | | 1.4 | Deg. | | | Noise (11) | | | 0.48
0.24
0.24 | 0.60
0.30
0.30 | Deg. | Filter = 0, $\Delta B_z \ge 10 mT/mm$
Filter = 0, $\Delta B_z \ge 20 mT/mm$
Filter = 2, $\Delta B_z \ge 10 mT/mm$ | | Total Drift (12) | $\partial \theta_{TT_XY}$ | -1.1 | | 1.1 | Deg. | Relative to 35°C | |
Hysteresis (13) | | | | 0.1 | Deg. | $\Delta B_z \ge 10 mT/mm$ | | Stray Field Immunity | | | | 0.35 | Deg. | $\Delta B_z \ge 20 mT/mm$
In accordance with ISO11452-8:2015, at 30°C with stray field of 4kA/m from any direction | Table 17 – High-temperature magnetic performances 12 Verification done on new and aged devices in an ideal magnetic field. An additional application-specific error arises from the non-ideal magnet and mechanical tolerance drift. ^{11 ±3}σ ¹³ The MLX90425 has no IMC and therefore no intrinsic source of magnetic hysteresis # 9. Memory Specifications | Parameter | Symbol | Value | Unit | Note | |-----------|-----------------------|-------|------|---| | ROM | ROMsize | 16 | kB | 1-bit parity check per 32-bit word (single error detection) | | RAM | RAM _{size} | 512 | В | 1-bit parity check per 16-bit word (single error detection) | | NVRAM | NVRAM _{size} | 128 | В | 6-bit ECC per 16-bit word (single error correction, double error detection) | Table 18 - Memory specifications # 10. Output Protocol Description ### 10.1. Analog Output Description | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |-----------------------------|-----------|---------------|------|-------------|------------------|---| | Thermal analog output Drift | | | | 0.2 | $%V_{DD}$ | | | | | | 12 | | bit | 12-bit DAC (theoretical) | | Analog Output Resolution | R_{DAC} | -4 | | +4 | LSB12 | INL (before EoL calibration), output between 3-97%V _{DD} | | | | -1.5 | | 1.5 | LSB12 | DNL | | Ratiometric Error | | -0.05
-0.1 | | 0.05
0.1 | %V _{DD} | $4.5V \le V_{DD} \le 5.5V$ $V_{DDUVL} \le V_{DD} \le V_{PROVO}$ | Table 19 - Analog output accuracy ### 10.1.1. High-Temperature Extension Analog Output Description When the MLX90425 is exposed to high-temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the following analog output accuracy performances apply. | Parameter | Symbol | Min. | Тур. | Max. | Unit | Condition | |-----------------------------|--------|------|------|------|-----------|----------------------------| | Thermal analog output Drift | | | | 0.25 | $%V_{DD}$ | | | Ratiometric Error | | -0.1 | | 0.1 | $%V_{DD}$ | $4.5V \le V_{DD} \le 5.5V$ | Table 20 - High-temperature analog output accuracy **REVISION 1.0 - 25 MAY 2022** Page 20 of 49 ### 10.2. PWM Output Description ### 10.2.1. Definition Figure 9 - PWM signal definition | Parameter | Symbol | Test Conditions | |----------------------|---------------------------------------|--| | PWM period | T_{PWM} | Trigger level = 50% V _{DD} | | Rise time, Fall time | t _{rise} , t _{fall} | Between 10% and 90% of V_{DD} | | Jitter | ${\sf J}_{\sf DC}$ | $\pm 3\sigma$ for 1000 successive acquisitions with clamped output | | Duty Cycle | %DC | 100 * T _{ON} / T _{PWM} | Table 21 - PWM signal definition ### 10.2.2. PWM performances | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |-----------------------|-----------|-----|-------|------|-----------|---| | PWM period | T_{PWM} | 0.5 | | 10 | ms | Configurable through the T_FRAME parameter | | PWM Output Resolution | R_{PWM} | | 0.024 | | %DC/LSB12 | | | PWM %DC Jitter | J_{DC} | | | 0.03 | %DC | C_{OUT} = 10nF, R_L = 10k Ω
Push-pull, 2KHz | | PWM Period Jitter | J_{PWM} | | | 500 | ns | 2KHz, PWM_LOW_SR=0 | | PWM %DC thermal drift | | | 0.02 | 0.05 | %DC | $C_{OUT} = 10$ nF, $R_L = 10$ k Ω
Push-pull, 2KHz | REVISION 1.0 - 25 MAY 2022 Page 21 of 49 #### MLX90425 Triaxis® Position Sensor IC Datasheet | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |--------------------|------------------|-----|------|-----|------|---| | Rise/Fall Time PWM | T_{rise_fall} | 2.5 | 5.0 | 7.5 | μs | Fast slope ⁽¹⁴⁾ , $C_{OUT} \le 15nF^{(15)(16)}$
Push-pull or open-drain | | | T_{rise_fall} | 3.7 | 8 | 12 | μs | Slow slope $^{(14)}$, $C_{OUT} \le 22nF$
Push-pull or open-drain | Table 22 - PWM signal specifications ### 10.2.3. High-Temperature Extension PWM Performances When the MLX90425 is exposed to high-temperatures within the range [160, 180] °C and the supply voltage remains in the range [4.5, 5.5] V, the following PWM signal specifications apply. | Parameter | Symbol | Min | Тур | Max | Unit | Condition | |-----------------------|--------|-----|------|-----|------|---| | PWM %DC thermal drift | | | 0.05 | 0.1 | %DC | $C_{OUT} = 10$ nF, $R_L = 10$ k Ω
Push-pull, 2KHz | Table 23 - High-Temperature PWM Signal Specifications REVISION 1.0 - 25 MAY 2022 Page 22 of 49 ¹⁴ The fast and slow slope configuration can be controlled through the PWM_LOW_SR parameter (see Table 24 in chapter 11) ¹⁵ The 10nF output capacitor included in the SMP-3 package needs to be considered in the 15nF limit. ¹⁶ If the total load current at the output is high enough to trigger the current limit protection, then the slopes will be determined by the maximum output current drive of around 15mA (typical value). # 11. End-User Programmable Items | Parameter | PSF
value | Description | Default
Value | # bits | |----------------------------------|----------------------|--|------------------|--------| | | G | ENERAL CONFIGURATION | | | | USER_ID[0:5] | 98

103 | Reserved for end-user to program information for traceability. Not compatible with a used patch area | - | 8 | | WARM_TRIGGER_LONG | 93 | Add delay for PTC entry level | 0 | 1 | | MUPET_ADDRESS | 97 | Address to which the slave device will answer | 0 | 2 | | | | SENSOR FRONT-END | | | | GAINMIN | 2 | Minimum Virtual Gain | 0 | 6 | | GAINMAX | 3 | Maximum Virtual Gain | 48 | 7 | | GAINSATURATION | 4 | Enable gain saturation | 0 | 1 | | SENSING_MODE | 17 | 0: ΔBZ, angular rotary 360° stray field robust
1-3: Do not use | 0 | 2 | | | | FILTERING | | | | FILTER | 12 | FIR filter bandwidth selection 0: no filter (default) 1: FIR11 2: FIR1111 3: Do not use | 0 | 2 | | | LINEA | R TRANSFER CHARACTERISTIC | | | | 4POINTS | 11 | Enable 4 points PWL linearization | 0 | 1 | | CLAMPHIGH | 19 | High clamping value of angle output data | 50% | 12 | | CLAMPLOW | 14 | Low clamping value of angle output data | 50% | 12 | | CW | 15 | Magnet rotation direction | 0 | 1 | | DP | 10 | DSP discontinuity point | 0 | 13 | | LNRS0 | 22 | 4-pts - Slope coefficient before reference point A | - | 16 | | LNRAX
LNRBX
LNRCX
LNRDX | 25
35
46
58 | 4-pts - X Coordinate for reference points A,B,C,D | - | 16 | | LNRAY
LNRBY
LNRCY
LNRDY | 30
41
53
63 | 4-pts - Y Coordinate for reference points A,B,C,D | - | 16 | | LNRAS
LNRBS
LNRCS
LNRDS | 32
43
55
65 | 4-pts - Slope coefficient for reference points A,B,C,D | - | 16 | **REVISION 1.0 - 25 MAY 2022** ### MLX90425 Triaxis® Position Sensor IC Datasheet | Parameter | PSF
value | Description | Default
Value | # bits | |--|--|---|---|--------| | LNRY0 LNRY1 LNRY2 LNRY3 LNRY4 LNRY5 LNRY6 LNRY7 LNRY8 LNRY9 LNRY10 LNRY11 LNRY12 LNRY13 LNRY14 LNRY15 LNRY16 | 24
26
31
34
37
42
45
48
54
57
60
64
67
70
75
77 | 17-pts / 16 segments - Y coordinate point [0:16] | 10% 15% 20% 25% 30% 35% 40% 45% 50% 65% 70% 75% 80% 85% 90% | 12 | | OUTSLOPE_COLD | 81 | Slope coefficient at cold of the programmable temperature-dependent offset | 0 | 8 | | OUTSLOPE_HOT | 82 | Slope coefficient at hot of the programmable temperature-dependent offset | 0 | 8 | | USEROPTION_SCALING | 16 | Enable output scaling 2x after linearization | 0 | 1 | | WORK_RANGE | 104 | Working Range 17 points | 0 | 4 | | WORK_RANGE_GAIN | 7 | Post DSP Gain Stage | 16 | 8 | | | | DIAGNOSTICS | | | | COLD_SAFE_STARTUP_EN | 50 | Normal (0) or safe start-up (1) after power-
on reset | 0 | 1 | | DIAG_EN | 40 | Diagnostics global enable. Do not modify! | 1 | 1 | | DIAG_FIELDTOOHIGHTHRES | 69 | Field strength limit over which a fault is reported | 14 | 4 | | DIAG_FIELDTOOLOWTHRES | 62 | Field strength limit under which a fault is reported | 0 | 4 | | DIAGDEBOUNCE_STEPDOWN | 28 | Diagnostic debouncing step-down time used for recovery time setting | 1 | 2 | | DIAGDEBOUNCE_STEPUP | 29 | Diagnostic debouncing step-up time used for hold time setting | 1 | 2 | | DIAGDEBOUNCE_THRESH | 39 | Diagnostic debouncing threshold | 1 | 3 | | MEMLOCK | 52 | Enable NVRAM write protection | 0 | 2 | | OUT_DIAG_HIZ_TIME | 90 | Recovery time when a transient digital failure is detected. Maximum value is 28 (0x1C) Timeout = (5 + OUT_DIAG_HIZ_TIME) * 1ms | 15 | 5 | #### MLX90425 Triaxis® Position Sensor IC Datasheet | Parameter | PSF
value | Description | Default
Value | # bits | |-------------------------|--------------|---|------------------|--------| | PWM_DC_FAULT_BAND | 86 | PWM Upper or Lower band for analog fault reporting | 0 | 1 | | PWM_DC_FAULT_VAL | 85 | PWM Duty Cycle in case of analog fault | 0 | 3 | | PWM_DC_FIELDTOOLOW_BAND | 72 | PWM Upper or Lower band
for analog fault reporting in case of Field Strength Too Low | - | 1 | | PWM_DC_FIELDTOOLOW_VAL | 73 | PWM Duty Cycle in case of Field Strength Too
Low | - | 3 | | ROUT_LOW | 91 | Select output impedance for PTC communication | 1 | 1 | | DAC_REPORT_MODE_ANA | 21 | Defines the DAC state in analog-fault report
mode
Refer to the Safety Manual | 0 | 2 | | PWM_REPORT_MODE_ANA | 89 | Defines the PWM state in analog-fault report
mode
Refer to the Safety Manual | 0 | 1 | | | C | OUTPUT CONFIGURATION | | | | ABE_OUT_MODE | 92 | Output-amplifier mode selection: 0: Analog output (12-bit DAC) 1: Digital output with open-drain NMOS 2: Digital output with open-drain PMOS 3: Digital output with Push-Pull | 0 | 2 | | PROTOCOL | 94 | Selection of the output protocol and its corresponding timing mode: 0: Analog Output (continuous synchronous angle acquisition) 1: PWM Output (continuous asynchronous angle acquisition) | 0 | 1 | | T_FRAME | 84 | Output PWM period PWM period = 4us * T_FRAME | 250 | 12 | | ABE_CURR_LIMITER | 105 | Enables slow PWM slopes | 0 | 1 | | PWM_POL | 88 | Invert the PWM polarity | 0 | 1 | Table 24 - MLX90425 end-user programmable items table Performances described in this document are only achieved by adequate programming of the device. To ensure desired functionality, Melexis recommends to follow its programming guide and to contact its technical or application service. # 12. Description of End-User Programmable Items ### 12.1. Output modes and protocols The MLX90425 offers an analog output mode and a digital output mode using the PWM protocol. #### 12.1.1. Output Modes The parameter ABE_OUT_MODE defines the output stage mode (outside of fail-safe state) in application. | ABE_OUT_MODE | Description | Comments | |--------------|-------------------------------------|---| | 0 | Analog output (12-bit DAC) | Default | | 1 | Digital output with open-drain NMOS | Requires a pull-up resistor on the output | | 2 | Digital output with open-drain PMOS | Requires a pull-down resistor on the output | | 3 | Digital output with push-pull | | Table 25 - Output mode selection #### 12.1.2. Protocol The parameter PROTOCOL defined the measurement timings mode and the corresponding output protocol. | PROTOCOL | Description | |----------|---| | 0 | Continuous synchronous angle acquisition, analog output (DAC) | | 1 | Continuous asynchronous angle acquisition, PWM | Table 26 - Protocol selection #### 12.1.3. PWM Protocol If a digital output mode is selected, the output signal is a Pulse Width Modulation (PWM) digital signal. The PWM polarity is selected by the PWM_POL parameter: - PWM_POL = 0 for a low level at 100% - PWM_POL = 1 for a high level at 100% The PWM frequency is selected in the range [100, 2000] Hz by the T_FRAME parameter (12-bit value), defining the period time in the range [0.5, 10] ms. Minimum allowed value for T_FRAME is therefore 125 (0x7d). $$T_{PWM} = \frac{4}{10^6} \times T_F RAME$$ The PWM slope is configurable through the parameter PWM_LOW_SR. When set to 0, fast PWM slopes are selected. Conversely, when set to 1, slow PWM slopes are selected to reduce conducted EMC emissions on the output. PWM timings specifications in the scope of the MLX90425 can be found in section 6.5 while PWM signal characteristics such the rise time, fall times, jitter, can be found in section 10.2. REVISION 1.0 - 25 MAY 2022 Page 26 of 49 ### 12.2. Output Transfer Characteristic There are 2 different possibilities to define the transfer function (LNR) as specified in Table 27. - With 4 arbitrary points (defined by X and Y coordinates) and 5 slopes - With 17 equidistant points for which only the Y coordinates are defined | Output Transfer Characteristic | 4POINTS | |--------------------------------|---------| | 4 Arbitrary Points | 1 | | 17 Equidistant Points | 0 | Table 27 - Output transfer characteristic selection table #### 12.2.1. Clockwise Parameter The CW parameter defines the magnet rotation direction. | Rotation Direction | cw | |--------------------|----| | Clockwise | 1 | | Counter Clockwise | 0 | Table 28 - Magnet rotation selection table Counter clockwise is the defined by - the 1-4-5-8 pin order direction for the SOIC-8 package - the 1-2-3 pin order direction for the SMP-3 package Clockwise if defined by the reverse pin order. Refer to the package drawings in chapter 17. #### 12.2.2. Discontinuity Point (or Zero Degree Point) The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the new origin at any location of the trigonometric circle. The DP is used as reference for all angular measurements. New Angle = Angle $$-$$ DP The DP parameter is encoded using a signed 13-bit format (two's complement). The new angle and the input angle are expressed in LSB12. Figure 10 - Discontinuity point positioning (for CW=0) REVISION 1.0 - 25 MAY 2022 Page 27 of 49 #### 12.2.3. 4-Pts LNR Parameters The LNR parameters, together with the clamping values, define the transfer function between the internal digital representation of the angle and the output signal. The shape of the MLX90425 four points transfer function from the internal angle to the output value is described in the following figure (Figure 11). Seven segments can be programmed using points and slopes. The segments beyond the clamping levels are necessarily flat. Two to six calibration points are available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or more calibration point will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time. Figure 11 - 4pts linearization parameters description #### 12.2.4. 17-Pts LNR Parameters The LNR parameters, together with the clamping values, define the transfer function between the internal digital representation of the angle and the output signal. The shape of the MLX90425 seventeen points transfer function from the internal angle to the output value is described in the Figure 12. In the 17-Pts mode, the output transfer characteristic is Piecewise Linear (PWL). **REVISION 1.0 - 25 MAY 2022** Page 28 of 49 Figure 12 - 17pts linearization parameters description All the Y-coordinates can be programmed from -50% up to +150% to allow clamping in the middle of one segment (like on the figure), but the output value is limited to CLAMPLOW and CLAMPHIGH values. Between two consecutive points, the output characteristic is interpolated. #### 12.2.5. WORK RANGE Parameter for Angle Range Selection The parameter WORK_RANGE determines the input range on which the 16 segments are uniformly spread. This parameter is provided for compatibility with former versions of Melexis Triaxis sensors. For full featured working range selection, see section 12.2.6. For WORK_RANGE parameter, following table applies. | WORK_RANGE | Range | Δx 17pts | |------------|--------|----------| | 0 | 360.0° | 22.5° | | 1 | 320.0° | 20.0° | | 2 | 288.0° | 18.0° | | 3 | 261.8° | 16.4° | | 4 | 240.0° | 15.0° | | 5 | 221.5° | 13.8° | | 6 | 205.7° | 12.9° | | 7 | 192.0° | 12.0° | | WORK_RANGE | Range | Δx 17pts | |------------|--------|----------| | 8 | 180.0° | 11.3° | | 9 | 144.0° | 9.0° | | 10 | 120.0° | 7.5° | | 11 | 102.9° | 6.4° | | 12 | 90.0° | 5.6° | | 13 | 80.0° | 5.0° | | 14 | 72.0° | 4.5° | | 15 | 65.5° | 4.1° | Table 29 - Work range for 360° periodicity Outside of the selected range, the output will remain at clamping levels. REVISION 1.0 - 25 MAY 2022 Page 29 of 49 ### 12.2.6. WORK_RANGE_GAIN Parameter for Angle Range Selection Alternatively, the range for the angle can be selected using the WORK_RANGE_GAIN parameter, which applies a fixed gain to the transfer characteristics. WORK_RANGE_GAIN is coded on 8 bits where the 4 MSb defines the integer part and the 4 LSb the fractional part (in power of twos). Therefore, the following equation applies to define the angle range w: $$w = \frac{16 * 360}{WORK \ RANGE \ GAIN}$$ Both minimal and maximal angles are then defined by: $$\theta_{min} = \frac{360 - w}{2}$$; $\theta_{max} = \frac{360 + w}{2}$ where θ_{min} corresponds to the angle yielding 0% output and θ_{max} the angle giving a 100% output. Using WORK_RANGE_GAIN parameter, the anchor point is kept at 180 and the range is symmetrically set around this value. It creates a zoom-in of the angle around this point. The following table gives some values as examples. | WORK_RANGE_GAIN | Factor | Range (w) | θmin | θmax | Δx 17pts | |-----------------|--------|-----------|--------|--------|----------| | 0x10 | 1 | 360° | 0° | 360° | 22.5° | | 0x20 | 2 | 180° | 90° | 270° | 11.3° | | 0x40 | 4 | 90° | 135° | 225° | 5.6° | | 0xFF | 15.94 | 22.6° | 168.7° | 191.3° | 1.41° | Table 30 - Working range defined by WORK_RANGE_GAIN parameter Outside of the working range, the output will remain at clamping levels. #### 12.2.7. Thermal OUTSLOPE Offset Correction Two parameters, OUTSLOPE_HOT and OUTSLOPE_COLD, are used to add a temperature dependent offset. In the MLX90425, this offset is applied to the angle just before the clamping function. The offset shift is computed using the device internal linearized temperature as depicted in the figure below (Figure 13). Figure 13 - Temperature compensated offset The thermal offset can be added or subtracted to the output, before the clamping. The span of this offset is $\pm 6.25\%$ of the full output scale for a temperature difference of 128°C. Two thermal coefficients are defined depending on whether the linearized temperature is below (OUTSLOPE_COLD) or above (OUTSLOPE_HOT) the 35°C anchor point. If the device internal temperature is higher than 35°C then: Compensated Angle = Angle $$-\Delta T \cdot \frac{\text{OUTSLOPE_HOT}}{64}$$ If the device internal temperature is lower than 35°C then:
Compensated Angle = Angle $$-\Delta T \cdot \frac{\text{OUTSLOPE_COLD}}{64}$$ Each of the two thermal coefficients is encoded using an 8-bit two's complement signed format. The thermally compensated angle and the input angle are expressed in LSB12, while the linearized temperature difference ΔT is expressed in °C. #### 12.2.8. Clamping Parameters The clamping levels are two independent values to limit the output voltage range in normal operation. The CLAMPLOW parameter adjusts the minimum output level. The CLAMPHIGH parameter sets the maximum output level. Both parameters have 12 bits of adjustment and are available for all LNR modes. The values are encoded in fractional code, from 0% to 100% #### 12.3. Sensor Front-End The SENSING_MODE parameter defines which sensing mode and fields are used to calculate the angle. The different possibilities are described in the tables below. This 2-bit value selects the first (B1) and second (B2) field components according to the Table 32 content. | Parameter | Value | |----------------|--------| | SENSING_MODE | [0:2] | | GAINMIN | [0:47] | | GAINMAX (17) | [0:48] | | GAINSATURATION | [0:1] | Table 31 - Sensing Mode and Front-End Configuration | SENSING_MODE | B1 | В2 | Motion | |--------------|-------------------------------|-------------------------------|---| | 0 | $\frac{\Delta B_Z}{\Delta X}$ | $\frac{\Delta B_Z}{\Delta Y}$ | ΔBZ, angular rotary 360° stray field robust | | 1, 2, 3 | N/A | N/A | Do not use | Table 32 - Sensing mode description GAINMIN and GAINMAX define the thresholds of the gain monitor diagnostic. Whenever the virtual gain is strictly outside of these limits, the diagnostic reports a fault. When GAINMIN = 0 or GAINMAX > 47, the corresponding fault reporting is disabled. If GAINSATURATION is set, then the virtual gain is held between GAINMIN and GAINMAX values. The saturation of the gain applies before the diagnostic is checked. Therefore, the gain monitor diagnostic can be considered inactive. ### 12.4. Filtering The MLX90425 features 2 low-pass FIR filter modes controlled with FILTER = 1...2. FILTER = 0 corresponds to no filtering. The transfer function is described by: $$y_n = \frac{1}{\sum_{i=0}^{j} a_i} \sum_{i=0}^{j} a_i x_{n-i}$$ This filter characteristic is given in the Table 33. | FILTER | 0 | 1 | 2 | |----------------------------|-----------|----------------|------------------| | Туре | Disable | Finite Impulse | e Response (FIR) | | Coefficients ai | 1 | 11 | 1111 | | Title | No filter | ExtraLight | Light | | DSP cycles (j= nb of taps) | 1 | 2 | 4 | | Efficiency RMS (dB) | 0 | 3.0 | 6.0 | Table 33 - FIR filter characteristics REVISION 1.0 - 25 MAY 2022 ¹⁷ A value of 48 (0x30) or above disables the diagnostic. ### 12.5. Programmable Diagnostics Settings #### 12.5.1. Diagnostics Global Enable DIAG_EN should be kept to its default value (1) to retain all functional safety abilities of the MLX90425. This feature shall not be disabled. #### 12.5.2. Diagnostic Debouncer A debouncing algorithm is available for analog diagnostic reporting. Enabling this debouncer will increase the FHTI of the device. Therefore, Melexis recommends keeping the debouncing of analog faults off by not modifying below described values. The factory default settings mentioned in chapter 11 should be used. | Parameter | Description | |-----------------------|--| | DIAGDEBOUNCE_STEPDOWN | Decrement values for debouncer counter. The counter is decremented once per evaluation cycle when no analog fault is detected. | | DIAGDEBOUNCE_STEPUP | Increment value for debouncer counter. The counter is incremented once per evaluation cycle when an analog fault is detected. | | DIAGDEBOUNCE_THRESH | Threshold for debouncer counter to enter diagnostic mode. When set to 0, debouncing is off and analog faults are reported immediately after detection. | Table 34 - Diagnostic debouncing parameters Once an analog monitor detects an error, it takes control of the debouncing counter. This counter will be incremented by DIAGDEBOUNCE_STEPUP value each time this specific monitor is evaluated and the error is still present. When the debouncing counter reaches the value defined by DIAGDEBOUNCE_THRESH, an error is reported on the error channel, and the debouncing counter stays clamped to this DEBOUNCE_THRESH value (see section 12.5.6 for PWM error reporting). Once the error disappears, each time its monitor is evaluated, the debouncing counter is decremented by DIAGDEBOUNCE_STEPDOWN value. When the debouncing counter reaches zero, the error disappears from the reporting channel and the debouncing counter is released. To implement proper reporting times, one should refer to the FHTI, see chapter 13.3. The reporting and recovery time are defined in the table below (valid for DIAGDEBOUNCE_THRESH > 0). | Parameter | Min | Max | |----------------|---|---| | Reporting Time | $DCT \cdot \left(\left\lceil \frac{THRESH}{STEPUP} \right\rceil - 1 \right)$ | $DCT \cdot \left(\left\lceil \frac{THRESH}{STEPUP} \right\rceil \right)$ | | Recovery Time | $DCT \cdot \left(\left\lceil \frac{THRESH}{STEPDOWN} \right\rceil \right)$ | $DCT \cdot \left(\left\lceil \frac{THRESH}{STEPDOWN} \right\rceil + 1 \right)$ | | | $\left\lceil \frac{x}{y} \right\rceil$ | is the ceiling function of x divided by y | Table 35 - Diagnostic reporting and recovery times REVISION 1.0 - 25 MAY 2022 Page 33 of 49 #### 12.5.3. Over/Under Temperature Diagnostic DIAG_TEMP_THR_HIGH defines the threshold for over temperature detection and is compared to the linearized value of the temperature sensor T_{LIN} . DIAG_TEMP_THR_LOW defines the threshold for under temperature detection and is compared to the linearized value of the temperature sensor T_{LIN} . One can get the physical temperature TPHY of the die from TLIN using following formula $$T_{PHY} = \frac{T_{LIN}}{8} - 73.15$$ T_{PHY} is expressed in °C and the T_{LIN} is expressed in LSB12. Unlike T_{LIN} , DIAG_TEMP_THR_LOW and DIAG_TEMP_THR_HIGH are encoded using 8-bit unsigned values. Therefore, a factor of 16 must be considered when comparing either threshold to T_{LIN} . The following table summarizes the characteristics of the linearized temperature sensor and the encoding of the temperature monitor thresholds. | Parameter | Symbol | Min | Тур. | Max | Unit | Condition | |---|------------------------|-----|-------|-----|-------|-----------------------------------| | T _{LIN} resolution | Res_{TLIN} | - | 0.125 | - | °C | 12-bit range | | T _{LIN} refresh rate | F _{S,TLIN} | - | 200 | - | Hz | | | T _{LIN} linearity error | T_{LinErr} | -10 | - | 10 | °C | from -40 to 160°C | | Low temperature threshold | DIAG_TEMP
_THR_LOW | - | 8 | - | LSB12 | Fixed value, corresponds to -57°C | | High temperature threshold | DIAG_TEMP
_THR_HIGH | - | 136 | - | LSB12 | Fixed value, corresponds to 199°C | | High/low temperature threshold resolution | Res _{Tthr} | - | 2 | - | °C | 12-bit range | Table 36 - Linearized temperature sensor characteristics #### 12.5.4. High-Temperature Extension Over-Temperature Diagnostic When operating at a junction temperature up to 175°C, the MLX90426 retains all its diagnostic features. There's no risk of false-positive. Above this temperature, the overheating monitor enters its detection range. The default configuration of this monitor reports a typical junction temperature of 199°C. Due to temperature sensor tolerances and noise at high temperatures, Melexis recommends to increase the safety margin above 15°C. Consequently, if the sensor operates up to 190°C of junction temperature, Melexis cannot guarantee that the overheating monitor will not report an error and recommends to adapt the overheating monitor threshold to 207°C. This can be done by reprogramming a custom device configuration (patch) shown in Table 14 below. Contact a Melexis representative for further information. | Parameter | Patch Content | |----------------|---------------| | PATCH2_ADDRESS | 0x396A | | PATCH2_I | 0x008C | Table 37 - High-temperature extension patch to prevent false-positive on overheating monitor REVISION 1.0 - 25 MAY 2022 Page 34 of 49 #### 12.5.5. Field Strength and Field Monitoring Diagnostics Field Strength is compensated over the operating temperature range and represents a reliable image of the differential field intensity generated by the magnet. The lower and upper limits for this diagnostic are set with the parameters described in the following table. Both parameters are encoded on four bits. They start at the respective "min" value and increase by "step" with each additional LSB. | Parameter | Min | Max | Step | Unit | |-----------------------------|-----|-----|------|-------| | DIAG_FIELDTOOLOWTHRES | 0 | 15 | 1 | mT/mm | | DIAG_FIELDTOOHIGHTHRES (18) | 100 | 310 | 15 | mT/mm | Table 38 – Field Monitor Diagnostic limits #### 12.5.6. Analog Mode Diagnostic Reporting When in analog mode, a digital fault is reported by configuring the OUT pin in high-impedance. Conversely, an analog fault is reported by pulling the OUT pin to the V_{satD lopp} low level (refer to Table 9). This behavior is only valid for the factory default settings. Other reporting behaviors and further information on the safe-states are available in the safety manual of the MLX90425. #### 12.5.7. PWM Mode Diagnostic Reporting When in PWM mode, a digital fault is reported by configuring the OUT pin in high-impedance. When reporting an analog fault, the parameter PWM_DC_FAULT_BAND and PWM_DC_FAULT_VAL can be used to specify the 12-bit output level. The parameter PWM_DC_FAULT_BAND is used to
define the BAND within which the output level is set. | PWM_DC_FAULT_BAND | Description | |-------------------|--| | 0 | The Low band [0:CLAMPLOW] is selected | | 1 | The High band [CLAMPHIGH:4095] is selected | Table 39 - Output level band selection in case of an analog fault The parameter PWM_DC_FAULT_VAL selects a value in the specified band $$Low \ band \ output \ level = PWM_DC_FAULT_VAL \cdot \left(\frac{CLAMPLOW}{8}\right)$$ $$High \ band \ output \ level = 4095 - PWM_DC_FAULT_VAL \cdot \left(\frac{CLAMPHIGH}{8}\right)$$ Correspondingly, the parameters PWM_DC_FIELDTOOLOW_BAND and PWM_DC_FIELDTOOLOW_VAL can be used to specify the 12-bit output level in case of a field strength too low event. This reporting behavior is only valid for the factory default settings, with the exception of the aforementioned parameters in this section. Other reporting behaviors and further information on the safe-states are available in the safety manual of the MLX90425. ¹⁸ When this parameter is set to the maximum value of 15 (0xF), the FIELD_TOO_HIGH diagnostic is disabled (see Table 15) # 13. Functional Safety ### 13.1. Safety Manual The safety manual, available upon request, contains the necessary information to integrate the MLX90425 component in a safety related item, as a Safety Element Out-of-Context (SEooC). In particular, it includes: - The description of the Product Development lifecycle tailored for the Safety Element. - An extract of the Technical Safety concept. - The description of Assumptions-of-Use (AoU) of the element with respect to its intended use, including: - assumptions on the device safe state; - assumptions on fault tolerant time interval and multiple-point faults detection interval; - assumptions on the context, including its external interfaces; - The description of safety analysis results (at the device level, to be used for the system integration), HW architectural metrics and description of dependent failures initiators. - The description and the result of the functional safety assessment process; list of confirmation measures and description of the independency level. ### 13.2. Safety Mechanisms The MLX90425 provides numerous self-diagnostic features (safety mechanisms). Those features increase the robustness of the IC functionality either by preventing the IC from providing an erroneous output signal or by reporting the failure. # Legend ● High coverage O Medium coverage ANA: Analog hardware failure reporting mode, described in the safety manual High-Z: A special failure reporting mode where the output is set in high-impedance mode (no HW fail-safe mode/timeout, no SW safe startup) DIG: Digital hardware failure reporting mode, described in the safety manual At Startup: A HW fault present at time zero is detected before the first frame is transmitted. DIAG_EN: This safety mechanism can be disabled by setting DIAG_EN = 0 (see chapter 12.5.1). This option should not be used in application mode! Table 40 - Self diagnostic legend REVISION 1.0 - 25 MAY 2022 Page 36 of 49 | Category and safety mechanism name | Front-
end | ADC | DSP | Back-
end | Support.
Func. | Module &
Package | Reporting
mode | At
startup | DIAG
EN | |---|---------------|-----|-----|--------------|-------------------|---------------------|-------------------|---------------|------------| | Signal-conditioning Diagnostic | • | • | 0 | | | • | | | | | Magnetic Signal Conditioning Voltage Test Pattern | • | 0 | 0 | | | | ANA | NO | • | | Magnetic Signal Conditioning Rough Offset Clipping check | • | | 0 | | | | ANA | NO | • | | Magnetic Signal Conditioning Gain Monitor & Clamping | • | | 0 | | | • | ANA | YES | • | | Mag. Sig. Cond. Failure Control by the Chopping Technique | • | | | | | | n/a | n/a | | | A/D Converter Test Pattern | | • | | | | | ANA | NO | • | | ADC Conversion errors & Overflow Errors | | • | | | | | ANA | YES | • | | ADC Common Mode Monitor | | • | | | | | n/a | YES | | | Flux Monitor (Rotary mode) | • | 0 | | | | • | ANA | NO | • | **REVISION 1.0 - 25 MAY 2022** Page 37 of 49 Datasheet | Category and safety mechanism name | Front-
end | ADC | DSP | Back-
end | Support.
Func. | Module &
Package | Reporting
mode | At
startup | DIAG
EN | |---|---------------|-----|-----|--------------|-------------------|---------------------|-------------------|---------------|------------| | Digital-circuit Diagnostic | | • | • | | 0 | | | | | | RAM Parity, 1-bit per 16-bit word, ISO D.2.5.2 | | | • | | | | DIG | YES | | | ROM Parity, 1-bit per 32-bit word, ISO D.2.5.2 | | | • | | | | DIG | YES | | | NVRAM 16-bit signature (run-time) ISO D.2.4.3, by means of SW CRC-CCITT16 | | | • | | | | DIG | NO | | | NVRAM Double Error Detection ECC ISO D.2.4.1 | | | • | | | | DIG | YES | | | Logical Monitoring of Program Sequence ISO D.2.9.3 via Watchdog "IWD" (CPU clock) ISO D.2.9.2 | | | • | | 0 | | DIG | NO | • | | Watchdog "AWD" (separate clock) ISO D2.9.1 | | | • | | 0 | | DIG | YES | | | CPU Errors "Invalid Address", "Wrong opcode" | | | • | | 0 | | DIG | YES | | | ADC Interface Checksum | | • | | | | | DIG | NO | • | | ADC Internal Errors | | 0 | | | | | DIG | YES | | | DSP Test Pattern (atan2) | | | • | | 0 | | DIG | NO | • | | Critical Ports Monitoring | | | • | | | | DIG | NO | • | | ADC Data Adder Test - Range Check and Buffer alignment | | 0 | | | | | DIG | YES | • | | ADC Data Adder Error | | 0 | | | | | DIG | YES | | | DSP Overflow | 0 | 0 | • | | | | ANA | NO | • | Datasheet | Category and safety mechanism name | Front-
end | ADC | DSP | Back-
end | Support.
Func. | Module &
Package | Reporting
mode | At
startup | DIAG
EN | |--|---------------|-----|-----|--------------|-------------------|---------------------|-------------------|---------------|------------| | System-level Diagnostic | | | | | • | • | | | | | Supply Voltage Monitors (all supply domains except VDD_OV & POR) | | | | | • | • | ANA | YES | • | | External Supply Over-voltage Monitor | | | | | • | • | High-Z | YES | | | Digital Supply Under-voltage Monitor (Power-on Reset) | | | | | • | • | High-Z | YES | | | Overheating Monitor | 0 | 0 | 0 | 0 | 0 | • | ANA | YES | • | | Warning/Reporting Mechanisms | | | | | | | | | | | HW Error Controller | | | • | • | • | | DIG | n/a | | | HW Fail-safe mode with timeout | | | • | • | • | | High-Z | n/a | | | Analog-type Error management | • | • | | | • | | ANA | n/a | | | Safe start-up mode | | | • | | • | | DIG | n/a | | | Mechanisms executed at start-up only | | | | | | | | | | | RAM March-C HW Test at start-up | | | • | | • | | DIG | YES | | Table 41 - MLX90425 list of self-diagnostics with characteristics ## 13.3. Fault Handling Time Interval The Fault handling Time Interval (FHTI) is the time interval between the start of the first frame with invalid position value without notice, and the end of the last frame preceding a fail-safe state of the IC. The following table provides the worst-case FHTI for both an analog fault and a digital fault in MLX90425. | Case | FHTI | Comment | |---------------|---|---| | Analog Fault | DCT _{ANA} + 2 T _{frame} | Refer to section 6.1 for the DCT _{ANA} value In analog mode, T_{frame} = 0ms In PWM mode, T_{frame} = T_{PWM} (see sections 10.2.2 and 12.1.3) | | Digital Fault | DCT_{DIG} | Refer to section 6.1 for the DCT _{DIG} value | Table 42 - Worst-case FHTI The FHTI values provided here are valid only for the default factory settings. A full list of timings is available in the safety manual of the MLX90425, including cycle times, execution times and reporting times for every implemented safety mechanism. # 14. Recommended Application Diagrams ## 14.1. Wiring with the MLX90425 in SOIC-8 Package Figure 14 - Recommended wiring for the MLX90425 in SOIC-8 package | Component | Min | Тур. | Max | Remark | |----------------------------------|--------|--------|--------|------------------------| | C ₁ | - | 220 nF | - | | | $C_2(C_L)$ | 10 nF | 10 nF | 100 nF | Analog output | | C ₂ (C _L) | 4.7 nF | 4.7 nF | 22 nF | PWM output | | C ₃ | - | 100 nF | 220 nF | | | C_4 | - | - | 1 nF | | | C ₅ | - | - | 1 nF | Optional, for improved | | R_1 | - | - | 10 Ω | EMC robustness | | R_2 | - | - | - | | Table 43 - Recommended values for the MLX90425 in SOIC-8 Package For best EMC performance, C_1 , C_2 and C_3 with typical values need to be placed as close as possible to the IC. To further improve EMC robustness, a 1nF capacitor can be placed close to the connector (C_4 , C_5) and a 10 Ohm resistor added in series with the supply line (R_1). # 14.2. Wiring with the MLX90425 in SMP-3 Package (built-in capacitors) Figure 15 - Internal wiring of the MLX90425 in SMP-3 | Component | Value | Remark | |-----------|-------|----------------------| | C1 | 220nF | Supply capacitor | | C2 | 100nF | Decoupling capacitor | | C3 | 10nF | Output capacitor | Table 44 - SMP-3 capacitors configuration **REVISION 1.0 - 25 MAY 2022** Page 42 of 49 Datasheet # 15. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry. For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (http://www.melexis.com/en/quality-environment/soldering) For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile, etc.), additional classification and qualification tests have to be agreed upon with Melexis. For package technology embedding trim and form post-delivery capability, Melexis recommends consulting the dedicated trim & form recommendation application note: "Lead Trimming and Forming Recommendations" (http://www.melexis.com/en/documents/documentation/application-notes/lead-trimming-and-forming-recommendations). Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment. ## 16. ESD Precautions Electronic semiconductor products are sensitive to electrostatic discharges (ESD). Always observe electrostatic discharge control procedures whenever handling semiconductor products. # 17. Package Information ## 17.1. SOIC-8- Package Information #### 17.1.1. SOIC-8- Package Dimensions #### NOTES: - All dimensions are in millimeters (angles in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include the control of o - ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). - *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Figure 16 - SOIC-8 package outline drawing ## 17.1.2. SOIC-8- Pinout and Marking Figure 17 - SOIC-8 pinout and marking #### 17.1.3. SOIC-8- Sensitive Spot Positioning Figure 18 - SOIC-8 sensitive spot position ## 17.1.4. SOIC-8- Angle Detection $[\]ensuremath{^{*}}$ No absolute reference for the angular information. Figure 19 - SOIC-8 angle detection The MLX90425 is an absolute angular position sensor, but the linearity error (See section 8) does not include the error linked to the absolute reference 0 Deg. This reference can be fixed in the application through the discontinuity point. **REVISION 1.0 - 25 MAY 2022** Page 45 of 49 ## 17.2. SMP-3- Package Information ### 17.2.1. SMP-3- Package Outline Dimension (POD) | Dimension | MIN. | NOM. | MAX. | Dimension | MIN. | NOM. | MAX. | |-----------|-------|-----------|-------|-----------|-----------|-----------|--------| | Α | 1.550 | 1.600 | 1.650 | L | 13.870 | 14.000 | 14.130 | | A1 | 0.250 | 0.290 | 0.330 | L1 | 7.870 | 8.000 | 8.130 | | B1 | 0.235 | 0.300 | 0.365 | L2 | -0.250 | 0.000 | 0.250 | | B2 | | 0.33 REF | | L3 | 11.375 | 11.525 | 11.675 | | С | 0.250 | 0.280 | 0.310 | I | 0.525 | 0.600 | 0.675 | | D | 6.420 | 6.500 | 6.580 | b | 0.770 | 0.820 | 0.870 | | D1 | | 0.450 REF | = | e1 | 2.500 BSC | | | | Е | 5.920 | 6.000 | 6.080 | е | : | 2.500 BSC | | | f | 0.000 | | 0.150 | Θ | 8° | 10° | 12° | | Н | 7.800 | 7.900 | 8.000 | 91 | 8° | 10° | 12° | | H1 | 0.900 | 1.050 | 1.200 | Θ2 | 18° | 20° | 22° | | H2 | 0.975 | 1.050 | 1.125 | øΖ | 0.900 | 1.000 | 1.100 | | НЗ | 2.380 | 2.475 | 2.570 | z | 0.025 | | 0.150 | | H4 | 0.635 | 0.730 | 0.825 | T1 | 0.870 | 1.000 | 1.130 | | H5 | 0.605 | 0.700 | 0.795 | T2 | 0.225 | 0.300 | 0.375 | | H6 | 2.875 | 2.950 | 3.025 | | | | | | H7 | | 0.475 REF | | | | | | | Н8 | 0.875 | 0.950 | 1.025 | | | | | | H9 | 0.410 | 0.525 | 0.640 | | | | | | H10 | 3.835 | 3.950 | 4.065 | | | | | | H11 | 3.400 | 3.550 | 3.700 | | | | | H12 5.900 6.050 6.200 NOTES: DIMENSIONS ARE IN MILLIMETER UNLESS NOTED OTHERWISE. ACKAGE WIDTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15MM PER END. PACKAGE LENGTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25MM PER SIDE. ⚠ THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. PACKAGE WIDTH AND LENGTH ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH. - 4. PLATING SPECS: MATTED TIN, ELECTROPLATED, 12 \pm 5 MICROMETER (μm) THICKNESS - 5. ALL "EARS" ARE CONNECTED TO ELECTRIC GROUND. Figure 20 - SMP-3 package outline drawing **REVISION 1.0 - 25 MAY 2022** Page 46 of 49 #### 17.2.2. SMP-3- Marking Figure 21 - SMP-3 marking ### 17.2.3. SMP-3- Sensitive Spot Positioning Figure 22 - SMP-3 sensitive spot position #### 17.2.4. SMP-3- Angle Detection * Not an absolute reference for the angular information Figure 23 - SMP-3 angle detection # 17.3. Packages Thermal Performances The table below describes the thermal behavior of available packages following JEDEC EIA/JESD 51.X standard. | Package | Junction to case - θjc | Junction to ambient -
θja (JEDEC 1s2p board) | | |---------|------------------------|---|-------------------------| | SOIC-8 | 38.8 K/W | 112 K/W | 153 K/W | | SMP-3 | 34.4 K/W | - | 206 K/W ⁽¹⁹⁾ | Table 45 – Standard packages thermal performances **REVISION 1.0 - 25 MAY 2022** Page 48 of 49 ¹⁹ PCB-less solutions have been evaluated in a typical application case. Values for these packages are given as informative. Datasheet ## 18. Contact For the latest version of this document, go to our website at www.melexis.com/MLX90425. For additional information, please get in touch, http://www.melexis.com/sales-contact. ## 19. Disclaimer The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer. This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information. Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose. This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of: - 1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons; - 2. civil firearms, including spare parts or ammunition for such arms; - 3. defense related products, or other material for military use or for law enforcement; - 4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation. No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights. If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such
purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document. This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium. The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed. Melexis © - No part of this document may be reproduced without the prior written consent of Melexis. (2022) IATF 16949 and ISO 14001 Certified **REVISION 1.0 - 25 MAY 2022** Page 49 of 49