Surface Mount Fuses Datasheet

449 Series NANO2[®] > Slo-Blo[®]

ROHS BHF : SUS CE

Additional Information

Agency Approvals

Agency	Agency File Number	Ampere Range
c 🔊 us	E10480	0.375A - 5A
PS	NBK030205-E10480B	1A - 5A
UK	N/A	0.375A - 5A
(€	N/A	0.375A - 5A

Electrical Characteristics for Series

% of Ampere Rating	Opening Time
100%	4 hours, Minimum
200%	1 sec., Min.; 60 sec., Max.
300%	0.2 sec., Min.; 3 sec., Max
800%	0.002 sec., Min.; 0.1 sec., Max.

Description

The lead free NANO2® Slo-Blo® fuse is RoHS compliant, Halogen Free and 100% lead-free. This product is fully compatible with lead-free solder alloys and higher temperature profiles associated with lead-free assembly. The Slo-Blo® fuse design has enhanced inrush withstand characteristics over the NANO2® Fast-Acting Fuse. The unique time delay feature of this fuse design helps solve the problem of nuisance "opening" by accommodating inrush currents that normally cause a fast-acting fuse to open.

Features & Benefits

- Lead-free, Halogen free and RoHS compliant
- Small size
- Wide range of current ratings
 Conforms to DENAN's available
- Wide operating temperature range
- UL Recognized to UL/CSA/ NMX UL 248-1 and UL/CSA/ NMX UL 248-14
- Appendix 3

Applications

Secondary protection for space constrained applications:

- Notebook PC
- LCD/PDPTV
- LCD monitor
- LCD/PDP panel
- LCD backlight inverter
- Portable DVD player
- Power supply
- Networking
- PC server
- Cooling fan system

- Storage system
 - Telecom system
 - Wireless basestation
 - White goods
- Game console
- Office Automation equipment
- Battery charging circuit protection
- Industrial equipment

Electrical Specifications by Item

Ampere Rating Amp		Мах	Interrupting	Nominal Cold	Nominal Melting	Agency Approvals			
(A)	Code	Voltage Rating (V)	Rating	' C Resistance		UK CA	Œ	c RU ° us	S ≥ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2
0.375	.375	125		1.5130	0.088	х	х	х	-
0.500	.500	125		0.7633	0.258	х	х	х	-
0.750	.750	125		0.4080	0.847	х	х	х	-
1.00	001.	125	50A @125 VAC/VDC PSE: 100A @100 VAC	0.2516	1.76	х	х	х	х
1.50	01.5	125		0.1186	4.70	х	х	х	х
2.00	002.	125		0.0708	6.76	х	х	Х	х
2.50	02.5	125		0.0400	13.18	х	х	Х	х
3.00	003.	125		0.0352	19.55	х	х	х	х
3.50	03.5	125		0.0261	32.70	х	х	х	х
4.00	004.	125		0.0227	40.80	х	х	х	х
5.00	005.	125		0.0171	59.59	х	х	Х	х
4.00 5.00	004. 005.	125		0.0227	40.80	х	х	x	

Notes - I²t calculated at 8ms. Resistance is measured at 10% of rated current. 25°C

449 Series NAN02[®] > Slo-Blo[®]

Temperature Re-rating Curve

Note: 1. Rerating depicted in this curve is in addition to the standard derating of 25% for continuous operation.

Reflow Condition			Pb – Free assembly	
Pre Heat	- Temperature Min (T _{s(min)})		150°C	
	- Temperature Max (T _{s(max)})		200°C	
	- Time (Min to Max) (t _s)		60 – 180 secs	
Average ramp up rate (Liquidus Temp (T $_{\!$			3°C/second max.	
T _{S(max)} to T _L - Ramp-up Rate			3°C/second max.	
Reflow	- Temperature (T _L) (Liquidus)		217°C	
	- Temperature (t _L)		60 – 150 seconds	
Peak Temperature (T _P)			260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)			20 – 40 seconds	
Ramp-down Rate			5°C/second max.	
Time 25°C to peak Temperature (T_p)			8 minutes max.	
Do not exceed		260°C		
Wave Soldering Parameters260°C Peak Temperature, 3 seconds max.				

Soldering Parameters

Surface Mount Fuses Datasheet

Product Characteristics

Materials	Body: Ceramic Terminations: Gold-plated Caps		
Product Marking	Brand, Amperage Rating		
Operating Temperature	-55°C to 125°C		
Moisture Sensitivity Level	Level 1, J-STD-020		
Solderability	MIL-STD-202, Method 208		
Insulation Resistance (after Opening)	MIL-STD-202, Method 302, Test Condition A (10,000 ohms minimum)		

Thermal Shock	MIL-STD-202, Method 107, Test Condition B, 5 cycles, -65°C to 125°C, 15 minutes @ each extreme
Mechanical Shock	MIL-STD-202, Method 213, Test I: Deenergized. 100G's pk amplitude, sawtooth wave 6ms duration, 3 cycles XYZ+xyz = 18 shocks
Vibration	MIL-STD-202, Method 201: 0.03" amplitude, 10-55 Hz in 1 min. 2hrs each XYZ=6hrs
Moisture Resistance	MIL-STD-202, Method 106, 10 cycles
Salt Spray	MIL-STD-202, Method 101, Test Condition B (48hrs)
Resistance to Soldering Heat	MIL-STD-202, Method 210, Test condition B (10 sec at 260°C)

Dimensions mm (inches)

Part Numbering System

0.375 Amp product is 0449<u>.375</u>MR (1 amp product shown above).

Packaging

Packaging Option	Packaging Specification	Quantity	Quantity & Packaging Code
12mm Tape and Reel	EIA RS-481-2 IEC 60286-3	1000	MR

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed woid for products used for any purpose on expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications as set forth in applicable Littelfuse documentation. Ititelfuse shall not be liable conditions of Sale, unless otherwise agreed by Littelfuse. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

