Intel[®] 975X Express Chipset

Datasheet

For the Intel[®] 82975X Memory Controller Hub (MCH)

November 2005

Document Number: 310158-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL[®] PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel[®] 82975X Memory Controller Hub (MCH) may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

¹Hyper-Threading Technology requires a computer system with an Intel[®] Pentium[®] 4 processor supporting HT Technology and a Hyper-Threading Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/info/hyperthreading/ for more information including details on which processors support HT Technology.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright[©] 2005, Intel Corporation

Contents

1	Introdu	luction	15
	1.1	Terminology	
	1.2	Reference Documents	
	1.3	MCH Overview	19
		1.3.1 Host Interface	19
		1.3.2 System Memory Interface	
		1.3.3 PCI Express* Graphics Interface	
		1.3.4 Bifurcated PCI Express* Graphics Supported Features	
		1.3.5 Direct Media Interface (DMI)	
		1.3.6 System Interrupts	
		1.3.7 MCH Clocking1.3.8 Power Management	
		-	
2	Signal	I Description	
	2.1	Host Interface Signals	
	2.2	DDR2 DRAM Channel A Interface	30
	2.3	DDR2 DRAM Channel B Interface	
	2.4	DDR2 DRAM Reference and Compensation	
	2.5	PCI Express* Interface Signals	
	2.6	Clocks, Reset, and Miscellaneous	
	2.7	Direct Media Interface (DMI)	
	2.8	Power, Ground	
	2.9	Reset States and Pull-up/Pull-down Values	
3	MCH F	Register Description	
	3.1	Register Terminology	
	3.2	Platform Configuration	
	3.3	Configuration Mechanisms	
	0.0	3.3.1 Standard PCI Configuration Mechanism	
		3.3.2 PCI Express* Enhanced Configuration Mechanism	
	3.4	Routing Configuration Accesses	
		3.4.1 Internal Device Configuration Accesses	
		3.4.2 Bridge Related Configuration Accesses	
		3.4.2.1 PCI Express* Configuration Accesses	
		3.4.2.2 DMI Configuration Accesses	
	3.5	I/O Mapped Registers	
		3.5.1 CONFIG_ADDRESS—Configuration Address Register	
		3.5.2 CONFIG_DATA—Configuration Data Register	
4	Host E	Bridge Registers (D0:F0)	51
	4.1	Configuration Register Details (D1:F0)	
		4.1.1 VID—Vendor Identification (D0:F0)	53

4.1.2	DID—Device Identification (D0:F0)	53
4.1.2	PCICMD—PCI Command (D0:F0)	
4.1.3	PCISTS—PCI Status (D0:F0)	
4.1.4	RID—Revision Identification (D0:F0)	55
4.1.6	CC—Class Code (D0:F0)	
4.1.7	MLT—Master Latency Timer (D0:F0)	50
4.1.7	HDR—Header Type (D0:F0)	
4.1.0	SVID—Subsystem Vendor Identification (D0:F0)	57
4.1.9		
4.1.10	SID—Subsystem Identification (D0:F0) CAPPTR—Capabilities Pointer (D0:F0)	00 50
4.1.11	EPBAR—Egress Port Base Address (D0:F0)	
4.1.12	MCHBAR—MCH Memory Mapped Register Range Base Address	59
4.1.15	(D0:F0)	60
4.1.14	PCIEXBAR—PCI Express* Register Range Base Address (D0:F0)	
4.1.15	DMIBAR—Root Complex Register Range Base Address (D0:F0)	
4.1.16	DEVEN—Device Enable (D0:F0)	
4.1.17	DEAP—DRAM Error Address Pointer (D0:F0)	
4.1.18	DERRSYN— DRAM Error Syndrome (D0:F0)	
4.1.19	DERRDST—DRAM Error Destination (D0:F0)	
4.1.20	PAM0—Programmable Attribute Map 0 (D0:F0)	
4.1.21	PAM1—Programmable Attribute Map 0 (D0:F0)	
4.1.22	PAM2—Programmable Attribute Map 2 (D0:F0)	
4.1.23	PAM3—Programmable Attribute Map 2 (Do:F0)	
4.1.24	PAM4—Programmable Attribute Map 4 (D0:F0)	
4.1.25	PAM5—Programmable Attribute Map 5 (D0:F0)	
4.1.26	PAM6—Programmable Attribute Map 6 (D0:F0)	
4.1.27	LAC—Legacy Access Control (D0:F0)	
4.1.28	REMAPBASE—Remap Base Address (D0:F0)	
4.1.29	REMAPLIMIT—Remap Limit Address (D0:F0)	
4.1.30	TOLUD—Top of Low Usable DRAM (D0:F0)	
4.1.31	SMRAM—System Management RAM Control (D0:F0)	
4.1.32	ESMRAMC—Extended System Management RAM Control (D0:F0).	
4.1.33	TOM—Top of Memory (D0:F0)	
4.1.34	ERRSTS-Error Status (D0:F0)	
4.1.35	ERRCMD—Error Command (D0:F0)	
4.1.36	SMICMD—SMI Command (D0:F0)	81
4.1.37	SCICMD—SCI Command (D0:F0)	
4.1.38	SKPD—Scratchpad Data (D0:F0)	
4.1.39	CAPID0—Capability Identifier (D0:F0)	
4.1.40	EDEAP—Extended DRAM Error Address Pointer (D0:F0)	
MCHBAF	R Register	84
4.2.1	C0DRB0—Channel A DRAM Rank Boundary Address 0	
4.2.2	C0DRB1—Channel A DRAM Rank Boundary Address 1	
4.2.3	C0DRB2—Channel A DRAM Rank Boundary Address 2	
4.2.4	C0DRB3—Channel A DRAM Rank Boundary Address 3	
4.2.5	C0DRA0—Channel A DRAM Rank 0,1 Attribute	
4.2.6	C0DRA2—Channel A DRAM Rank 2, 3 Attribute	
4.2.7	C0DCLKDIS—Channel A DRAM Clock Disable	
4.2.8	C0BNKARC—Channel A DRAM Bank Architecture	
4.2.9	C0DRT1—Channel 0 DRAM Timing Register	
4.2.10	C0DRC0—Channel 0 DRAM Controller Mode 0	
4.2.11	C0DRC1—Channel 0 DRAM Controller Mode 1	
4.2.12	C1DRB0—Channel B DRAM Rank Boundary Address 0	93

4.2

	4.2.13	C1DRB1—Channel B DRAM Rank Boundary Address 1	
	4.2.14	C1DRB2—Channel B DRAM Rank Boundary Address 2	
	4.2.15	C1DRB3—Channel B DRAM Rank Boundary Address 3	94
	4.2.16	C1DRA0—Channel B DRAM Rank 0,1 Attribute	94
	4.2.17	C1DRA2—Channel B DRAM Rank 2,3 Attribute	94
	4.2.18	C1DCLKDIS—Channel B DRAM Clock Disable	94
	4.2.19	C1BNKARC—Channel B Bank Architecture	94
	4.2.20	C1DRT1—Channel 1 DRAM Timing Register 1	95
	4.2.21	C1DRC0—Channel 1 DRAM Controller Mode 0	
	4.2.22	C1DRC1—Channel 1 DRAM Controller Mode 1	95
	4.2.23	PMCFG—Power Management Configuration	
	4.2.24	PMSTS—Power Management Status	
4.3	EPBAR I	Registers—Egress Port Register Summary	
	4.3.1	EPESD—EP Element Self Description	
	4.3.2	EPLE1D—EP Link Entry 1 Description	
	4.3.3	EPLE1A—EP Link Entry 1 Address	
	4.3.4	EPLE2D—EP Link Entry 2 Description	
	4.3.5	EPLE2A—EP Link Entry 2 Address	
	4.3.6	EPLE3D—EP Link Entry 3 Description	101
	4.3.0	EPLE2A—EP Link Entry 3 Address	
		-	
Host-P	Primary PC	I Express* Bridge Registers (D1:F0)	105
5.1		ation Register Details (D1:F0)	
	5.1.1	VID1—Vendor Identification (D1:F0)	
	5.1.2	DID1—Device Identification (D1:F0)	
	5.1.3	PCICMD1—PCI Command (D1:F0)	
	5.1.4	PCISTS1—PCI Status (D1:F0)	
	5.1.5	RID1—Revision Identification (D1:F0)	
	5.1.6	CC1—Class Code (D1:F0)	
	5.1.7	CL1—Cache Line Size (D1:F0)	
	5.1.8	HDR1—Header Type (D1:F0)	114
	5.1.8	PBUSN1—Primary Bus Number (D1:F0)	
		PDUSN1—Priniary Dus Number (D1.F0)	114
	5.1.10	SBUSN1—Secondary Bus Number (D1:F0)	110
	5.1.11	SUBUSN1—Subordinate Bus Number (D1:F0)	
	5.1.12	IOBASE1—I/O Base Address (D1:F0)	
	5.1.13	IOLIMIT1—I/O Limit Address (D1:F0)	
	5.1.14	SSTS1—Secondary Status (D1:F0)	
	5.1.15	MBASE1—Memory Base Address (D1:F0)	
	5.1.16	MLIMIT1—Memory Limit Address (D1:F0)	
	5.1.17	PMBASE1—Prefetchable Memory Base Address (D1:F0)	
	5.1.18	PMLIMIT1—Prefetchable Memory Limit Address (D1:F0)	
	5.1.19	PMBASEU1—Prefetchable Memory Base Address	
	5.1.20	PMLIMITU1— Prefetchable Memory Limit Address	
	5.1.21	CAPPTR1—Capabilities Pointer (D1:F0)	123
	5.1.22	INTRLINE1—Interrupt Line (D1:F0)	
	5.1.23	INTRPIN1—Interrupt Pin (D1:F0)	124
	5.1.24	BCTRL1—Bridge Control (D1:F0)	
	5.1.25	PM_CAPID1—Power Management Capabilities (D1:F0)	127
	5.1.26	PM_CS1—Power Management Control/Status (D1:F0)	128
	5.1.27	SS_CAPID—Subsystem ID and Vendor ID Capabilities (D1:F0)	
	5.1.28	SS—Subsystem ID and Subsystem Vendor ID (D1:F0)	
	5.1.29	MSI_CAPID—Message Signaled Interrupts Capability ID (D1:F0)	
	5.1.30	MC—Message Control (D1:F0)	

	5.1.31	MA—Message Address (D1:F0)	122
	5.1.31	MD—Message Data (D1:F0)	
	5.1.32	PEGCAPL—PCI Express* Capability List (D1:F0)	
	5.1.33		
		PCI_EXPRESS _CAP—PCI Express* Capabilities (D1:F0)	
	5.1.35	DCAP—Device Capabilities (D1:F0)	
	5.1.36	DCTL—Device Control (D1:F0)	
	5.1.37	DSTS—Device Status (D1:F0)	130
	5.1.38	LCAP—Link Capabilities (D1:F0)	137
	5.1.39	LCTL—Link Control (D1:F0)	
	5.1.40	LSTS—Link Status (D1:F0)	139
	5.1.41	SLOTCAP—Slot Capabilities (D1:F0)	
	5.1.42	SLOTCTL—Slot Control (D1:F0)	
	5.1.43	SLOTSTS—Slot Status (D1:F0)	142
	5.1.44	RCTL—Root Control (D1:F0)	
	5.1.45	RSTS—Root Status (D1:F0)	
	5.1.46	PEGLC—PCI Express* Legacy Control (D1:F0)	
	5.1.47	VCECH—Virtual Channel Enhanced Capability Header (D1:F0)	
	5.1.48	PVCCAP1—Port VC Capability Register 1 (D1:F0)	147
	5.1.49	PVCCAP2—Port VC Capability Register 2 (D1:F0)	147
	5.1.50	PVCCTL—Port VC Control (D1:F0)	148
	5.1.51	VC0RCAP—VC0 Resource Capability (D1:F0)	148
	5.1.52	VC0RCTL—VC0 Resource Control (D1:F0)	149
	5.1.53	VC0RSTS—VC0 Resource Status (D1:F0)	150
	5.1.54	VC1RCAP—VC1 Resource Capability (D1:F0)	150
	5.1.55	VC1RCTL—VC1 Resource Control (D1:F0)	151
	5.1.56	VC1RSTS—VC1 Resource Status (D1:F0)	
	5.1.57	RCLDECH—Root Complex Link Declaration Enhanced Capability	-
	•••••	Header (D1:F0)	152
	5.1.58	ESD—Element Self Description (D1:F0)	153
	5.1.59	LE1D—Link Entry 1 Description (D1:F0)	
	5.1.60	LE1A—Link Entry 1 Address (D1:F0)	
	5.1.61	LE2D—Link Entry 2 Description (D1:F0)	
	5.1.62	LE2A— Link Entry 2 Address	
	5.1.63	UESTS—Uncorrectable Error Status (D1:F0)	
	5.1.64	UEMSK—Uncorrectable Error Mask (D1:F0)	
	5.1.65	CESTS—Correctable Error Status (D1:F0)	
	5.1.66	CEMSK—Correctable Error Mask (D1:F0)	
	5.1.67	PEGSSTS—PCI Express* Sequence Status (D1:F0)	
Host-Se	econdary	PCI Express* Bridge Registers (D3:F0)	163
6.1	Configura	ation Register Details (D3:F0)	166
0.1	6.1.1	VID3—Vendor Identification (D3:F0)	
	6.1.2	DID3—Device Identification (D3:F0)	
	6.1.3	PCICMD3—PCI Command (D3:F0)	
	6.1.4	PCISTS3—PCI Status (D3:F0)	
	6.1.5	RID3—Revision Identification (D3:F0)	
	6.1.6		
		CC3—Class Code (D3:F0)	107
	6.1.7 6.1.8	CL3—Cache Line Size (D3:F0)	
		HDR3—Header Type (D3:F0)	
	6.1.9	PBUSN3—Primary Bus Number (D3:F0)	
	6.1.10	SBUSN3—Secondary Bus Number (D3:F0)	
	6.1.11	SUBUSN3—Subordinate Bus Number (D3:F0)	
	6.1.12	IOBASE3—I/O Base Address (D3:F0)	169

0 4 4 0		400
6.1.13	IOLIMIT3—I/O Limit Address (D3:F0)	
6.1.14	SSTS3—Secondary Status (D3:F0)	169
6.1.15	MBASE3—Memory Base Address (D3:F0)	
6.1.16	MLIMIT3—Memory Limit Address (D3:F0)	
6.1.17	PMBASE3—Prefetchable Memory Base Address (D3:F0)	
6.1.18	PMLIMIT3—Prefetchable Memory Limit Address (D3:F0)	
6.1.19	PMBASEU3—Prefetchable Memory Base Address	. 170
6.1.20	PMLIMITU3— Prefetchable Memory Limit Address	. 171
6.1.21	CAPPTR3—Capabilities Pointer (D3:F0)	. 171
6.1.22	INTRLINE3—Interrupt Line (D3:F0)	
6.1.23	INTRPIN3—Interrupt Pin (D3:F0)	
6.1.24	BCTRL3—Bridge Control (D3:F0)	
6.1.25	PM_CAPID3—Power Management Capabilities (D3:F0)	
6.1.26	PM_CS3—Power Management Control/Status (D3:F0)	
6.1.27	SS_CAPID3—Subsystem ID and Vendor ID Capabilities (D3:F0)	
6.1.28	SS3—Subsystem ID and Subsystem Vendor ID (D3:F0)	
6.1.29	MSI_CAPID3—Message Signaled Interrupts Capability ID (D3:F0).	
6.1.30	MC3—Message Control (D3:F0)	
6.1.31	MA3—Message Address (D3:F0)	
6.1.32	MD3—Message Data (D3:F0)	
6.1.33	PEGCAPL3—PCI Express* Capability List (D3:F0)	
6.1.34	PCI_EXPRESS _CAP3—PCI Express* Capabilities (D3:F0)	
6.1.35	DCAP3—Device Capabilities (D3:F0)	
6.1.36	DCTL3—Device Control (D3:F0)	. 175
6.1.37	DSTS3—Device Status (D3:F0)	. 175
6.1.38	LCAP3—Link Capabilities (D3:F0)	
6.1.39	LCTL3—Link Control (D3:F0)	
6.1.40	LSTS3—Link Status (D3:F0)	
6.1.41	SLOTCAP3—Slot Capabilities (D3:F0)	. 177
6.1.42	SLOTCTL3—Slot Control (D3:F0)	
6.1.43	SLOTSTS3—Slot Status (D3:F0)	
6.1.44	RCTL3—Root Control (D3:F0)	
6.1.45	RSTS3—Root Status (D3:F0)	
6.1.46	PEGLC3—PCI Express* Legacy Control (D3:F0)	
6.1.47	VCECH3—Virtual Channel Enhanced Capability Header (D3:F0)	
6.1.48	PVCCAP31—Port VC Capability Register 1 (D3:F0)	
6.1.49	PVCCAP32—Port VC Capability Register 2 (D3:F0)	178
6.1.50	PVCCTL3—Port VC Control (D3:F0)	170
6.1.51	VC0RCAP3—VC0 Resource Capability (D3:F0)	170
6.1.51	VC0RCTL3—VC0 Resource Capability (D3:F0)	. 179
6.1.52	VC0RSTS3—VC0 Resource Status (D3:F0)	
6.1.54 6.1.55	VC1RCAP3—VC1 Resource Capability (D3:F0)	
	VC1RCTL3—VC1 Resource Control (D3:F0)	
6.1.56	VC1RSTS3—VC1 Resource Status (D3:F0)	
6.1.57	RCLDECH3—Root Complex Link Declaration Enhanced Capability	
0 4 = 0	Header (D3:F0)	
6.1.58	ESD3—Element Self Description (D3:F0)	
6.1.59	LE1D3—Link Entry 1 Description (D3:F0)	181
6.1.60	LE1A3—Link Entry 1 Address (D3:F0)	
6.1.61	LE2D3—Link Entry 2 Description (D3:F0)	182
6.1.62	LE2A3— Link Entry 2 Address (D3:F0)	183
6.1.63	UESTS3—Uncorrectable Error Status (D3:F0)	
6.1.64	UEMSK3—Uncorrectable Error Mask (D3:F0)	183
	• •	

	6.1.65 6.1.66	CESTS3—Correctable Error Status (D3:F0) CEMSK3—Correctable Error Mask (D3:F0)	
	6.1.67	PEGSSTS3—PCI Express* Sequence Status (D3:F0)	
Direc	t Media Int	erface (DMI) RCRB	185
7.1	DMI RC	RB Configuration Register Details	186
	7.1.1	DMIVCECH—DMI Virtual Channel Enhanced Capability Header .	186
	7.1.2	DMIPVCCAP1—DMI Port VC Capability Register 1	186
	7.1.3	DMIPVCCAP2—DMI Port VC Capability Register 2	
	7.1.4	DMIPVCCTL—DMI Port VC Control	
	7.1.5	DMIVCORCAP—DMI VC0 Resource Capability	
	7.1.6	DMIVC0RCTL0—DMI VC0 Resource Control	
	7.1.7	DMIVCORSTS—DMI VC0 Resource Status	
	7.1.8	DMIVC1RCAP—DMI VC1 Resource Capability	
	7.1.9	DMIVC1RCTL1—DMI VC1 Resource Control	
	7.1.10	DMIVC1RSTS—DMI VC1 Resource Status	
	7.1.11	DMILCAP—DMI Link Capabilities	
	7.1.12	DMILCTL—DMI Link Control	
	7.1.13	DMILSTS—DMI Link Status	
	7.1.14	DMIUESTS—DMI Uncorrectable Error Status	
	7.1.15	DMIUEMSK—DMI Uncorrectable Error Mask	
	7.1.16	DMICESTS— DMI Correctable Error Status	
Syste		s Map	
8.1	Legacy	Address Range	
	8.1.1	DOS Range (0h–9_FFFh)	
	8.1.2	Legacy Video Area (A_0000h–B_FFFh)	
	8.1.3	Expansion Area (C_0000h–D_FFFFh)	202
	8.1.4	Extended System BIOS Area (E_0000h–E_FFFFh)	202
	8.1.5	System BIOS Area (F_0000h-F_FFFFh)	
	8.1.6	Programmable Attribute Map (PAM) Memory Area Details	
8.2		emory Address Range (1 MB to TOLUD)	
	8.2.1	ISA Hole (15 MB–16 MB)	
	8.2.2	TSEG	
	8.2.3	Pre-allocated Memory	
8.3	PCI Mer	mory Address Range (TOLUD–4 GB)	
	8.3.1	APIC Configuration Space (FEC0_0000h-FECF_FFFFh)	
	8.3.2	HSEG (FEDA_0000h–FEDB_FFFFh) FSB Interrupt Memory Space (FEE0_0000–FEEF_FFFF)	207
	8.3.3		
	8.3.4	High BIOS Area	
8.4	Main Me	emory Address Space (4 GB to Remaplimit)	
	8.4.1	Memory Re-claim Background	
	8.4.2	Memory Re-mapping	209
	8.4.3	PCI Express* Configuration Address Space	
	8.4.4	PCI Express* Graphics Attach	
	8.4.5	AGP DRAM Graphics Aperture	
8.5	System	Management Mode (SMM)	210
	8.5.1	SMM Space Definition	210
	8.5.2	SMM Space Restrictions	
	8.5.3	SMM Space Combinations	211
	8.5.4	SMM Control Combinations	
	8.5.5	SMM Space Decode and Transaction Handling	212

7

8

		8.5.6		WB Transaction to an Enabled SMM Address Space	
		8.5.7		hadowing	
		8.5.8		ss Space	
		8.5.9		ss* I/O Address Mapping	
		8.5.10		ode Rules and Cross-Bridge Address Mapping	
		8.5.11	Legacy VC	GA and I/O Range Decode Rules	214
9	Functio	onal Descr	ription		215
	9.1	Host Inte	rface		215
		9.1.1	FSB IOQ I	Depth	215
		9.1.2	FSB OOQ	Depth	215
		9.1.3	FSB GTL+	- Termination	215
		9.1.4	FSB Dyna	mic Bus Inversion	215
			9.1.4.1	APIC Cluster Mode Support	216
	9.2	System N	Memory Co	ntroller	
		9.2.1		emory Configuration Registers Overview	
		9.2.2	DRAM Te	chnologies and Organization	219
		0.2.2	9.2.2.1	Rules for Populating DIMM Slots	
			9.2.2.2	System Memory Supported Configurations	
			9.2.2.3	Main Memory DRAM Address Translation and Decoding	
			9.2.2.4	ECC Support	
		9.2.3	••=•=••	bck Generation	
		9.2.4		For RAM and Resume	
		9.2.5		Die Termination	
	9.3				
	9.5				
		9.3.1	•	ss* Architecture	
			9.3.1.1	Transaction Layer	
			9.3.1.2	Data Link Layer	
	. .		9.3.1.3	Physical Layer	
	9.4		•	ess* Graphics	
		9.4.1		tions	
		9.4.2		ersal	
		9.4.3	PCI Expre	ss* Straps	
			9.4.3.1	Bifurcated PCI Express* Indication	
			9.4.3.2	Primary Slot Device Present Indication	
		9.4.4	Bifurcated	PCI Express* Decode Rules	229
		9.4.5		irmware Considerations	
		9.4.6		er	
		9.4.7	Peer-to-Pe	eer Bandwidth	232
		9.4.8	Peer-to-Pe	eer Latency	232
		9.4.9	Link Decla	aration Topology	233
		9.4.10	PCI Expre	ss* Interrupt and GPE Flow	233
	9.5	Thermal	Considerat	ions	234
	9.6	Power M	anagement	t	234
	9.7		•		
10	Electric	Ū			
	10.1			and Maximum Ratings	
	10.2			CS	
	10.3	-	-		
	10.4	DC Char	acteristics.		242

1	-

12

Ballout	and Package Information	. 245
11.1	Ballout	. 245
11.2	Package	. 261
Testab	ility	. 263
12.1	Complimentary Pins	. 263
12.2	XOR Test Mode Initialization	. 264
12.3	XOR Chain Definition	. 265
12.4	XOR Chains	. 265
12.5	PADs Excluded from XOR Mode(s)	. 274

Figures

Figure 1-1. Intel [®] 975X Express Chipset System Block Diagram Example	16
Figure 2-1. Signal Information Diagram	26
Figure 3-1. Conceptual Intel [®] 975X Express Chipset Platform PCI Configuration Dia	agram41
Figure 3-2. Register Organization	42
Figure 3-3. Memory Map to PCI Express* Device Configuration Space	44
Figure 3-4. MCH Configuration Cycle Flow Chart	45
Figure 4-1. Link Declaration Topology	
Figure 8-1. System Address Ranges	199
Figure 8-2. Microsoft MS-DOS* Legacy Address Range	200
Figure 8-3. Main Memory Address Range	
Figure 8-4. PCI Memory Address Range	
Figure 9-1. System Memory Styles	
Figure 9-2. PCI Express* Related Register Structures in MCH	224
Figure 9-3. Lane Reversal (Bifurcated PCI Express* Configuration Example)	227
Figure 9-4. Bifurcated PCI Express* Microarchitecture	231
Figure 9-5. Link Declaration Topology	233
Figure 9-6. Platform Clocking Example	235
Figure 11-1. Intel [®] 82975X MCH Ballout Diagram (Top View – Columns 43–30)	246
Figure 11-2. Intel [®] 82975X MCH Ballout Diagram (Top View – Columns 29–16)	
Figure 11-3. Intel® 82975X MCH Ballout Diagram (Top View – Columns 15–1)	248
Figure 11-4. MCH Package Dimensions (Top View)	
Figure 11-5. MCH Package Dimensions (Side View)	
Figure 11-6. MCH Package Dimensions (Bottom View)	
Figure 12-1. XOR Test Mode Initialization Cycles	
-	

Tables

Table 4-1. Host Bridge Register Address Map (D0:F0)	
Table 4-2. MCHBAR Register Address Map	
Table 4-3. Egress Port Register Address Map	
Table 5-1. Host-PCI Express* Graphics Bridge Register Address Map (D1:F0)	105
Table 6-1. Host-PCI Express* Graphics Bridge Register Address Map (D3:F0)	
Table 7-1. DMI Register Address Map	
Table 8-1. Expansion Area Memory Segments	202
Table 8-2. Extended System BIOS Area Memory Segments	202
Table 8-3. System BIOS Area Memory Segments	203
Table 8-4. Pre-Allocated Memory Example for 64-MB DRAM, 1-MB VGA and 1-MB	
TSEG	205
Table 8-5. SMM Space	211
Table 8-6. SMM Control	
Table 9-1. Sample System Memory Organization with Interleaved Channels	217
Table 9-2. Sample System Memory Organization with Asymmetric Channels	217
Table 9-3. DDR2 DIMM Supported Configurations	
Table 9-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode)	221
Table 9-5. DRAM Address Translation (Dual Channel Symmetric Mode)	221
Table 9-6. Lane Mapping Configurations for PCI Express* Graphics	
Table 9-7. Strap Combinations Table 9-8. Peer-to-Peer Bandwidths ¹	232
Table 10-1. Absolute Minimum and Maximum Ratings	237
Table 10-2. Non Memory Power Characteristics	
Table 10-3. DDR2 Power Characteristics	239
Table 10-4. Signal Groups	
Table 10-5. DČ Characteristics	
Table 11-1. Intel [®] 82975X MCH Ballout – Sorted by Signal Name	249
Table 12-1. Complimentary Pins to Drive	
Table 12-2. XOR Chain Outputs	265
Table 12-3. XOR Chain 0	266
Table 12-4. XOR Chain 1	267
Table 12-5. XOR Chain 2	268
Table 12-6. XOR Chain 3	268
Table 12-7. XOR Chain 4	269
Table 12-8. XOR Chain 5	
Table 12-9. XOR Chain 6	271
Table 12-10. XOR Chain 7	272
Table 12-11. XOR Chain 8	
Table 12-12. XOR Chain 9	
Table 12-13. XOR Pad Exclusion List	

Revision History

Rev	Description	Date
-001	Initial Release	November 2005

§

Intel[®] 82975X MCH Features

- Processor Interface
 - —One Intel[®] Pentium[®] 4 processor in the 90 nm process in the LGA775 Land Grid Array package, Intel[®] Pentium[®] D processor, or Intel[®] Pentium processor Extreme Edition (supports 775-Land package)
 - Supports Pentium 4 processor FSB interrupt delivery

 - Supports Hyper-Threading Technology¹ (HT Technology)
 - -FSB Dynamic Bus Inversion (DBI)
 - 36-bit host bus addressing for access to 8 GB of memory space
 - -12-deep In-Order Queue
 - 1-deep Defer Queue
 - ---GTL+ bus driver with integrated GTL termination resistors
 - -Supports a Cache Line Size of 64 bytes
- DMI Interface
 - A chip-to-chip connection interface to Intel[®] ICH7
 - -2 GB/s point-to-point DMI to ICH7 (1 GB/s each direction)
 - 100 MHz reference clock (shared with PCI Express* Graphics Attach).
 - 32-bit downstream addressing
 - -Messaging and Error Handling
- Bifurcated PCI Express* Graphics Interface
 - Bifurcated PCI Express* Graphics x8 supported.
 - Single PCI Express* Graphics x16 supported.
 - -Peer-to-Peer Writes
 - --- Compatible with the PCI Express Base Specification, Revision 1.0a
 - Raw bit rate on data pins of 2.5 Gb/s resulting in a real bandwidth per pair of 250 MB/s

- System Memory

 - One or two 64-bit wide DDR2 SDRAM data channels
 - DDR2 memory DIMM frequencies of 533 MHz and 667 MHz
 - Bandwidth up to 10.7 GB/s (DDR2 667) in dual-channel Interleaved mode
 - -ECC and Non-ECC memory
 - 256-Mb, 512-Mb and 1-Gb DDR2 technologies
 - Only x8, x16, DDR2 devices with four banks and also supports eight bank, 1-Gbit DDR2 devices.
 - -Unbuffered DIMMs only
 - -Page sizes of 4 KB, 8 KB, and 16 KB
 - -Opportunistic refresh
 - Up to 64 simultaneously open pages (four ranks of eight bank devices* 2 channels)
 - SPD (Serial Presence Detect) scheme for DIMM detection support
 - --- Supports partial writes to memory, only when not using ECC
 - -Suspend-to-RAM support using CKE
 - -Supports configurations defined in the
 - JEDEC DDR2 DIMM specification only
- Package
 - 34 mm × 34 mm., 1202 balls, non-grid pattern

1 Introduction

The Intel[®] 975X Express chipset is designed for use with Intel[®] Pentium[®] 4 processor in the 90 nm process in the LGA775 Land Grid Array package, Intel[®] Pentium[®] D processor, and Intel[®] Pentium[®] processor Extreme Edition processor-based platforms. The chipset contains two components: Intel[®] 82975X Memory Controller Hub (MCH) for the host bridge and I/O Controller Hub 7 (ICH7) for the I/O subsystem. The MCH provides the interface to the processor, main memory, PCI Express*, and the ICH7. The ICH7 is the seventh generation I/O Controller Hub and provides a multitude of I/O related functions. Figure 1-1 shows an example system block diagram for the Intel[®] 975X Express chipset.

This document is the datasheet for the Intel[®] 82975X MCH. Topics covered include; signal description, system memory map, register descriptions, a description of the MCH interfaces and major functional units, electrical characteristics, ballout definitions, and package characteristics.

Note: Unless otherwise specified, ICH7 refers to the Intel[®] 82801GB ICH7 and 82801GR ICH7R I/O Controller Hub components.

Figure 1-1. Intel[®] 975X Express Chipset System Block Diagram Example

1.1 Terminology

Term	Description
Accelerated Graphics Port (AGP)	Refers to the AGP/PCI interface that was previously in the MCH components. This port is not on the 82975X MCH; It has been replaced by PCI Express*.
Core	The internal base logic in the MCH
CRT	Cathode Ray Tube
DED	Double-bit Error Detect
DBI	Dynamic Bus Inversion
DDR	Double Data Rate SDRAM memory technology
DDR2	A second generation Double Data Rate SDRAM memory technology
DMI	Direct Media Interface. This is the interface between the MCH and ICH7.
ECC	Error Correcting Code
FSB	Front Side Bus. This term is synonymous with Host bus or processor bus
Full Reset	Full reset is when PWROK is de-asserted. Warm reset is when both RSTIN# and PWROK are asserted.
Host	This term is used synonymously with processor.
INTx	An interrupt request signal where X stands for interrupts A,B,C, and D
Intel [®] ICH7	Seventh generation I/O Controller Hub component that contains additional functionality compared to previous ICH components. The I/O Controller Hub component that contains the primary PCI interface, LPC interface, USB2, ATA-100, and other I/O functions. It communicates with the MCH over a proprietary interconnect called DMI.
МСН	Intel [®] 82975X Memory Controller Hub component that contains the processor interface, DRAM controller, and x16 PCI Express port (typically the external graphics interface). It communicates with the I/O controller hub (Intel [®] ICH7*) and other I/O controller hubs over the DMI interconnect.
MSI	Message Signaled Interrupt. A transaction initiated outside the host, conveying interrupt information to the receiving agent through the same path that normally carries read and write commands.
PCI Express*	Third generation input/output graphics attach called PCI Express Graphics. It is a high- speed serial interface whose configuration is software compatible with the existing PCI specifications. The specific PCI Express implementation intended for connecting the MCH to an external graphics controller is a x16 link and replaces AGP.
Primary PCI	The physical PCI bus that is driven directly by the ICH7 component. Communication between Primary PCI and the MCH occurs over DMI. Note that the Primary PCI bus is not PCI Bus 0 from a configuration standpoint.
Processor	Refers to the Intel [®] Pentium [®] 4 processor in the 90 nm process in the LGA775 Land Grid Array package, Intel [®] Pentium D processor, and Intel [®] Pentium [®] processor Extreme Edition.
SCI	System Control Interrupt. Used in ACPI protocol.

Term	Description
SEC	Single-bit Error Correct
SERR	System Error. An indication that an unrecoverable error has occurred on an I/O bus.
SMI	System Management Interrupt. SMI is used to indicate any of several system conditions such as thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity.
Rank	A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four x16 SDRAM devices in parallel, ignoring ECC. These devices are usually, but not always, mounted on a single side of a DIMM.
TOLM	Top Of Low Memory. The highest address below 4 GB for which a processor-initiated memory read or write transaction will create a corresponding cycle to DRAM on the memory interface.
VCO	Voltage Controlled Oscillator

1.2 Reference Documents

Document Name	Doc Number/ Location
Intel [®] I/O Controller Hub 7 (ICH7) Family Datasheet	http://developer.intel.com//design/chip sets/datashts/307013.htm
Intel [®] 975X Express Chipset Thermal Mechanical Design Guidelines	http://developer.intel.com/design/chips ets/designex/310157.htm
Intel [®] 975X Express Chipset Specification Update	http://developer.intel.com/design/chips ets/specupdt/310159.htm
Advanced Configuration and Power Interface Specification, Revision 2.0	http://www.acpi.info/
Advanced Configuration and Power Interface Specification, Revision 1.0b	http://www.acpi.info/
The PCI Local Bus Specification, Revision 2.3	http://www.pcisig.com/specifications
PCI Express* Specification, Revision 1.0a	http://www.pcisig.com/specifications

1.3 MCH Overview

The MCH connects to the processor as shown in Figure 1-1. A major role of the MCH in a system is to manage the flow of information between its four interfaces: the processor interface (FSB), the System Memory interface (DRAM controller), the Dual External Graphics interface (PCI Express*), and the I/O Controller through DMI interface. This includes arbitrating between the four interfaces when each initiates transactions. The processor interface supports the Pentium 4 processor subset of the Extended Mode of the Scalable Bus Protocol.

The MCH supports one or two channels of DDR2 SDRAM. It also supports PCI Express based external graphics attach. To increase system performance, the MCH incorporates several queues and a write cache. The MCH also contains advanced power management logic.

1.3.1 Host Interface

The MCH is optimized for the Pentium[®] 4 processor in the 90 nm process in the LGA775 Land Grid Array package, Pentium[®] D processor, and Pentium[®] processor Extreme Edition in a LGA775 socket. The MCH supports FSB frequencies of 200 MHz (800 MT/s) and 266 MHz (1066 MT/s) using a scalable FSB Vcc_CPU. The MCH supports the Pentium 4 processor subset of the Extended Mode Scaleable Bus Protocol. The primary enhancements over the Compatible Mode P6 bus protocol are source synchronous double-pumped (2x) address and source synchronous quad-pumped (4x) data. Other MCH supported features of the host interface include: Hyper-Threading Technology (HT Technology), Pentium 4 processor FSB interrupt delivery, FSB Dynamic Bus Inversion (DBI), 12-deep in-order queue, and a 1-deep defer queue.

The MCH supports 36-bit host addressing, decoding up to 8 GB of the processor's usable memory address space. Host-initiated I/O cycles are decoded to PCI Express, DMI, or the MCH configuration space. Host-initiated memory cycles are decoded to PCI Express, DMI or main memory. PCI Express device accesses to non-cacheable system memory are not snooped on the host bus. Memory accesses initiated from PCI Express* using PCI semantics and from DMI to system SDRAM will be snooped on the host bus.

1.3.2 System Memory Interface

The MCH integrates a system memory DDR2 controller with two, 64-bit wide interfaces. Only Double Data Rate (DDR2) memory is supported; consequently, the buffers support only SSTL_1.8 V signal interfaces. The memory controller interface is fully configurable through a set of control registers. Features of the MCH memory controller include:

- Maximum memory size is 8 GB.
- Directly supports one or two channels of memory (each channel consisting of 64 data lines)
 - The memory channels are asymmetric: "Stacked" channels are assigned addresses serially. Channel B addresses are assigned after all Channel A addresses.
 - The memory channels are interleaved: Addresses are ping-ponged between the channels after each cache line (64-B boundary).
- Available bandwidth up to 5.3 GB/s (DDR2 667) for single-channel mode or dual-channel asymmetric mode and 10.7 GB/s (DDR2 667) in dual-channel Interleaved mode.
- Supports standard ECC (Error Correcting Code) x8 only or Non-ECC x8 and x16 DIMMs.
- Supports DDR2 memory DIMM frequencies of 533 and 667 MHz. The speed used in all channels is the speed of the slowest DIMM in the system.
- Supports 256-Mb, 512-Mb and 1-Gb DDR2 technologies for x8 and x16 devices.
- Supports four banks for all DDR2 devices up to 512-Mbit density. Supports eight banks for 1-Gbit DDR2 devices.
- DDR2-667 4-4-4 is NOT supported
- Supports only unbuffered DIMMs.
- Supports opportunistic refresh.
- In dual channel mode the MCH supports 32 simultaneously open pages.
- SPD (Serial Presence Detect) scheme for DIMM detection support.
- Suspend-to-RAM support using CKE.
- Supports configurations defined in the JEDEC DDR2 DIMM specification only.
- Directly supports two channels of ECC or non-ECC DDR2 DIMMs.
- Supports Partial Writes to memory using Data Mask (DM) signals, only when not using ECC.
- Supports a burst length of 8 for single-channel and dual-channel interleaved and asymmetric operating modes.
- Supports Enhanced Memory Interleave.

1.3.3 PCI Express* Graphics Interface

The PCI Express interface supports 16 bi-directional lanes used for next generation graphics attach. Each PCI Express graphic lane supports a bi-directional transfer rate of 2.5 Gb/s for a theoretical bandwidth of 8 GBs when in x16 mode. Features of the PCI Express interface include:

- One 16-lane PCI Express port intended for graphics attach, compatible to the *PCI Express** *Base Specification, Revision 1.0a.*
- A base PCI Express frequency of 2.5 Gb/s only.
- Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a real bandwidth per pair of 250 MB/s given the 8b/10b encoding used to transmit data across this interface.
- Maximum theoretical realized bandwidth on the interface of 4 GB/s in each direction simultaneously, for an aggregate of 8 GB/s when x16.
- PCI Express extended configuration space. The first 256 bytes of configuration space alias directly to the PCI compatibility configuration space. The remaining portion of the fixed 4-KB block of memory-mapped space above that (starting at 100h) is known as extended configuration space.
- PCI Express enhanced addressing mechanism. Accessing the device configuration space in a flat memory mapped fashion.
- Automatic discovery, negotiation, and training of link out of reset.
- Supports traditional PCI style traffic (asynchronous snooped, PCI ordering).
- Supports traditional AGP style traffic (asynchronous non-snooped, PCI Express-relaxed ordering).
- Hierarchical PCI-compliant configuration mechanism for downstream devices (i.e., normal PCI 2.3 configuration space as a PCI-to-PCI bridge).
- Supports "static" lane numbering reversal. This method of lane reversal is controlled by a Hardware Reset strap, and reverses both the receivers and transmitters for all lanes (e.g., TX15->TX0, RX15->RX0). This method is transparent to all external devices and is different than lane reversal as defined in the PCI Express specification. In particular, link initialization is not affected by static lane reversal.

1.3.4 Bifurcated PCI Express* Graphics Supported Features

- Bifurcated PCI Express* Graphics x8 supported.
- Single PCI Express* Graphics x16 supported.
- Peer-to-Peer Writes.

1.3.5 Direct Media Interface (DMI)

Direct Media Interface (DMI) is the chip-to-chip connection between the MCH and ICH7. This highspeed interface integrates advanced priority-based servicing allowing for concurrent traffic and true isochronous transfer capabilities. Base functionality is completely software transparent permitting current and legacy software to operate normally.

To provide for true isochronous transfers and configurable Quality of Service (QoS) transactions, the ICH7 supports two virtual channels on DMI: VC0 and VC1. These two channels provide a fixed arbitration scheme where VC1 is always the highest priority. VC0 is the default conduit of traffic for DMI and is always enabled. VC1 must be specifically enabled and configured at both ends of the DMI link (i.e., the Intel ICH7 and MCH). Configuration registers for DMI, virtual channel support, and DMI active state power management (ASPM) are in the RCRB space in the MCH Register Description. Features of the DMI include:

- A chip-to-chip connection interface to Intel ICH7.
- 2 GB/s point-to-point DMI to ICH7 (1 GB/s each direction).
- 100 MHz reference clock (shared with PCI Express graphics attach).
- 32-bit downstream addressing.
- APIC and MSI interrupt messaging support. MCH will send Intel-defined "End Of Interrupt" broadcast message when initiated by the processor.
- Message Signaled Interrupt (MSI) messages.
- SMI, SCI, and SERR error indication.
- Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port DMA, floppy drive, and LPC bus masters.

1.3.6 System Interrupts

- Supports both 8259 and Pentium 4 processor FSB interrupt delivery mechanisms.
- Supports interrupts signaled as upstream memory writes from PCI Express and DMI.
 MSIs routed directly to FSB.
 - From I/OxAPICs.
- Provides redirection for IPI (Inter-Processor Interrupts) and upstream interrupts to the FSB.

1.3.7 MCH Clocking

The Differential FSB clock of 200/266 MHz (HCLKP/HCLKN) supports transfer rates of 800/1066 MT/s. The Host PLL generates 2X, 4X, and 8X versions of the host clock for internal optimizations. The MCH core clock is synchronized to the host clock.

The internal and external memory clocks of 266 MHz and 333 MHz are generated from one of two MCH PLLs that use the Host clock as a reference. Also included are 2x and 4x clocks for internal optimizations.

The PCI Express* core clock of 250 MHz is generated from a separate PCI Express PLL. This clock uses the fixed 100 MHz serial reference clock (GCLKP/GCLKN) for reference.

All of the above mentioned clocks are capable of tolerating Spread Spectrum clocking as defined in the Clock Generator specification. Host, Memory, and PCI Express PLLs, and all associated internal clocks are disabled until PWROK is asserted.

1.3.8 Power Management

The MCH power management support includes:

- PC99 suspend to DRAM support ("STR", mapped to ACPI state S3)
- SMRAM space remapping to A0000h (128 KB)
- Supports extended SMRAM space above 256 MB, additional 1-MB TSEG from the Top of Low Usable DRAM (TOLUD), and cacheable (cacheablility controlled by the processor)
- ACPI Revision 1.0 compatible power management
- Supports processor states: C0 and C1
- Supports system states: S0, S1D, S3, S4, and S5
- Supports processor Thermal Management 2 (TM2)
- Microsoft Windows NT* Hardware Design Guide v1.0 compliant

§

2 Signal Description

This chapter provides a detailed description of MCH signals. The signals are arranged in functional groups according to their associated interface.

The following notations are used to describe the signal type:

PCIE	PCI Express* interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+ - D-) * 2 = 1.2 V_{max}$. Single-ended maximum = 1.5 V. Single-ended minimum = 0 V.
DMI	Direct Media Interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+ - D-) * 2 = 1.2 V_{max}$. Single-ended maximum = 1.5 V. Single-ended minimum = 0 V.
CMOS	CMOS buffers. 1.5 V tolerant.
COD	CMOS Open Drain buffers. 2.5 V tolerant.
HCSL	Host Clock Signal Level buffers. Current mode differential pair. Differential typical swing = $(D+ - D-) * 2 = 1.4 \text{ V}$. Single ended input tolerant from -0.35 V to 1.2 V. Typical crossing voltage 0.35 V.
HVCMOS	High Voltage CMOS buffers. 2.5 V tolerant.
HVIN	High Voltage CMOS input-only buffers. 3.3 V tolerant.
SSTL-1.8	Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V tolerant.
А	Analog reference or output. These signals may be used as a threshold voltage or for buffer compensation.

Figure 2-1. Signal Information Diagram

2.1 Host Interface Signals

Note: Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination voltage of the Host Bus (V_{TT}).

Signal Name	Туре		Description
HADS#	I/O GTL+	indicate the first of	The processor bus owner asserts HADS# to two cycles of a request phase. The MCH can or snoop cycles and interrupt messages.
HBNR#	I/O GTL+	bus owner from iss	est: This signal is used to block the current request uing new requests. This signal is used to I the processor bus pipeline depth.
HBPRI#	O GTL+	the processor bus. address bus. This will cause the curre	s Request: The MCH is the only Priority Agent on It asserts this signal to obtain the ownership of the signal has priority over symmetric bus requests and ent symmetric owner to stop issuing new a the HLOCK# signal was asserted.
HBREQ0#	I/O GTL+	low during HCPUR active-to-inactive to for this signal is 4 I maximum hold time	The MCH pulls the processor's bus HBREQ0# signal ST#. The processor samples this signal on the ansition of HCPURST#. The minimum setup time HCLKs. The minimum hold time is 2 HCLKs and the is 20 HCLKs. HBREQ0# should be tri-stated after rement has been satisfied.
HCPURST#	O GTL+	CPU Reset: The HCPURST# pin is an output from the MCH. The MCH asserts HCPURST# while RSTIN# is asserted and for approximately 1 ms after RSTIN# is de-asserted. The HCPURST# allows the processors to begin execution in a known state.	
		strap setup and ho	ICH7 must provide processor frequency select Id times around HCPURST#. This requires strict tween MCH HCPURST# de-assertion and the raps.
HDBSY#	I/O GTL+		his signal is used by the data bus owner to hold the ers requiring more than one cycle.
HDEFER#	O GTL+		signals that the MCH will terminate the transaction oped with either a deferred response or with a retry
HDINV[3:0]#	I/O GTL+	HD[63:0] signals. 1 or not. HDINV[3:0]	ersion: HDINV[3:0]# are driven along with the They indicate if the associated signals are inverted # are asserted such that the number of data bits ow (low voltage) within the corresponding 16 bit ds 8.
		HDINV[x]#	Data Bits
		HDINV3#	HD[63:48]
		HDINV2#	HD[47:32]
l		HDINV1#	HD[31:16]
		HDINV0#	HD[15:0]

Signal Name	Туре	Description			
HDRDY#	I/O GTL+	Data Ready : This signal is asserted for each cycle that data is transferred.			
HEDRDY#	O GTL+		Early Data Ready : This signal indicates that the data phase of a read transaction will start on the bus exactly one common clock after assertion.		
HA[35:3]#	I/O GTL+	During processor cycles, HA HA[35:3]# during snoop cycle	Host Address Bus: HA[35:3]# connect to the processor address bus. During processor cycles, HA[35:3]# are inputs. The MCH drives HA[35:3]# during snoop cycles on behalf of DMI and PCI Express* initiators. HA[35:3]# are transferred at 2x rate.		
HADSTB[1:0]#	I/O GTL+	Host Address Strobe: Thes strobes used to transfer HA[3 rate.	•		
HD[63:0]#	I/O GTL+	Host Data: These signals are connected to the processor data bus. Data on HD[63:0]# is transferred at 4x rate. Note that the data signals may be inverted on the processor bus, depending on the HDINV[3:0]# signals.			
HDSTBP[3:0]# HDSTBN[3:0]#	I/O GTL+	Differential Host Data Strobes: The differential source synchronou strobes used to transfer HD[63:0]# and HDINV[3:0]# at 4x transfer rate.			
		These signals are named this way because they are not level sensitive. Data is captured on the falling edge of both strobes. Hence, they are pseudo-differential, and not true differential.			
		Strobes	Data	Bits	
		HDSTBP3#, HDSTBN3#	HD[63:48]	HDINV[3]#	
		HDSTBP2#, HDSTBN2#	HD[47:32]	HDINV[2]#	
		HDSTBP1#, HDSTBN1#	HD[31:16]	HDINV[1]#	
		HDSTBP0#, HDSTBN0#	HD[15:0]	HDINV[0]#	
HHIT#	I/O GTL+	Hit: This signal indicates that version of the requested line. with HHITM# by the target to	This signal is al	so driven in conjunction	
HHITM#	I/O GTL+	Hit Modified: This signal indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. This signal is also driven in conjunction with HHIT# to extend the snoop window.			
HLOCK#	l GTL+	Host Lock: All processor bus HLOCK# and HADS#, until th (i.e., no DMI or PCI Express HLOCK# is asserted by the p	ne negation of HI accesses to DRA	_OCK# must be atomic	

Signal Name	Туре	Description
HPCREQ#	l GTL+ 2x	Precharge Request: The processor provides a "hint" to the MCH that it is OK to close the DRAM page of the memory read request with which the hint is associated. The MCH uses this information to schedule the read request to memory using the special "AutoPrecharge" attribute. This causes the DRAM to immediately close (Precharge) the page after the read data has been returned. This allows subsequent processor requests to more quickly access information on other DRAM pages, since it will no longer be necessary to close an open page prior to opening the proper page. HPCREQ# is asserted by the requesting agent during both halves of Request Phase. The same information is provided in both halves of the request phase.
HREQ[4:0]#	I/O GTL+ 2x	Host Request Command: These signals define the attributes of the request. HREQ[4:0]# are transferred at 2x rate. They are asserted by the requesting agent during both halves of Request Phase. In the first half the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half the signals carry additional information to define the complete transaction type.
HTRDY#	O GTL+	Host Target Ready: This signal indicates that the target of the processor transaction is able to enter the data transfer phase.
HRS[2:0]#	O GTL+	Response Signals: These signals indicate the type of response: 000 = Idle state 001 = Retry response 010 = Deferred response 011 = Reserved (not driven by MCH) 100 = Hard Failure (not driven by MCH) 101 = No data response 110 = Implicit Writeback 111 = Normal data response
BSEL[2:0]	I CMOS	Bus Speed Select: At the de-assertion of RSTIN#, the value sampled on these pins determines the expected frequency of the bus.
PM_BMBUSY#	I	Slew Rate Compensation Select:
	HVCMOS	 1 = Normal Operation – use Lookup table for slew compensation value.
		0 = Use SCOMP circuit for slew compensation value.
HRCOMP	I/O CMOS	Host RCOMP: This signal is used to calibrate the Host GTL+ I/O buffers. This signal is powered by the Host Interface termination rail (V_{TT}) .
HSCOMP	I/O CMOS	Slew Rate Compensation: This signal provides compensation for the Host Interface.
HSWING	I A	Host Voltage Swing: This signal provides the reference voltage used by FSB RCOMP circuits. HSWING is used for the signals handled by HRCOMP.
HDVREF	I A	Host Reference Voltage: This signal is the voltage input for the data, address, and common clock signals of the Host GTL interface.
HACCVREF	l A	Host Reference Voltage . This signal is the reference voltage input for the address and common clock signals of the Host GTL interface.

2.2 DDR2 DRAM Channel A Interface

Signal Name	Туре	Description
SCB_A[7:0]	I/O SSTL-1.8 2x	ECC Check Byte: These signals are used for ECC.
SCLK_A[5:0]	O SSTL-1.8	SDRAM Differential Clock: (3 per DIMM). SCLK_Ax and its complement SCLK_Ax# signal make a differential clock pair output. The crossing of the positive edge of SCLK_Ax and the negative edge of its complement SCLK_Ax# are used to sample the command and control signals on the SDRAM.
SCLK_A[5:0]#	O SSTL-1.8	SDRAM Complementary Differential Clock: (3 per DIMM). These are the complementary differential DDR2 clock signals.
SCS_A[3:0]#	O SSTL-1.8	Chip Select: (1 per Rank). These signals select particular SDRAM components during the active state. There is one chip select for each SDRAM rank.
SMA_A[13:0]	O SSTL-1.8	Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM.
SBS_A[2:0]	O SSTL-1.8	Bank Select: These signals define which banks are selected within each SDRAM rank. DDR2: 1-Gb technology is 8 banks.
SRAS_A#	O SSTL-1.8	Row Address Strobe: This signal is used with SCAS_A# and SWE_A# (along with SCS_A#) to define the SDRAM commands.
SCAS_A#	O SSTL-1.8	Column Address Strobe: This signal is used with SRAS_A# and SWE_A# (along with SCS_A#) to define the SDRAM commands.
SWE_A#	O SSTL-1.8	Write Enable: This signal is used with SCAS_A# and SRAS_A# (along with SCS_A#) to define the SDRAM commands.
SDQ_A[63:0]	I/O SSTL-1.8 2x	Data Lines: SDQ_Ax signals interface to the SDRAM data bus.
SDM_A[7:0]	O SSTL-1.8 2X	Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SDM_Ax signal for every data byte lane.
SDQS_A[8:0]	I/O SSTL-1.8 2x	Data Strobes: For DDR2, SDQS_Ax and its complement SDQS_Ax# signal make up a differential strobe pair. The data is captured at the crossing point of SDQS_Ax and its complement SDQS_Ax# during read and write transactions.
SDQS_A[8:0]#	I/O SSTL-1.8 2x	Data Strobe Complements: These are the complementary DDR2 strobe signals.
SCKE_A[3:0]	O SSTL-1.8	Clock Enable: (1 per Rank). SCKE_A is used to initialize the SDRAMs during power-up, to power-down SDRAM ranks, and to place all SDRAM ranks into and out of self-refresh during Suspend-to-RAM.
SODT_A[3:0]	O SSTL-1.8	On Die Termination: These signals are Active On-die termination control signals for DDR2 devices.

2.3 DDR2 DRAM Channel B Interface

Signal Name	Туре	Description
SCB_B[7:0]	I/O SSTL-1.8 2x	ECC Check Byte: These signals are used for ECC.
SCLK_B[5:0]	O SSTL-1.8	SDRAM Differential Clock: (3 per DIMM). SCLK_Bx and its complement SCLK_Bx# signal make a differential clock pair output. The crossing of the positive edge of SCLK_Bx and the negative edge of its complement SCLK_Bx# are used to sample the command and control signals on the SDRAM.
SCLK_B[5:0]#	O SSTL-1.8	SDRAM Complementary Differential Clock: (3 per DIMM). These are the complementary Differential DDR2 Clock signals.
SCS_B[3:0]#	O SSTL-1.8	Chip Select: (1 per Rank). These signals select particular SDRAM components during the active state. There is one chip select for each SDRAM rank
SMA_B[13:0]	O SSTL-1.8	Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM.
SBS_B[2:0]	O SSTL-1.8	Bank Select: These signals define which banks are selected within each SDRAM rank. DDR2: 1-Gb technology is 8 banks.
SRAS_B#	O SSTL-1.8	Row Address Strobe: This signal is used with SCAS_B# and SWE_B# (along with SCS_B#) to define the SDRAM commands
SCAS_B#	O SSTL-1.8	Column Address Strobe: This signal is used with SRAS_B# and SWE_B# (along with SCS_B#) to define the SDRAM commands.
SWE_B#	O SSTL-1.8	Write Enable: This signal is used with SCAS_B# and SRAS_B# (along with SCS_B#) to define the SDRAM commands.
SDQ_B[63:0]	I/O SSTL-1.8 2x	Data Lines: SDQ_Bx signals interface to the SDRAM data bus.
SDM_B[7:0]	O SSTL-1.8 2x	Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SBDM for every data byte lane.
SDQS_B[8:0]	I/O SSTL-1.8 2x	Data Strobes: For DDR2, SDQS_Bx and its complement SDQS_Bx# make up a differential strobe pair. The data is captured at the crossing point of SDQS_Bx and its complement SDQS_Bx# during read and write transactions.
SDQS_B[8:0]#	I/O SSTL-1.8 2x	Data Strobe Complements: These are the complementary DDR2 strobe signals.
SCKE_B[3:0]	O SSTL-1.8	Clock Enable: (1 per Rank). SCKE_B is used to initialize the SDRAMs during power-up, to power-down SDRAM ranks, and to place all SDRAM ranks into and out of self-refresh during Suspend-to-RAM.
SODT_B[3:0]	O SSTL-1.8	On Die Termination: These signals are Active On-die termination control signals for DDR2 devices.

2.4 DDR2 DRAM Reference and Compensation

Signal Name	Туре	Description
SRCOMP[1:0]	I/O	System Memory RCOMP
SOCOMP[1:0]	I/O A	DDR2 On-Die DRAM Over Current Detection (OCD) driver compensation
SMVREF[1:0]	I A	SDRAM Reference Voltage: Reference voltage inputs for each DQ, DM, DQS, and DQS# input signals.

2.5 PCI Express* Interface Signals

Unless otherwise specified, PCI Express signals are AC coupled, so the only voltage specified is a maximum 1.2 V differential swing.

Signal Name	Туре	Description
EXP_RXN[15:0] EXP_RXP[15:0]	I/O PCIE	PCI Express* Receive Differential Pair
EXP_TXN[15:0] EXP_TXP[15:0]	O PCIE	PCI Express Transmit Differential Pair
EXP_COMPO	I A	PCI Express Output Current Compensation
EXP_COMPI	I A	PCI Express Input Current Compensation
EXP_SLR	l CMOS	PCI Express* Static Lane Reversal: MCH's PCI Express lane numbers are reversed.
		0 = MCH's PCI Express lane numbers are reversed
		1 = Normal operation
PRIPRSNT#	I/O GTL+	Primary Slot x16 Present Strap: PCI Express* Card Present in Primary slot)
	OIL!	0 = Primary PCI Express* Card Present
		1 = Primary PCI Express* Card Not Present
		NOTE: Output Only when in XORTEST mode.
DPEN#	I/O GTI +	Secondary Slot x16 Present Strap: Secondary PCI Express* Card Present in Secondary slot)
	UIL!	0 = Secondary PCI Express* Card Present
		1 = Secondary PCI Express* Card Not Present.
		NOTE: Output Only when in XORTEST mode.

2.6 Clocks, Reset, and Miscellaneous

Signal Name	Туре	Description
HCLKP HCLKN	I HCSL	Differential Host Clock In: These pins receive a differential host clock from the external clock synthesizer. This clock is used by all of the MCH logic that is in the Host clock domain. Memory domain clocks are also derived from this source.
GCLKP GCLKN	I HCSL	Differential PCI Express* Clock In: These pins receive a differential 100 MHz serial reference clock from the external clock synthesizer. This clock is used to generate the clocks necessary for the support of PCI Express.
RSTIN#	I HVIN	Reset In: When asserted, this signal will asynchronously reset the MCH logic. This signal is connected to the PCIRST# output of the Intel [®] ICH7. All PCI Express graphics attach output signals will also tri-state compliant to <i>PCI Express* Base Specification , Revision 1.0a.</i>
		This input should have a Schmitt trigger to avoid spurious resets. This signal is required to be 3.3 V tolerant.
PWROK	I HVIN	Power OK: When asserted, PWROK is an indication to the MCH that core power has been stable for at least 10 us.
EXTTS#	I HVCMOS	External Thermal Sensor Input: This signal may connect to a precision thermal sensor located on or near the DIMMs. If the system temperature reaches a sufficiently high value, then this signal can be used to trigger the start of system thermal management. This signal is activated when an increase in temperature causes a voltage to cross some threshold in the sensor.
ICH_SYNC#	O HVCMOS	ICH Sync: This signal is connected to the MCH_SYNCH# signal on the ICH7.
XORTEST	I/O GTL+	XOR Test: This signal is used for Bed of Nails testing by OEMs to execute XOR Chain test.
ALLZTEST	I/O GTL+	All Z Test: As an input this signal is used for Bed of Nails testing by OEMs to execute XOR Chain test. It is used as an output for XOR chain testing.

2.7 Direct Media Interface (DMI)

EDS Signal Name	Туре	Description
DMI_RXP[3:0]	I/O	Direct Media Interface: Receive differential pair (Rx)
DMI_RXN[3:0]	DMI	
DMI_TXP[3:0]	0	Direct Media Interface: Transmit differential pair (Tx)
DMI_TXN[3:0]	DMI	

2.8 Power, Ground

Name	Voltage	Description		
VCC	1.5 V	Core Power		
VTT	1.2 V	Processor System Bus Power		
VCC_EXP	1.5 V	PCI Express* and DMI Power		
VCCA_3GBG	2.5 V	PCI Express and DMI Analog Bandgap		
VCCSM	1.8 V	System Memory Power		
VCC2	2.5 V	2.5 V CMOS Power		
VCCA_EXPPLL	1.5 V	PCI Express PLL Analog Power		
VCCA_HPLL	1.5 V	Host PLL Analog Power		
VCCA_SMPLL	1.5 V	System Memory PLL Analog Power		
VSS	0 V	Ground		

2.9 Reset States and Pull-up/Pull-down Values

This section describes the expected states of the MCH I/O buffers during and immediately after the assertion of RSTIN#. This table only refers to the contributions on the interface from the MCH and does NOT reflect any external influence (such as external pull-up/pull-down resistors or external drivers).

Legend:

- DRIVE: Strong drive (to normal value supplied by core logic if not otherwise stated).
- TERM: Normal termination devices are turned on.
- LV: Low voltage.
- HV: High voltage.
- IN: Input buffer enabled.
- TRI: Tri-state.
- PU: Weak internal pull-up: 7.2 K Ω 11.1 K Ω , unless otherwise specified.
- PD: Weak internal pull-down: $600 \Omega 880 \Omega$ unless otherwise specified.
- CMCT: Common Mode Center Tapped. Differential signals are weakly driven to the common mode central voltage.
- STRAP: Strap input sampled on the asserting edge of PWROK.

Interface	Signal Name	I/O	State During RSTIN# Assertion	State After RSTIN# De-assertion	Pull-up/ Pull-down
Host I/F	HCPURST#	0	DRIVE LV	TERM HV after approximately 1ms	
	HADSTB[1:0]#	I/O	TERM HV	TERM HV	
	HA[35:3]#	I/O	TERM HV STRAP	POC	
	HD[63:0]	I/O	TERM HV	TERM HV	
	HDSTBP[3:0]#	I/O	TERM HV	TERM HV	
	HDSTBN[3:0]#	I/O	TERM HV	TERM HV	
	HDINV[3:0]#	I/O	TERM HV	TERM HV	
	HADS#	I/O	TERM HV	TERM HV	
	HBNR#	I/O	TERM HV	TERM HV	
	HBPRI#	0	TERM HV	TERM HV	
	HDBSY#	I/O	TERM HV	TERM HV	
	HDEFER#	0	TERM HV	TERM HV	
	HDRDY#	I/O	TERM HV	TERM HV	
	HEDRDY#	0	TERM HV	TERM HV	
	HHIT#	I/O	TERM HV	TERM HV	
	HHITM#	I/O	TERM HV	TERM HV	
	HLOCK#	I/O	TERM HV	TERM HV	
	HREQ[4:0]#	I/O	TERM HV	TERM HV	
	HTRDY#	0	TERM HV	TERM HV	
	HRS[2:0]#	I	TERM HV	TERM HV	
	HBREQ0#	0	TERM HV	TERM HV	
	HPCREQ#	I	TERM HV	TERM HV	
	HDVREF	I	IN	IN	
	PM_BM BUSY#	I	TERM HV	HV	Short to
			STRAP		ground
	HRCOMP	I/O	TRI	TRI after RCOMP	RCOMP
	HSWING	I	IN	IN	
	HSCOMP	I/O	TRI	TRI	
	HACCVREF	I	IN	IN	

Interface	Signal Name	I/O	State During RSTIN# Assertion	State After RSTIN# De-assertion	Pull-up/ Pull-down
System Memory	SCLK_A[5:0]	0	TRI	TRI	
	SCLK_A[5:0]#	0	TRI	TRI	
Channel A	SCS_A[3:0]#	0	TRI	TRI	
	SMA_A[13:0]	0	TRI	TRI	
	SBS_A[2:0]	0	TRI	TRI	
	SRAS_A#	0	TRI	TRI	
	SCAS_A#	0	TRI	TRI	
	SWE_A#	0	TRI	TRI	
	SDQ_A[63:0]	I/O	TRI	TRI	
	SCB_A[7:0]	I/O	TRI	TRI	
	SDM_A[7:0]	0	TRI	TRI	
	SDQS_A[7:0]	I/O	TRI	TRI	
	SDQS_A[8:0]#	I/O	TRI	TRI	
	SCKE_A[3:0]	0	LV	LV	
	SCKE_A[3:0]	0	LV	LV	
	SODT_A[3:0]	0	LV	LV	
System	SCLK_B[5:0]	0	TRI	TRI	
Memory	SCLK_B[5:0]#	0	TRI	TRI	
Channel B	SCS_B[3:0]#	0	TRI	TRI	
	SMA_B[13:0]	0	TRI	TRI	
	SBS_B[2:0]	0	TRI	TRI	
	SRAS_B#	0	TRI	TRI	
	SCAS_B#	0	TRI	TRI	
	SWE_B#	0	TRI	TRI	
	SDQ_B[63:0]	I/O	TRI	TRI	
	SCB_B[7:0]	I/O	TRI	TRI	
	SDM_B[7:0]	0	TRI	TRI	
	SDQS_B[7:0]	I/O	TRI	TRI	
	SDQS_B[8:0]#	I/O	TRI	TRI	
	SCKE_B[3:0]	0	LV	LV	
	SODT_B[3:0]	0	LV	LV	
int_{el}.

Interface	Signal Name	I/O	State During RSTIN# Assertion	State After RSTIN# De-assertion	Pull-up/ Pull-down
System	SRCOMP0	I/O	TRI	TRI after RCOMP	
Memory	SRCOMP1	I/O	TRI	TRI after RCOMP	
Ref/Comp	SVREF[1:0]	I	IN	IN	
	SOCOMP[1:0]	I/O	TRI	TRI	External 40 Ω resistor to ground
PCI	EXP_RXN[15:0]	I/O	СМСТ	СМСТ	
Express*	EXP_RXP[15:0]	I/O	СМСТ	СМСТ	
	EXP_TXN[15:0]	0	CMCT 1.0V	CMCT 1.0V	
	EXP_TXP[15:0]	0	CMCT 1.0V	CMCT 1.0V	
	EXP_COMPO	0	TRI	TRI	
	EXP_COMPI	I	TRI	TRI	
	EXP_SLR	I/O	TERM HV STRAP	TERM HV	
	PRIPRSNT#	I/O	TERM HV STRAP		
	DPEN#	I/O	TERM HV STRAP		
DMI	DMI_RXN[3:0]	I/O	СМСТ	СМСТ	
	DMI_RXP[3:0]	I/O	СМСТ	СМСТ	
	DMI_TXN[3:0]	0	CMCT 1.0V	CMCT 1.0V	
	DMI_TXP[3:0]	0	CMCT 1.0V	CMCT 1.0V	
Clocks	HCLKN	I	IN	IN	
	HCLKP	I	IN	IN	
	GCLKN	I	IN	IN	
	GCLKP	I	IN	IN	

Interface	Signal Name	I/O	State During RSTIN# Assertion	State After RSTIN# De-assertion	Pull-up/ Pull-down
Misc.	RSTIN#	I	IN	IN	
	PWROK	I	HV	HV	
	ICH_SYNC#	0	PU	PU	INT 10 KΩ PU
	EXTTS#	I	IN	IN	
	BSEL[2:0]	I/O	TRI STRAP	TRI	
	XORTEST	I/O	TERM HV STRAP	TERM HV	
	ALLZTEST	I/O	TERM HV STRAP	TERM HV	

§

3 MCH Register Description

The MCH contains two sets of software accessible registers, accessed via the Host processor I/O address space: Control registers and internal configuration registers.

- Control registers are I/O mapped into the processor I/O space that control access to PCI and PCI Express configuration space (see Section 3.5).
- Internal configuration registers residing within the MCH are partitioned into two logical device register sets ("logical" since they reside within a single physical device). The first register set is dedicated to Host Bridge functionality (i.e., DRAM configuration, other chipset operating parameters, and optional features). The second register block is dedicated to Host-to-PCI Express Bridge functions (controls PCI Express interface configurations and operating parameters).

The MCH internal registers (I/O Mapped, Configuration and PCI Express extended configuration registers) are accessible by the processor. The registers that reside within the lower 256 bytes of each device can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities, with the exception of CONFIG_ADDRESS that can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field). Registers that reside in bytes 256 through 4095 of each device may only be accessed using memory-mapped transactions in DWord (32-bit) quantities.

Some of the MCH registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note the software does not need to perform read, merge, and write operation for the configuration address register.

In addition to reserved bits within a register, the MCH contains address locations in the configuration space of the Host Bridge entity that are marked either "Reserved" or "Intel Reserved". The MCH responds to accesses to "Reserved" address locations by completing the host cycle. When a "Reserved" register location is read, a zero value is returned. ("Reserved" registers can be 8-, 16-, or 32-bits in size). Writes to "Reserved" registers have no effect on the MCH. Registers that are marked as "Intel Reserved" must not be modified by system software. Writes to "Intel Reserved" registers may cause system failure. Reads from "Intel Reserved" registers may return a non-zero value.

Upon a Full Reset, the MCH sets its entire set of internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bringing up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the MCH registers accordingly.

3.1 Register Terminology

The following table shows the register-related terminology that is used.

Item	Description
RO	Read Only bit(s). Writes to these bits have no effect.
RO/S	Read Only / Sticky. Writes to these bits have no effect. These are status bits only. Bits are not returned to their default values by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits, a cold reset is "Power Good Reset" as defined in the PCI Express specification).
RS/WC	Read Set / Write Clear bit(s). These bits are set to 1 when read and then will continue to remain set until written. A write of 1 clears (sets to 0) the corresponding bit(s) and a write of 0 has no effect.
R/W	Read / Write bit(s). These bits can be read and written.
R/WC	Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A write of 1 clears (sets to 0) the corresponding bit(s) and a write of 0 has no effect.
R/WC/S	Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this bit. A write of 1 clears (sets to 0) the corresponding bit(s) and a write of 0 has no effect. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express* related bits a cold reset is "Power Good Reset" as defined in the PCI Express* Specification).
R/W/L	Read / Write / Lockable bit(s). These bits can be read and written. Additionally, there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).
R/W/S	Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is "Power Good Reset" as defined in the <i>PCI Express* Specification</i>).
R/WSC	Read / Write Self Clear bit(s). These bits can be read and written. When the bit is 1, hardware may clear the bit to 0 based upon internal events, possibly sooner than any subsequent read could retrieve a 1.
R/WSC/L	Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the bit is 1, hardware may clear the bit to 0 based upon internal events, possibly sooner than any subsequent read could retrieve a 1. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).
R/WO	Write Once bit(s). Once written, bits with this attribute become Read Only. These bits can only be cleared by a Reset.
W	Write Only. Whose bits may be written, but will always-return zeros when read. They are used for write side effects. Any data written to these registers cannot be retrieved.

3.2 Platform Configuration

In platforms that support DMI (such as this MCH) the configuration structure is significantly different from previous hub architectures. The DMI physically connects the MCH and the ICH7; so, from a configuration standpoint, the DMI is logically PCI bus 0. As a result, all devices internal to the MCH and the ICH7 appear to be on PCI bus 0.

Note: The ICH7 internal LAN controller does not appear on bus 0; it appears on the external PCI bus and this number is configurable.

The system's primary PCI expansion bus is physically attached to the ICH7 and, from a configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore, it has a programmable PCI Bus number. The PCI Express graphics attach appears to system software to be a real PCI bus behind a PCI-to-PCI bridge that is a device resident on PCI bus 0.

Note: A physical PCI bus 0 does not exist; DMI and the internal devices in the MCH and ICH7 logically constitute PCI Bus 0 to configuration software (see Figure 3-1).

Figure 3-1. Conceptual Intel[®] 975X Express Chipset Platform PCI Configuration Diagram

The MCH contains two PCI devices within a single physical component. The configuration registers for the two devices are mapped as devices residing on PCI bus 0.

• Device 0: Host Bridge/DRAM Controller. Logically this appears as a PCI device residing on PCI bus 0. Device 0 contains the standard PCI header registers, PCI Express base address register, DRAM control (including thermal/throttling control), and configuration for the DMI and other MCH specific registers.

• Devices 1 and 3: Host-PCI Express Bridge. Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus 0 and is compliant with *PCI Express* Specification, Revision 1.0a.* Devices 1 and 3 contains the standard PCI-to-PCI bridge registers and the standard PCI Express/PCI configuration registers (including the PCI Express memory address mapping). It also contains Isochronous and Virtual Channel controls in the PCI Express extended configuration space.

NOTES:

- 1. Very high level representation. Many details omitted.
- 2. Only Devices 1 and 3 use PCI Express extended configuration space.
- 3. Device 0 uses only standard PCI configuration space.
- 4. Hex numbers represent address range size and not actual locations.

3.3 Configuration Mechanisms

The processor is the originator of configuration cycles so the FSB is the only interface in the platform where these mechanisms are used. The MCH translates transactions received through both configuration mechanisms to the same format.

3.3.1 Standard PCI Configuration Mechanism

The following is the mechanism for translating processor I/O bus cycles to configuration cycles.

The *PCI Local Bus Specification* defines a slot based "configuration space" that allows each device to contain up to 8 functions with each function containing up to 256 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the processor. Configuration space is supported by a mapping mechanism implemented within the MCH.

The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O address 0CF8h though 0CFBh) and the CONFIG_DATA Register (at I/O address 0CFCh though 0CFFh). To reference a configuration register a DWord I/O write cycle is used to place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device, and a specific configuration register of the device function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA will result in the MCH translating the CONFIG_ADDRESS into the appropriate configuration cycle.

The MCH is responsible for translating and routing the processor's I/O accesses to the CONFIG_ADDRESS and CONFIG_DATA registers to internal MCH configuration registers, DMI or PCI Express.

3.3.2 PCI Express* Enhanced Configuration Mechanism

PCI Express extends the configuration space to 4096 bytes per device/function as compared to 256 bytes allowed by *PCI Local Bus Specification, Revision 2.3.* PCI Express configuration space is divided into a PCI 2.3 compatible region that consists of the first 256B of a logical device's configuration space and a PCI Express extended region that consists of the remaining configuration space.

The PCI compatible region can be accessed using either the Standard PCI Configuration Mechanism or using the PCI Express enhanced configuration mechanism described in this section. The extended configuration registers may only be accessed using the PCI Express enhanced configuration mechanism. To maintain compatibility with PCI configuration addressing mechanisms, system software must access the extended configuration space using 32-bit operations (32-bit aligned) only. These 32-bit operations include byte enables allowing only appropriate bytes within the DWord to be accessed. Locked transactions to the PCI Express memory mapped configuration address space are not supported. All changes made using either access mechanism are equivalent. The PCI Express enhanced configuration mechanism uses a flat memory-mapped address space to access device configuration registers. This address space is reported by the system firmware to the operating system. The PCIEXBAR Register defines the base address for the 256 MB block of addresses below the top of addressable memory (currently 8 GB) for the configuration space associated with all busses, devices, and functions that are potentially a part of the PCI Express root complex hierarchy. The PCIEXBAR Register has controls to limit the size of this reserved memory mapped space; 256 MB is the amount of address space required to reserve space for every bus, device, and function that could possibly exist. Options for 128 MB and 64 MB exist to free up those addresses for other uses. In these cases, the number of busses and all of their associated devices and functions are limited to 128 or 64 busses respectively.

The PCI Express configuration transaction header includes an additional 4 bits (ExtendedRegisterAddress[3:0]) between the Function Number and Register Address fields to provide indexing into the 4 KB of configuration space allocated to each potential device. For PCI Compatible Configuration Requests, the Extended Register Address field must be all zeros.

Figure 3-3. Memory Map to PCI Express* Device Configuration Space

As with PCI devices, each device is selected based on decoded address information that is provided as a part of the address portion of Configuration Request packets. A PCI Express device will decode all address information fields (bus, device, function, and extended address numbers) to provide access to the correct register.

To access this space (steps 1, 2, and 3 are completed only once by BIOS),

- 1. use the PCI compatible configuration mechanism to enable the PCI Express enhanced configuration mechanism by writing 1 to bit 0 of the PCIEXBAR register.
- 2. use the PCI compatible configuration mechanism to write an appropriate PCI Express base address into the PCIEXBAR register
- calculate the host address of the register you wish to set using (PCI Express base + (bus number * 1 MB) + (device number * 32KB) + (function number * 4 KB) + (1 B * offset within the function) = host address)
- 4. use a memory write or memory read cycle to the calculated host address to write or read that register.

3.4 Routing Configuration Accesses

The MCH supports two PCI related interfaces: DMI and PCI Express. The MCH is responsible for routing PCI and PCI Express configuration cycles to the appropriate device that is an integrated part of the MCH or to one of these two interfaces. Configuration cycles to the ICH7 internal devices and Primary PCI (including downstream devices) are routed to the ICH7 via DMI. Configuration cycles to both the PCI Express graphics PCI compatibility configuration space, and the PCI Express graphics extended configuration space are routed to the PCI Express graphics port device or associated link.

Figure 3-4. MCH Configuration Cycle Flow Chart

3.4.1 Internal Device Configuration Accesses

The MCH decodes the Bus Number (bits 23:16) and the Device Number fields of the CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0, the configuration cycle is targeting a PCI Bus #0 device. If the targeted PCI Bus #0 device exists in the MCH and is not disabled, the configuration cycle is claimed by the appropriate device.

3.4.2 Bridge Related Configuration Accesses

Configuration accesses on PCI Express or DMI are PCI Express configuration TLPs (Transaction Layer Packets):

- Bus Number [7:0] is Header Byte 8 [7:0]
- Device Number [4:0] is Header Byte 9 [7:3]
- Function Number [2:0] is Header Byte 9 [2:0]

And special fields for this type of TLP:

- Extended Register Number [3:0] is Header Byte 10 [3:0]
- Register Number [5:0] is Header Byte 11 [7:2]

See the PCI Express specification for more information on both the PCI 2.3 compatible and PCI Express enhanced configuration mechanism and transaction rules.

3.4.2.1 PCI Express* Configuration Accesses

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express enhanced configuration access matches the Device #1 Secondary Bus Number, a PCI Express Type 0 configuration TLP is generated on the PCI Express link targeting the device directly on the opposite side of the link. This should be Device #0 on the bus number assigned to the PCI Express link (likely Bus #1).

The device on other side of link must be Device #0. The MCH will Master Abort any Type 0 configuration access to a non-zero Device number. If there is to be more than one device on that side of the link, there must be a bridge implemented in the downstream device.

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express enhanced configuration access is within the claimed range (between the upper bound of the bridge device's Subordinate Bus Number register and the lower bound of the bridge device's Secondary Bus Number register) but does not match the Device #1 Secondary Bus Number, a PCI Express Type 1 configuration TLP is generated on the secondary side of the PCI Express link.

PCI Express Configuration Writes:

- Internally, the host interface unit translates writes to PCI Express extended configuration space to configuration writes on the backbone.
- Writes to extended space are posted on the FSB, but non-posted on the PCI Express or DMI (i.e., translated to configuration writes).

3.4.2.2 DMI Configuration Accesses

Accesses to disabled MCH internal devices, bus numbers not claimed by the Host-PCI Express bridge, or PCI Bus #0 devices not part of the MCH (#2 through #31) will subtractively decode to the ICH7 and, consequently, be forwarded over the DMI via a PCI Express configuration TLP.

If the Bus Number is zero, the MCH will generate a Type 0 configuration cycle TLP on DMI. If the Bus Number is non-zero, and falls outside the range claimed by the Host-PCI Express bridge, the MCH will generate a Type 1 configuration cycle TLP on DMI.

The ICH7 routes configuration accesses in a manner similar to the MCH. The ICH7 decodes the configuration TLP and generates a corresponding configuration access. Accesses targeting a device on PCI Bus #0 may be claimed by an internal device. The ICH7 compares the non-zero Bus Number with the Secondary Bus Number and Subordinate Bus Number registers of its PCI-to-PCI bridges to determine if the configuration access is meant for Primary PCI, one of the ICH7's devices, the DMI, or some other downstream PCI bus or PCI Express link.

Configuration accesses that are forwarded to the ICH7, but remain unclaimed by any device or bridge will result in a master abort.

3.5 I/O Mapped Registers

The MCH contains two registers that reside in the processor I/O address space: the Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The Configuration Address Register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

3.5.1 CONFIG_ADDRESS—Configuration Address Register

I/O Address: Default Value: Access: Size: 0CF8–0CFBh Accessed as a DW 00000000h R/W 32 bits

CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DWord. A Byte or Word reference will "pass through" the Configuration Address Register and DMI onto the Primary PCI bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended.

Bit	Access & Default	Description
31	R/W 0b	Configuration Enable (CFGE): 1 = Enable. Accesses to PCI configuration space are enabled. 0 = Disable.
30:24		Reserved

Bit	Access & Default	Description
23:16	R/W 00h	Bus Number: If the Bus Number is programmed to 00h, the target of the configuration cycle is a PCI Bus #0 agent. If this is the case and the MCH is not the target (i.e., the device number is =2 or >=4), then a DMI Type 0 configuration cycle is generated.
		If the Bus Number is non-zero, and does not fall within the ranges enumerated by device 1 or 3's Secondary Bus Number or Subordinate Bus Number Register, then a DMI Type 1 configuration cycle is generated.
		If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number Register of device 1 or 3, a Type 0 PCI configuration cycle will be generated on PCI Express.
		If the Bus Number is non-zero, greater than the value in the Secondary Bus Number register of device 1 or 3 and less than or equal to the value programmed into the Subordinate Bus Number Register of device 1 or 3, a Type 1 PCI configuration cycle will be generated on PCI Express.
		This field is mapped to byte 8 [7:0] of the request header format during PCI Express configuration cycles and A[23:16] during the DMI Type 1 configuration cycles.
15:11	R/W 00h	Device Number: This field selects one agent on the PCI bus selected by the Bus Number. When the Bus Number field is "00", the MCH decodes the Device Number field. The MCH is always Device Number 0 for the Host bridge entity, Device Number 1 for the Host-PCI Express entity. Therefore, when the Bus Number =0 and the Device Number equals 0, 1 or 3, the internal MCH devices are selected.
		This field is mapped to byte 6 [7:3] of the request header format during PCI Express configuration cycles and A[15:11] during the DMI configuration cycles.
10:8	R/W 000b	Function Number: This field allows the configuration registers of a particular function in a multi-function device to be accessed. The MCH ignores configuration cycles to its internal devices if the function number is not equal to 0.
		This field is mapped to byte 6 [2:0] of the request header format during PCI Express configuration cycles and A[10:8] during the DMI configuration cycles.
7:2	R/W 00h	Register Number: This field selects one register within a particular Bus, Device, and Function as specified by the other fields in the Configuration Address Register.
		This field is mapped to byte 7 [7:2] of the request header format during PCI Express configuration cycles and A[7:2] during the DMI configuration cycles.
1:0		Reserved

3.5.2 **CONFIG_DATA—Configuration Data Register**

I/O Address: Default Value: Access: Size: 0CFCh-0CFF 00000000h R/W 32 bits

CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.

Bit	Access & Default	Description	
31:0	R/W 0000 0000h	Configuration Data Window (CDW): If bit 31 of CONFIG_ADDRESS is 1, any I/O access to the CONFIG_DATA register will produce a configuration transaction using the contents of CONFIG_ADDRESS to determine the bus, device, function, and offset of the register to be accessed.	

§

4 Host Bridge Registers (D0:F0)

This chapter contains the host bridge registers that are in Device 0 (D0), Function 0 (F0). The DRAM Controller registers are in D0:F0. Table 4-1 is an address map for D0:F0; registers are listed by address offset in ascending order. Section 4.1 provides detailed bit descriptions of the registers listed in Table 4-1. All registers that are defined in the PCI 2.3 specification, but are not necessary or implemented in this component are not included in this document.

Warning: Address locations that are not listed are considered Intel Reserved register locations. Reads to Reserved address locations may return non-zero values. Writes to reserved locations may cause system failures.

Address Offset	Symbol	Register Name	Default Value	Access
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	277Ch	RO
04–05h	PCICMD	PCI Command	0006h	RO, R/W
06–07h	PCISTS	PCI Status	0090h	RO, R/W/C
08h	RID	Revision Identification	See register description	RO
09–0Bh	СС	Class Code	060000h	RO
0Ch	—	Reserved	—	—
0Dh	MLT	Master Latency Timer	00h	RO
0Eh	HDR	Header Type	00h	RO
0F–2Bh	—	Reserved	—	—
2C–2Dh	SVID	Subsystem Vendor Identification	0000h	R/WO
2E–2Fh	SID	Subsystem Identification	0000h	R/WO
30–33h	—	Reserved	—	—
34h	CAPPTR	Capabilities Pointer	E0h	RO
35–3Fh	—	Reserved	—	—
40–43h	EPBAR	Egress Port Base Address	00000000h	RO
44–47h	MCHBAR	MCH Memory Mapped Register Range Base Address	00000000h	R/W
48–4Bh	PCIEXBAR	PCI Express* Register Range Base Address	E0000000h	R/W
4C–4Fh	DMIBAR	Root Complex Register Range Base Address	00000000h	R/W
50–53h	—	Reserved	—	_

Table 4-1. Host Bridge Register Address Map (D0:F0)

Address Offset	Symbol	Register Name	Default Value	Access
54–57h	DEVEN	Device Enable	0000003h	R/W
58–5Bh	DEAP	DRAM Error Address	00000000h	RO/S
5Ch	DERRSYN	DRAM Error Syndrome	00h	RO/S
5Dh	DERRDST	DRAM Error Destination	00h	RO/S
5E–8Fh	_	Reserved	_	—
90h	PAM0	Programmable Attribute Map 0	00h	R/W
91h	PAM1	Programmable Attribute Map 1	00h	R/W
92h	PAM2	Programmable Attribute Map 2	00h	R/W
93h	PAM3	Programmable Attribute Map 3	00h	R/W
94h	PAM4	Programmable Attribute Map 4	00h	R/W
95h	PAM5	Programmable Attribute Map 5	00h	R/W
96h	PAM6	Programmable Attribute Map 6	00h	R/W
97h	LAC	Legacy Access Control	00h	R/W
98–99h	REMAPBASE	Remap Base Address	03FFh	RW
9A–9Bh	REMAPLIMIT	Remap Limit Address	0000h	RW
9Ch	TOLUD	Top of Low Usable DRAM	08h	R/W
9Dh	SMRAM	System Management RAM Control	02h	RO, R/W/L, R/W
9Eh	ESMRAMC	Extended System Management RAM Control	38h	RO, R/W/L
9Fh	_	Reserved	—	—
A0–A1h	ТОМ	Top of Memory	0001h	R/W
A2–C7h	—	Reserved	—	—
C8–C9h	ERRSTS	Error Status	0000h	RO, R/WC/S
CA–CBh	ERRCMD	Error Command	0000h	R/W
CC–CDh	SMICMD	SMI Command	0000h	RO, R/W
CE-CFh	SCICMD	SCI Command	0000h	RO, R/W
DA-DBh	—	Reserved	_	_
DC–DFh	SKPD	Scratchpad Data	00000000h	R/W
E0–E8h	CAPID0	Capability Identifier	06089BA10 251090009h	RO
FCh	EDEAP	Extended DRAM Error Address Pointer	00h	RO/S

4.1 Configuration Register Details (D1:F0)

4.1.1 VID—Vendor Identification (D0:F0)

PCI Device:	0
Address Offset:	00–01h
Default Value:	8086h
Access:	RO
Size:	16 bits

This register combined, with the Device Identification register, uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 8086h	Vendor Identification Number (VID): PCI standard identification for Intel.

4.1.2 DID—Device Identification (D0:F0)

PCI Device:	0
Address Offset:	02–03h
Default Value:	2774h
Access:	RO
Size:	16 bits

This register, combined with the Vendor Identification register, uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 277Ch	Device Identification Number (DID): Identifier assigned to the MCH core/primary PCI device.

4.1.3 PCICMD—PCI Command (D0:F0)

PCI Device:	0
Address Offset:	04–05h
Default Value:	0006h
Access:	RO, R/W
Size:	16 bits

Since MCH Device 0 does not physically reside on Primary PCI bus, many of the bits are not implemented.

Bit	Access & Default	Description
15:10		Reserved
9	RO 0b	Fast Back-to-Back Enable (FB2B): Not implemented. Hardwired to 0. This bit controls whether or not the master can do fast back-to-back write. Since device 0 is strictly a target, this bit is not implemented.
8	R/W 0b	SERR Enable (SERRE): This bit is a global enable bit for Device 0 SERR messaging. The MCH does not have a SERR signal. The MCH communicates the SERR condition by sending a SERR message over DMI to the Intel [®] ICH7.
		0 = Disable. SERR message is not generated by the MCH for Device 0
		1 = The MCH is enabled to generate SERR messages over DMI for specific Device 0 error conditions that are individually enabled in the ERRCMD Register. The error status is reported in the ERRSTS, and PCISTS Registers.
		NOTE: This bit only controls SERR messaging for the Device 0. Devices 1 and 3 have their own SERRE bits to control error reporting for error conditions occurring in that device. The control bits are used in a logical OR manner to enable the SERR DMI message mechanism.
7	RO 0b	Address/Data Stepping Enable (ADSTEP): Not implemented. Hardwired to 0. Address/data stepping is not implemented in the MCH.
6	RO 0b	Parity Error Enable (PERRE): Not implemented. Hardwired to 0. PERR# is not implemented by the MCH.
5	RO 0b	VGA Palette Snoop Enable (VGASNOOP): Not implemented. Hardwired to 0.
4	RO 0b	Memory Write and Invalidate Enable (MWIE): Not implemented. Hardwired to 0. The MCH will never issue memory write and invalidate commands.
3		Reserved
2	RO 1b	Bus Master Enable (BME): Hardwired to 1. The MCH is always enabled as a master.
1	RO 1b	Memory Access Enable (MAE): Hardwired to 1. The MCH always allows access to main memory.
0	RO 0b	I/O Access Enable (IOAE): Not implemented. Hardwired to 0.

4.1.4 PCISTS—PCI Status (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 06–07h 0090h RO, R/W/C 16 bits

This status register reports the occurrence of error events on Device 0's PCI interface. Since the MCH Device 0 does not physically reside on Primary PCI, many of the bits are not implemented.

Bit	Access & Default	Description
15	RO 0b	Detected Parity Error (DPE): Not implemented. Hardwired to 0.
14	R/WC	Signaled System Error (SSE): Software clears this bit by writing a 1 to it.
	0b	0 = MCH Device 0 did Not generate a SERR message over DMI
		1 = MCH Device 0 generated a SERR message over DMI for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD, and ERRCMD registers. Device 0 error flags are read/reset from the PCISTS, or ERRSTS registers.
13	R/WC 0b	Received Master Abort Status (RMAS): Software clears this bit by writing a 1 to it.
		0 = MCH did Not generate a DMI request that received an Unsupported Request completion packet.
		1 = MCH generated a DMI request that received an Unsupported Request completion packet.
12	R/WC 0b	Received Target Abort Status (RTAS): Software clears this bit by writing a 1 to it.
		0 = MCH did Not generate a DMI request that received a Completer Abort completion packet.
		1 = MCH generated a DMI request that receives a Completer Abort completion packet.
11	RO 0b	Signaled Target Abort Status (STAS): Not implemented. Hardwired to 0. The MCH will not generate a Target Abort DMI completion packet or Special Cycle.
10:9	RO 00b	DEVSEL Timing (DEVT): These bits are hardwired to "00". Device 0 does not physically connect to Primary PCI. These bits are set to "00" (fast decode) so that optimum DEVSEL timing for Primary PCI is not limited by the MCH.
8	RO 0b	Master Data Parity Error Detected (DPD): Not implemented. Hardwired to 0.
7	RO 1b	Fast Back-to-Back (FB2B): Hardwired to 1. Device 0 does not physically connect to the Primary PCI. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for Primary PCI is not limited by the MCH.
6		Reserved
5	RO 0b	66 MHz Capable: Hardwired to 0. This bit does not apply to PCI Express*.

Bit	Access & Default	Description
4	RO 1b	Capability List (CLIST): This bit is hardwired to 1 to indicate to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is accessed via the CAPPTR register (offset 34h). The CAPPTR Register contains an offset pointing to the start address within configuration space of this device where the Capability standard register resides.
3:0		Reserved

4.1.5 **RID—Revision Identification (D0:F0)**

PCI Device:	0
Address Offset:	08h
Default Value:	See register table below
Access:	RO
Size:	8 bits

This register contains the revision number of the MCH Device 0. These bits are read only and writes to this register have no effect.

Bit	Access & Default	Description
7:0	RO	Revision Identification Number (RID): This is an 8-bit value that indicates the revision identification number for the MCH Device 0. Refer to the <i>Intel</i> [®] 975X <i>Express Chipset Specification Update</i> for the value of the Revision ID Register.

4.1.6 CC—Class Code (D0:F0)

PCI Device:	0
Address Offset:	09–0Bh
Default Value:	060000h
Access:	RO
Size:	24 bits

This register identifies the basic function of the device, a more specific sub-class, and a registerspecific programming interface.

Bit	Access & Default	Description
23:16	RO 06h	Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the MCH.
		06h = Bridge device.
15:8	RO 00h	Sub-Class Code (SUBCC): This is an 8-bit value that indicates the category of Bridge into which the MCH falls.
		00h = Host Bridge.
7:0	RO 00h	Programming Interface (PI): This is an 8-bit value that indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

4.1.7 MLT—Master Latency Timer (D0:F0)

PCI Device:	0
Address Offset:	0Dh
Default Value:	00h
Access:	RO
Size:	8 bits

Device 0 in the MCH is not a PCI master. Therefore, this register is not implemented.

Bit	Access & Default	Description
7:0		Reserved

4.1.8 HDR—Header Type (D0:F0)

PCI Device:	0
Address Offset:	0Eh
Default Value:	00h
Access:	RO
Size:	8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access & Default	Description
7:0	RO 00h	PCI Header (HDR): This field always returns 0 to indicate that the MCH is a single function device with standard header layout. Reads and writes to this location have no effect.

4.1.9 SVID—Subsystem Vendor Identification (D0:F0)

PCI Device:	0
Address Offset:	2C–2Dh
Default Value:	0000h
Access:	R/WO
Size:	16 bits

This register is used to identify the vendor of the subsystem.

Bit	Access & Default	Description
15:0	R/WO 0000h	Subsystem Vendor ID (SUBVID): This field should be programmed during boot- up to indicate the vendor of the system board. After it has been written once, it becomes read only.

4.1.10 SID—Subsystem Identification (D0:F0)

PCI Device:	0
Address Offset:	2E–2Fh
Default Value:	0000h
Access:	R/WO
Size:	16 bits

This register is used to identify a particular subsystem.

Bit	Access & Default	Description
15:0	R/WO 0000h	Subsystem ID (SUBID): This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

4.1.11 CAPPTR—Capabilities Pointer (D0:F0)

PCI Device:	0
Address Offset:	34h
Default Value:	E0h
Access:	RO
Size:	8 bits

The CAPPTR Register provides the offset that is the pointer to the location of the first device capability in the capability list.

Bit	Access & Default	Description
7:0	RO E0h	Pointer to the Offset of the First Capability ID Register Block: In this case the first capability is the product-specific Capability Identifier (CAPID0).

4.1.12 EPBAR—Egress Port Base Address (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 40–43h 00000000h RO 32 bits

This is the base address for the Egress Port MMIO Configuration space. There is no physical memory within this 4-KB window that can be addressed. The 4 KB space reserved by this register does not alias to any PCI 2.3 compliant memory mapped space.

Note: On reset, this register is disabled and must be enabled by writing a 1 to EPBAREN.

Bit	Access & Default	Description
31:12	R/W 00000h	Egress Port MMIO Base Address: This field corresponds to bits 31:12 of the base address Egress Port MMIO configuration space.
		BIOS will program this register resulting in a base address for a 4-KB block of contiguous memory address space. This register ensures that a naturally aligned 4-KB space is allocated within total addressable memory space of 4 GB.
		System software uses this base address to program the MCH MMIO register set.
11:1		Reserved
0	R/W	EPBAR Enable (EPBAREN):
	0b	0 = Disable. EPBAR is disabled and does not claim any memory.
		1 = Enable. EPBAR memory mapped accesses are claimed and decoded appropriately

4.1.13 MCHBAR—MCH Memory Mapped Register Range Base Address (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 44–47h 00000000h R/W 32 bits

This is the base address for the MCH memory mapped configuration space. There is no physical memory within this 16-KB window that can be addressed. The 16 KB space reserved by this register does not alias to any PCI 2.3 compliant memory mapped space.

Note: On reset, this register is disabled and must be enabled by writing a 1 to MCHBAREN.

Bit	Access & Default	Description
31:14	R/W 00000h	MCH Memory Mapped Base Address: This field corresponds to bits 31:14 of the base address MCH Memory Mapped configuration space.
		BIOS will program this register resulting in a base address for a 16-KB block of contiguous memory address space. This register ensures that a naturally aligned 16-KB space is allocated within total addressable memory space of 4 GB.
		System software uses this base address to program the MCH Memory Mapped register set.
13:1		Reserved
0	R/W	MCHBAR Enable (MCHBAREN):
	0b	0 = Disable. MCHBAR is disabled and does not claim any memory
		1 = Enable. MCHBAR memory mapped accesses are claimed and decoded appropriately

4.1.14 PCIEXBAR—PCI Express* Register Range Base Address (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 48–4Bh E0000000h R/W 32 bits

This is the base address for the PCI Express configuration space. This window of addresses contains the 4 KB of configuration space for each PCI Express device that can potentially be part of the PCI Express hierarchy associated with the MCH. There is not actual physical memory within this window of up to 256-MBs that can be addressed. The actual length is determined by a field in this register. Each PCI Express hierarchy requires a PCI Express BASE register. The MCH supports one PCI Express hierarchy.

The region reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. For example, MCHBAR reserves a 16-KB space outside of PCIEXBAR space. It cannot be overlaid on the space reserved by PCIEXBAR for device 0.

On reset, this register is disabled and must be enabled by writing a 1 to the enable field in this register. This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register) above TOLUD and still within total 32 bit addressable memory space.

All other bits not decoded are read only 0. The PCI Express Base Address cannot be less than the maximum address written to the Top of physical memory register (TOLUD). Software must ensure that these ranges do not overlap with known ranges located above TOLUD.

Bit	Access & Default	Description
31:28	R/W Eh	PCI Express* Base Address: This field corresponds to bits 31:28 of the base address for PCI Express enhanced configuration space. BIOS will program this register resulting in a base address for a contiguous memory address space; size is defined by bits 2:1 of this register.
		This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register) above TOLUD and still within total 32-bit addressable memory space. The address bits decoded depend on the length of the region defined by this register.
		The address used to access the PCI Express configuration space for a specific device can be determined as follows:
		PCI Express Base Address + Bus Number * 1MB + Device Number * 32KB + Function Number * 4KB
		The address used to access the PCI Express configuration space for Device 1 or 3 in this component would be PCI Express Base Address $+ 0 * 1MB + 1 * 32KB + 0 * 4KB = PCI Express Base Address + 32KB. Remember that this address is the beginning of the 4 KB space that contains both the PCI compatible configuration space and the PCI Express extended configuration space.$

Bit	Access & Default	Description
27	R/W 0b	128 MB Base Address Mask (128ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the address mask (RO, read 0b), depending on the value of bits 2:1 in this register.
26	R/W 0b	64MB Base Address Mask (64ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the address mask (RO, read 0b), depending on the value of bits 2:1 in this register
25:3		Reserved
2:1	R/W 00b	Length (LENGTH): This Field describes the length of this region: Enhanced Configuration Space Region/Buses Decoded.
		00 = 256 MB (buses 0–255). Bits 31:28 are decoded in the PCI Express Base Address Field
		01 = 128 MB (Buses 0–127). Bits 31:27 are decoded in the PCI Express Base Address Field.
		10 = 64 MB (Buses 0–63). Bits 31:26 are decoded in the PCI Express Base Address Field.
		11 = Reserved
0	R/W	PCIEXBAR Enable (PCIEXBAREN):
	Oh	0 = PCIEXBAR Register is disabled. Memory read and write transactions proceed as if there were no PCIEXBAR Register. PCIEXBAR bits 31:26 are R/W with no functionality behind them.
		1 = PCIEXBAR Register is enabled. Memory read and write transactions whose address bits 31:26 match PCIEXBAR will be translated to configuration reads and writes within the MCH.

4.1.15 DMIBAR—Root Complex Register Range Base Address (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 4C–4Fh 00000000h R/W 32 bits

This is the base address for the Root Complex configuration space. This window of addresses contains the Root Complex Register set for the PCI Express hierarchy associated with the MCH. There is no physical memory within this 4-KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space.

On reset, this register is disabled and must be enabled by writing a 1 to the DMIBAREN in this register.

Bit	Access & Default	Description
31:12	R/W 00000h	DMI Base Address: This field corresponds to bits 31:12 of the base address DMI configuration space.
		BIOS will program this register resulting in a base address for a 4-KB block of contiguous memory address space. This register ensures that a naturally aligned 4-KB space is allocated within total addressable memory space of 4 GB.
		System Software uses this base address to program the DMI register set.
11:1		Reserved
0	R/W	DMIBAR Enable (DMIBAREN):
	Ob	0 = Disable. DMIBAR is disabled and does not claim any memory
		1 = Enable. DMIBAR memory mapped accesses are claimed and decoded appropriately

4.1.16 DEVEN—Device Enable (D0:F0)

0
54–57h
0000003h
R/W
32 bits

This register allows for enabling/disabling of PCI devices and functions that are within the MCH.

Bit	Access & Default	Description
31:3		Reserved
2 R/W		PCI Express* Port (D3EN):
	1b	0 = Disable. Bus 0, Device 3, Function 0 is disabled and hidden.
		1 = Enable. Bus 0, Device 3, Function 0 is enabled and visible.
		BIOS Requirement: The link must be disabled (see Dev 3 B0h[4]) prior to the device being disabled
1	R/W	PCI Express* Port (D1EN):
	1b	0 = Disable. Bus 0, Device 1, Function 0 is disabled and hidden.
		1 = Enable. Bus 0, Device 1, Function 0 is enabled and visible.
		Device 1 must not be disabled when Device 3 is enabled.
		BIOS Requirement: The link must be disabled (see Dev 1 B0h[4]) prior to the device being disabled.
0	RO 1b	Host Bridge: Hardwired to 1. Bus 0, Device 0, Function 0 may not be disabled.

4.1.17 **DEAP—DRAM Error Address Pointer (D0:F0)**

PCI Device: Address Offset: Default Value: Access: Size: 0 58–5Bh 00000000h RO/S 32 bits

This register contains the address of detected DRAM ECC error(s).

Bit	Access & Default	Description
31:7	RO/S 0000000h	Error Address Pointer (EAP): This field is used to store the 128B (Two Cache Line) address of main memory for which an error (single bit or multi-bit error) has occurred. The address is captured after any address remapping through REMAPBASE/ REMAPLIMIT is applied, such that all physical system memory appears as a contiguous logical address block. It is valid to compare this address against C0DRB* and C1DRB* registers to determine which rank of memory failed.
		Note that the value of this bit field represents the address of the first single or the first multiple bit error occurrence after the error flag bits in the ERRSTS Register have been cleared by software. A multiple bit error will overwrite a single bit error. Once the error flag bits are set as a result of an error, this bit field is locked and doesn't change as a result of a new error. These bits are reset on PWROK.
6:1		Reserved
0	RO/S 0b	Channel Indicator (CHI): This bit indicates which memory channel had the error. 0 = Channel 0
		1 = Channel 1

4.1.18 DERRSYN— DRAM Error Syndrome (D0:F0)

0
5Ch
00h
RO/S
8 bits

This register is used to report the ECC syndromes for each quadword of a 32B-aligned data quantity read from the DRAM array.

Bit	Access & Default	Description
7:0	RO/S 00h	DRAM ECC Syndrome (DECCSYN): After a DRAM ECC error on any QWord of the data chunk resulting from a read command, hardware loads this field with a syndrome that describes the set of bits associated with the first QWord containing an error. Note that this field is locked from the time that it is loaded up to the time when the error flag is cleared by software. If the first error was a single bit, correctable error, then a subsequent multiple bit error on any of the QWords in this read transaction or any subsequent read transaction will cause the field to be re-recorded. When a multiple bit error is recorded, then the field is locked until the error flag is cleared by software. In all other cases, an error, which occurs after the first error, and before the error flag, has been cleared by software, will escape recording. These bits are reset on PWROK.

4.1.19 **DERRDST—DRAM Error Destination (D0:F0)**

0
5Dh
00h
RO/S
8 bits

This register is used to report the destination of the data containing an ECC error whose address is recorded in DEAP.

Bit	Access & Default	Description
7:6		Reserved
5:0	RO/S 00 0000b	ECC Error Source Code (EESC): This field is updated concurrently with DERRSYN.
		00h= Processor to memory reads01h - 07h= Reserved08h - 09h= DMI VC0 initiated and targeting cycles/data0Ah - 0Bh= DMI VC1 initiated and targeting cycles/data0Ch - DMI= VCp initiated and targeting cycle/data0Dh - 0Fh= Reserved10h= Primary PCI Express initiated and targeting cycles/data11h= Reserved12h= Primary PCI Express initiated and targeting cycles/data13h= Reserved14h - 15h= Primary PCI Express initiated and targeting cycles/data16h - 1Fh= Reserved20h= Secondary PCI Express initiated and targeting cycles/data21h= Reserved22h= Secondary PCI Express initiated and targeting cycles/data23h= Reserved24h - 15h= Secondary PCI Express initiated and targeting cycles/data23h= Reserved24h - 15h= Secondary PCI Express initiated and targeting cycles/data26h - 27h= Reserved

4.1.20 PAM0—Programmable Attribute Map 0 (D0:F0)

PCI Device:	0
Address Offset:	90h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h to 0FFFFFh

The MCH allows programmable memory attributes on 13 Legacy memory segments of various sizes in the 768-KB to 1-MB address range. Seven Programmable Attribute Map (PAM) registers support these features. Cache ability of these areas is controlled via the MTRR registers in the P6 processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:

- RE (Read Enable). When RE = 1, the processor read accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when RE = 0, the host read accesses are directed to PRIMARY PCI.
- WE (Write Enable). When WE = 1, the host write accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when WE = 0, the host write accesses are directed to PRIMARY PCI.

The RE and WE attributes permit a memory segment to be read only, write only, read/write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is read only.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00b	0F0000–0FFFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that addresses the BIOS area from 0F0000h to 0FFFFFh.
		00 = DRAM Disabled: All accesses are directed to the DMI.
		01 = Read Only: All reads are sent to DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:0		Reserved

Each PAM Register controls two regions, typically 16 KB in size.

Warning: The MCH may hang if a PCI Express graphics attach or DMI originated access to Read Disabled or Write Disabled PAM segments occur (due to a possible IWB to non-DRAM). For these reasons, the following critical restriction is placed on the programming of the PAM regions:

At the time that a DMI or PCI Express graphics attach accesses to the PAM region may occur, the targeted PAM segment must be programmed to be both readable and writeable.

4.1.21 PAM1—Programmable Attribute Map 1 (D0:F0)

PCI Device:	0
Address Offset:	91h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C000h-0C7FFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00b	0C4000–0C7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C4000h to 0C7FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2		Reserved
1:0	R/W 00b	0C0000–0C3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C0000h to 0C3FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.22 PAM2—Programmable Attribute Map 2 (D0:F0)

PCI Device:	0
Address Offset:	92h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h–0CFFFFh.

Bit	Access & Default	Description	
7:6		Reserved	
5:4	R/W	0CC000–0CFFFFh Attribute (HIENABLE):	
	00b	00 = DRAM Disabled: Accesses are directed to the DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	
3:2		Reserved	
1:0	R/W 00b	0C8000–0CBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C8000h to 0CBFFFh.	
		00 = DRAM Disabled: Accesses are directed to the DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	

4.1.23 PAM3—Programmable Attribute Map 3 (D0:F0)

PCI Device:	0
Address Offset:	93h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h–0D7FFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00 b	0D4000–0D7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D4000h to 0D7FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2		Reserved
1:0	R/W 00 b	0D0000–0D3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D0000h to 0D3FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.24 PAM4—Programmable Attribute Map 4 (D0:F0)

PCI Device:	0
Address Offset:	94h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h–0DFFFFh.

Bit	Access & Default	Description	
7:6		Reserved	
5:4	R/W 00b	0DC000–0DFFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0DC000h to 0DFFFFh.	
		00 = DRAM Disabled: Accesses are directed to the DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	
3:2		Reserved	
1:0	R/W 00b	0D8000–0DBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D8000h to 0DBFFFh.	
		00 = DRAM Disabled: Accesses are directed to the DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	

4.1.25 PAM5—Programmable Attribute Map 5 (D0:F0)

PCI Device:	0
Address Offset:	95h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h-0E7FFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00b	0E4000–0E7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2		Reserved
1:0	R/W 00b	0E0000–0E3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.26 PAM6—Programmable Attribute Map 6 (D0:F0)

PCI Device:	0
Address Offset:	96h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h–0EFFFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00b	0EC000h–0EFFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2		Reserved
1:0	R/W 00b	0E8000–0EBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh.
		00 = DRAM Disabled: Accesses are directed to the DMI.
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.27 LAC—Legacy Access Control (D0:F0)

PCI Device:	0
Address Offset:	97h
Default Value:	00h
Access:	R/W
Size:	8 bits

This 8-bit register controls a fixed DRAM hole from 15–16 MB.

Bit	Access & Default	Description
7	R/W 0b	Hole Enable (HEN): This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped.
		0 = No memory hole.
		1 = Memory hole from 15 MB to 16 MB.
6:1		Reserved
int_{el}.

Bit	Access & Default			Description	
0	R/W 0b	MDA Present (MDAP): This bit works with the VGA Enable bits in the BCTRL Register of Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if device 1's VGA Enable bit is not set. Software must ensure the setting of the VGA Enable bits in device 1 and device 3 are mutually exclusive.			
		If device 1's x3BFh are fo		e bit is not set, then accesses to I/O address range x3BCh– the DMI.	
		range x3BCI	n–x3BFh are	set and MDA is not present, then accesses to I/O address e forwarded to the PEG corresponding to this control bit if corresponding IOBASE and IOLIMIT; otherwise, they are	
		MDA resour	ces are defir	ned as the following:	
		Memory:	0B0000h –	0B7FFFh	
		I/O:	I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh, (Including ISA address aliases, A [15:10] are not used in decode)		
			Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the DMI even if the reference includes I/O locations not listed above.		
		The following	g table show	s the behavior for all combinations of MDA and VGA:	
		VGAEN	MDAP	Description	
		0	0	All References to MDA and VGA space are routed to the DMI	
		0	1	Invalid combination	
		1	0	All VGA and MDA references are routed to the PEG corresponding to this control bit.	
		1	1	All VGA references are routed to the PEG corresponding to this control bit MDA references are routed to the DMI	
		VGA and MDA memory cycles can only be routed across PCI Express when MAE (PCICMD1[1]) is set.			
		VGA and MDA I/O cycles can only be routed across the PCI Express if IOAE (PCICMD1[0]) is set.			

4.1.28 **REMAPBASE—Remap Base Address (D0:F0)**

PCI Device:	0
Address Offset:	98–99h
Default Value:	03FFh
Access:	R/W
Size:	16 bits

Bit	Access & Default	Description
15:10		Reserved
9:0	R/W 3FFh	Remap Base Address [35:26] (REMAPBASE): The value in this register defines the lower boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the Remap Base Address are assumed to be 0s. Thus, the bottom of the defined memory range will be aligned to a 64 MB boundary.
		When the value in this register is greater than the value programmed into the Remap Limit register, the Remap window is disabled. NOTE: Bit 0 (Address Bit 26) must be a 0

4.1.29 REMAPLIMIT—Remap Limit Address (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 9A–9Bh 0000h R/W 16 bits

Bit	Access & Default	Description
15:10		Reserved
9:0	R/W 00h	Remap Limit Address [35:26] (REMAPLMT): The value in this register defines the upper boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the remap limit address are assumed to be 1s. Thus the top of the defined range will be one less than a 64 MB boundary. When the value in this register is less than the value programmed into the Remap Base register, the Remap window is disabled. NOTE: Bit 0 (address bit 26) must be a 0.

4.1.30 TOLUD—Top of Low Usable DRAM (D0:F0)

PCI Device:	0
Address Offset:	9Ch
Default Value:	08h
Access:	R/W
Size:	8 bits

This 8-bit register defines the Top of Low Usable DRAM. TSEG Memory are within the DRAM space defined. From the top, MCH optionally claims 1, 2, or 8 MB of DRAM for TSEG if enabled.

Bit	Access & Default	Description
7:3	R/W 01 h	Top of Low Usable DRAM (TOLUD): This register contains bits 31:27 of an address one byte above the maximum DRAM memory that is usable by the operating system. Address bits 31:27 programmed to 01h implies a minimum memory size of 128 MB.
		Configuration software must set this value to the smaller of the following 2 choices. Maximum amount memory in the system plus one byte or the minimum address allocated for PCI memory.
		Address bits 26:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register.
		If this register is set to 0000 0 b it implies 128 MB of system memory.
		Note: That the Top of Low Usable DRAM is the lowest address above TSEG.
2:0		Reserved

4.1.31 SMRAM—System Management RAM Control (D0:F0)

PCI Device:	0
Address Offset:	9Dh
Default Value:	02h
Access:	R/W/L, R/W, RO
Size:	8 bits

The SMRAMC Register controls how accesses to Compatible and Extended SMRAM spaces are treated. The Open, Close, and Lock bits function only when the G_SMRAME bit is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set.

Bit	Access & Default	Description
7		Reserved
6	R/W/L 0b	SMM Space Open (D_OPEN): When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
5	R/W 0b	SMM Space Closed (D_CLS): When D_CLS = 1, SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. Note that the D_CLS bit only applies to Compatible SMM space.
4	R/W/L 0b	SMM Space Locked (D_LCK): When D_LCK is set to 1, then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function.
3	R/W/L 0b	Global SMRAM Enable (G_SMRAME): If set to a 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADSB with SMM decode). To enable Extended SMRAM function this bit has be set to 1. Refer to the section on SMM for more details. Once D_LCK is set, this bit becomes read only.
2:0	RO 010b	Compatible SMM Space Base Segment (C_BASE_SEG): This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space; otherwise, the access is forwarded to DMI. Since the MCH supports only the SMM space between A0000h and BFFFFh, this field is hardwired to 010.

4.1.32 ESMRAMC—Extended System Management RAM Control (D0:F0)

PCI Device:	0
Address Offset:	9Eh
Default Value:	38h
Access:	R/W/L, RO
Size:	8 bits

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB.

Bit	Access & Default	Description
7	R/W/L 0b	Enable High SMRAM (H_SMRAME): This bit controls the SMM memory space location (i.e., above 1 MB or below 1 MB). When G_SMRAME = 1 and H_SMRAME = 1, the high SMRAM memory space is enabled. SMRAM accesses within the range 0FEDA0000h to 0FEDBFFFFh are remapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only.
6	R/W/C 0b	Invalid SMRAM Access (E_SMERR): This bit is set when processor has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with D-OPEN = 0. It is software's function to clear this bit. Software must write a 1 to this bit to clear it.
5	RO 1b	SMRAM Cacheable (SM_CACHE): This bit is forced to 1 by the MCH.
4	RO 1b	L1 Cache Enable for SMRAM (SM_L1): This bit is forced to 1 by the MCH.
3	RO 1b	L2 Cache Enable for SMRAM (SM_L2): This bit is forced to 1 by the MCH.
2:1	R/W/L 00b	TSEG Size (TSEG_SZ): This field selects the size of the TSEG memory block if enabled. Memory from the top of DRAM space is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit is set in the request packet. Non-SMM accesses to this memory region are sent to the DMI when the TSEG memory block is enabled.
		00 = 1-MB TSEG (TOLUD -1 M) to (TOLUD).
		01 = 2-MB TSEG (TOLUD – 2M) to (TOLUD).
		10 = 8-MB TSEG (TOLUD – 8 M) to (TOLUD).
		11 = Reserved.
		Once D_LCK has been set, these bits become read only.
0	R/W/L 0b	TSEG Enable (T_EN): This bit is for enabling of SMRAM memory for Extended SMRAM space only. When G_SMRAME =1 and TSEG_EN = 1, TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes read only.

4.1.33 TOM—Top of Memory (D0:F0)

0
A0–A1h
0001h
RO, R/W
16 bits

This register contains the size of physical memory. BIOS determines the memory size reported to the OS using this register.

Bit	Access & Default	Description
15:9		Reserved
8:0	R/W 01h	Top of Memory (TOM): This register reflects the total amount of populated physical memory. This is also the amount of addressable physical memory when remapping is used appropriate to ensure that no physical memory is wasted. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped IO). These bits correspond to address bits 35:27 (128 MB granularity). Bits 26:0 are assumed to be 0.

4.1.34 ERRSTS—Error Status (D0:F0)

PCI Device:	0
Address Offset:	C8–C9h
Default Value:	0000h
Access:	R/WC/S, RO
Size:	16 bits

This register is used to report various error conditions via the SERR DMI messaging mechanism. A SERR DMI message is generated on a 0-to-1 transition of any of these flags (if enabled by the ERRCMD and PCICMD Registers). These bits are set regardless of whether or not the SERR is enabled and generated. After the error processing is complete, the error logging mechanism can be unlocked by clearing the appropriate status bit by software writing a 1 to it.

Bit	Access & Default	Description
15:12		Reserved
11	R/WC/S 0b	 MCH Thermal Sensor Event for SMI/SCI/SERR: 0 = MCH Thermal Sensor Event for SMI/SCI/SERR has Not occurred. 1 = A MCH Thermal Sensor trip has occurred and a SMI, SCI, or SERR has been generated. The status bit is set only if a message is sent based on Thermal event enables in Error Command, SMI Command, and SCI Command Registers. A trip point can generate one of SMI, SCI, or SERR interrupts (two or more per event is invalid). Multiple trip points can generate the same interrupt, if software chooses this mode, subsequent trips may be lost. If this bit is already set, then an interrupt message will not be sent on a new thermal sensor event.

int_{el}.

Bit	Access & Default	Description
10		Reserved
9	R/WC/S	LOCK to Non-DRAM Memory Flag (LCKF):
	0b	0 = LOCK to Non-DRAM Memory Flag Not detected
		1 = The MCH has detected a lock operation to memory space that did not map into DRAM.
8	R/WC/S	Received Refresh Timeout Flag (RRTOF):
	0b	0 = No Received Refresh Timeout
		1 = 1024 memory core refreshes are enqueued.
7:2		Reserved
1	1 R/WC/S 0b	Multiple-bit DRAM ECC Error Flag (DMERR):
		0 = No Multiple-bit DRAM ECC Error.
		1 =A memory read data transfer had an uncorrectable multiple-bit error. When this bit is set the address, channel number, and device number that caused the error are logged in the DEAP register. Once this bit is set the DEAP, DERRSYN, and DERRDST fields are locked until the processor clears this bit by writing a 1. Software uses bits [1:0] to detect whether the logged error address is for Single or Multiple-bit error. This bit is reset on PWROK.
0	R/WC/S	Single-bit DRAM ECC Error Flag (DSERR):
	0b	0 = No Single-bit DRAM ECC Error
		1 = A memory read data transfer had a single-bit correctable error and the corrected data was sent for the access. When this bit is set, the address and device number that caused the error are logged in the DEAP Register. Once this bit is set, the DEAP, DERRSYN, and DERRDST fields are locked to further single bit error updates until the processor clears this bit by writing a 1. A multiple bit error that occurs after this bit is set will overwrite the DEAP and DERRSYN fields with the multiple-bit error signature and the DMERR bit will also be set. A single bit error that occurs after a multi-bit error will set this bit but will not overwrite the other fields. This bit is reset on PWROK.

4.1.35 ERRCMD—Error Command (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 CA–CBh 0000h R/W 16 bits

This register controls the MCH responses to various system errors. Since the MCH does not have an SERRB signal, SERR messages are passed from the MCH to the ICH7 over DMI. When a bit in this register is set, a SERR message will be generated on DMI when the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 via the PCI Command Register.

Bit	Access & Default	Description
15:12		Reserved
11	11 R/W	SERR on MCH Thermal Sensor Event (TSESERR):
	0b	0 = Disable. Reporting of this condition via SERR messaging is disabled.
		1 = The MCH generates a DMI SERR special cycle when bit 11 of the ERRSTS is set. The SERR must not be enabled at the same time as the SMI for the same thermal sensor event.
10		Reserved
9	R/W	SERR on LOCK to non-DRAM Memory (LCKERR):
	0b	0 = Disable. Reporting of this condition via SERR messaging is disabled.
		1 = The MCH will generate a DMI SERR special cycle whenever a processor lock cycle is detected that does not hit DRAM.
8	R/W	SERR on DRAM Refresh Timeout (DRTOERR):
	0b	0 = Disable. Reporting of this condition via SERR messaging is disabled.
		1 = The MCH generates a DMI SERR special cycle when a DRAM Refresh timeout occurs.
7:2		Reserved
1	R/W	SERR Multiple-Bit DRAM ECC Error (DMERR):
	Ob	0 = Disable. Reporting of this condition via SERR messaging is disabled. For systems not supporting ECC, this bit must be disabled.
		1 = The MCH generates an SERR message over DMI when it detects a multiple- bit error reported by the DRAM controller.
0	R/W	SERR on Single-bit ECC Error (DSERR):
	0b	0 = Disable. Reporting of this condition via SERR messaging is disabled.
		1 = The MCH generates an SERR special cycle over DMI when the DRAM controller detects a single bit error.

4.1.36 SMICMD—SMI Command (D0:F0)

PCI Device:
Address Offset:
Default Value:
Access:
Size:

0 CC–CDh 0000h RO, R/W 16 bits

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one and only one message type can be enabled.

Bit	Access & Default	Description
15:2	RO 000h	Reserved
1	R/W 0b	 SMI on Multiple-Bit DRAM ECC Error (DMESMI): 0 = Disable. Reporting of this condition via SMI messaging is disabled. For systems not supporting ECC, this bit must be disabled. 1 = The MCH generates an SMI DMI message when it detects a multiple-bit error reported by the DRAM controller.
0	R/W 0b	 SMI on Single-bit ECC Error (DSESMI): 0 = Disable. Reporting of this condition via SMI messaging is disabled. For systems that do not support ECC, this bit must be disabled. 1 = The MCH generates an SMI DMI special cycle when the DRAM controller detects a single bit error.

4.1.37 SCICMD—SCI Command (D0:F0)

PCI Device: Address Offset: Default Value: Access: Size: 0 CE–CFh 0000h RO, R/W 16 bits

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS Register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one and only one message type can be enabled.

Bit	Access & Default	Description
15:2	RO 000h	Reserved
1	R/W 0b	 SCI on Multiple-Bit DRAM ECC Error (DMESCI): 0 =Disable. Reporting of this condition via SCI messaging is disabled. For systems not supporting ECC, this bit must be disabled. 1 =The MCH generates an SCI DMI message when it detects a multiple-bit error reported by the DRAM controller.
0	R/W 0b	 SCI on Single-bit ECC Error (DSESCI): 0 =Disable. Reporting of this condition via SCI messaging is disabled. For systems that do not support ECC, this bit must be disabled. 1 =The MCH generates an SCI DMI special cycle when the DRAM controller detects a single bit error.

4.1.38 SKPD—Scratchpad Data (D0:F0)

PCI Device:	0
Address Offset:	DC–DFh
Default Value:	0000000h
Access:	R/W
Size:	32 bits

This register holds 32 writable bits with no functionality. It is for the convenience of BIOS and graphics drivers.

Bit	Access & Default	Description
31:0	R/W 00000000h	Scratchpad Data: 1 DWord of data storage.

4.1.39 CAPID0—Capability Identifier (D0:F0)

0 E0–E8h 06089BA102510900099h RO 72 bits
72 bits

Bit	Access & Default	Description
71:28		Reserved
27:24	RO 1h	CAPID Version: This field has the value 0001b to identify the first revision of the CAPID register definition.
23:16	RO 09h	CAPID Length: This field has the value 09h to indicate the structure length (9 bytes).
15:8	RO 00h	Next Capability Pointer: This field is hardwired to 00h indicating the end of the capabilities linked list.
7:0	RO 09h	CAP_ID: This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.

4.1.40 EDEAP—Extended DRAM Error Address Pointer (D0:F0)

0
FCh
00h
RO/S
8 bits

This register is used with the DEAP register. This EDEAP register contains bit 32 of the address of detected DRAM ECC error(s).

Bit	Access & Default	Description
7:1		Reserved
0	RO/S 0b	Extended Error Address Pointer (EEAP): This bit provides bit 32 of the error address after any remapping when an ECC error occurs. This bit is concatenated with bits 31:7 of the DEAP register to get bits 32:7 of the address in which an error occurred. This bit is reset on PWROK.

4.2 MCHBAR Register

The MCHBAR registers are offset from the MCHBAR base address. Table 4-2 provides an address map of the registers listed by address offset in ascending order. Detailed bit descriptions of the registers follow the table.

Table 4-2. MCHBAR Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
100h	C0DRB0	Channel 0 DRAM Rank Boundary Address 0	00h	R/W
101h	C0DRB1	Channel 0 DRAM Rank Boundary Address 1	00h	R/W
102h	C0DRB2	Channel 0 DRAM Rank Boundary Address 2	00h	R/W
103h	C0DRB3	Channel 0 DRAM Rank Boundary Address 3	00h	R/W
108h	C0DRA0	Channel 0 DRAM Rank 0,1 Attribute	00h	R/W
109h	C0DRA2	Channel 0 DRAM Rank 2,3 Attribute	00h	R/W
10Ch	CODCLKDIS	Channel 0 DRAM Clock Disable	00h	R/W
10E–10Fh	C0BNKARC	Channel 0 DRAM Bank Architecture	0000h	R/W
114–117h	C0DRT1	Channel 0 DRAM Timing Register 1	02483D22 h	R/W
120–123h	C0DRC0	Channel 0 DRAM Controller Mode 0	4000280_0 0ss_h	R/W
124–127h	C0DRC1	Channel 0 DRAM Controller Mode 1	00000000h	R/W
180h	C1DRB0	Channel 1 DRAM Rank Boundary Address 0	00h	R/W
181h	C1DRB1	Channel 1 DRAM Rank Boundary Address 1	00h	R/W
182h	C1DRB2	Channel 1 DRAM Rank Boundary Address 2	00h	R/W
183h	C1DRB3	Channel 1 DRAM Rank Boundary Address 3	00h	R/W
188h	C1DRA0	Channel 1 DRAM Rank 0,1 Attribute	00h	RO, R/W
189h	C1DRA2	Channel 1 DRAM Rank 2,3 Attribute	00h	RO, R/W
18Ch	C1DCLKDIS	Channel 1 DRAM Clock Disable	00h	RO, R/W/L
18E–18Fh	C1BNKARC	Channel 1 Bank Architecture	0000h	RO, R/W
194–197h	C1DRT1	Channel 1 DRAM Timing Register 1	02903D22 h	RO
1A0–1A3h	C1DRC0	Channel 1 DRAM Controller Mode 0	00000000h	R/W
1A4–1A7h	C1DRC1	Channel 1 DRAM Controller Mode 1	00000000h	R/W, RO, R/W/L
F10–F13h	PMCFG	Power Management Configuration	00000000h	R/W, RO

Address Offset	Register Symbol	Register Name	Default Value	Access
F14–F17h	PMSTS	Power Management Status	00000000h	R/W/C/S

4.2.1 C0DRB0—Channel A DRAM Rank Boundary Address 0

MMIO Range:	MCHBAR
Address Offset:	100h
Default Value:	00h
Access:	R/W
Size:	8 bits

The **DRAM Rank Boundary Register** defines the upper boundary address of each DRAM rank with a granularity of 32 MB. Each rank has its own single-byte **DRB** register. These registers are used to determine which chip select will be active for a given address.

Channel and rank map:

Channel A Rank 0:	100h
Channel A Rank 1:	101h
Channel A Rank 2:	102h
Channel A Rank 3:	103h
Channel B Rank 0:	180h
Channel B Rank 1:	181h
Channel B Rank 2:	182h
Channel B Rank 3:	183h

Single Channel or Asymmetric Channels Example

If the channels are independent, addresses in Channel 1 should begin where addresses in Channel 0 left off, and the address of the first rank of Channel 0 can be calculated from the technology (256 Mbit, 512 Mbit, or 1 Gbit) and the x8 or x16 configuration. With independent channels a value of 01h in **C0DRB0** indicates that 32 MB of DRAM has been populated in the first rank, and the top address in that rank is 32 MB.

Programming guide:

If Channel A is empty, all of the C0DRBs are programmed with 00h.

C0DRB0 = Total memory in ChA rank0 (in 32-MB increments)

C0DRB1 = Total memory in ChA rank0 + ChA rank1 (in 32-MB increments)

C1DRB0 = Total memory in ChA rank0 + ChA rank1 + ChA rank2 + ChA rank3 + ChB rank0 (in 32-MB increments)

If Channel B is empty, all of the C1DRBs are programmed with the same value as C0DRB3.

Interleaved Channels Example

If channels are interleaved, corresponding ranks in opposing channels will contain the same value, and the value programmed takes into account the fact that twice as many addresses are spanned by this rank compared to the single channel case. With interleaved channels, a value of 01h in **C0DRB0** and a value of 01h in **C1DRB0** indicate that 32 MB of DRAM has been populated in the first rank of each channel and the top address in that rank of either channel is 64 MB.

Programming guide:

C0DRB0 = C1DRB0 = Total memory in ChA rank0 (in 32-MB increments)

C0DRB1 = C1DRB1 = Total memory in ChA rank0 + ChA rank1 (in 32-MB increments)

C0DRB3 = C1DRB3 = Total memory in ChA rank0 + ChA rank1+ ChA rank2 + ChA rank3 (in 32-MB increments)

In all modes, if a DIMM is single sided, it appears as a populated rank and an empty rank. A DRB must be programmed appropriately for each.

Each Rank is represented by a byte. Each byte has the following format.

Bit	Access & Default	Description
7:0	R/W 00h	Channel A DRAM Rank Boundary Address: This 8 bit value defines the upper and lower addresses for each DRAM rank. Bits 6:2 are compared against Address 31:27 to determine the upper address limit of a particular rank. Bits 1:0 must be 0s. Bit 7 may be programmed to a 1 in the highest DRB (DRB3) if 4 GBs of memory is present.

4.2.2 C0DRB1—Channel A DRAM Rank Boundary Address 1

MMIO Range: Address Offset: Default Value: Access: Size:

The operation of this register is detailed in the description for the C0DRB0 Register.

MCHBAR

101h

00h

R/W 8 bits

4.2.3 C0DRB2—Channel A DRAM Rank Boundary Address 2

MMIO Range: Address Offset: Default Value: Access: Size: MCHBAR 102h 00h R/W 8 bits

The operation of this register is detailed in the description for the C0DRB0 Register.

4.2.4 C0DRB3—Channel A DRAM Rank Boundary Address 3

MMIO Range:	
Address Offset:	
Default Value:	
Access:	
Size:	

MCHBAR 103h 00h R/W 8 bits

The operation of this register is detailed in the description for the C0DRB0 Register.

4.2.5 C0DRA0—Channel A DRAM Rank 0,1 Attribute

MMIO Range:	MCHBAR
Address Offset:	108h
Default Value:	00h
Access:	R/W
Size:	8 bits

The **DRAM Rank Attribute Registers** define the page sizes to be used when accessing different ranks. These registers should be left with their default value (all zeros) for any rank that is unpopulated, as determined by the corresponding CxDRB Registers. Each byte of information in the **CxDRA** Registers describes the page size of a pair of ranks.

Channel and rank map:

Channel A Rank 0, 1:	108h
Channel A Rank 2, 3:	109h
Channel B Rank 0, 1:	188h
Channel B Rank 2, 3:	189h

Bit	Access & Default	Description
7		Reserved
6:4	R/W 000b	Channel A DRAM odd Rank Attribute: This 3 bit field defines the page size of the corresponding rank.
		000 = Unpopulated 001 = Reserved 010 = 4 KB 011 = 8 KB 100 = 16 KB Others = Reserved
3		Reserved
2:0	R/W 000b	Channel A DRAM even Rank Attribute: This 3 bit field defines the page size of the corresponding rank. 000 = Unpopulated 001 = Reserved 010 = 4 KB 011 = 8 KB 100 = 16 KB Others = Reserved

4.2.6 C0DRA2—Channel A DRAM Rank 2, 3 Attribute

MMIO Range: Address Offset: Default Value: Access: Size: MCHBAR 109h 00h R/W 8 bits

The operation of this register is detailed in the description for the C0DRA0 Register.

4.2.7 CODCLKDIS—Channel A DRAM Clock Disable

MMIO Range:	MCHBAR
Address Offset:	10Ch
Default Value:	00h
Access:	R/W
Size:	8 bits

This register can be used to disable the system memory clock signals to each DIMM slot, which can significantly reduce EMI and Power concerns for clocks that go to unpopulated DIMMs. Clocks should be enabled based on whether a slot is populated, and what kind of DIMM is present.

Bit	Access & Default	Description
7:6		Reserved
5	R/W 0b	DIMM Clock Gate Enable Pair 5: 0 = Tri-state the corresponding clock pair. 1 = Enable the corresponding clock pair.
4	R/W 0b	DIMM Clock Gate Enable Pair 4: 0 = Tri-state the corresponding clock pair. 1 = Enable the corresponding clock pair.
3	R/W 0b	DIMM Clock Gate Enable Pair 3: 0 = Tri-state the corresponding clock pair. 1 = Enable the corresponding clock pair.
2	R/W 0b	DIMM Clock Gate Enable Pair 2: 0 = Tri-state the corresponding clock pair. 1 = Enable the corresponding clock pair.
1	R/W 0b	DIMM Clock Gate Enable Pair 1: 0 = Tri-state the corresponding clock pair. 1 = Enable the corresponding clock pair.
0	R/W 0b	DIMM Clock Gate Enable Pair 0: 0 = Tri-state the corresponding clock pair. 1 = Enable the corresponding clock pair.

Note: Since there are multiple clock signals assigned to each Rank of a DIMM, it is important to clarify exactly which Rank width field affects which clock signal:

int_{el}.

Channel	Rank	Clocks Affected
0	0 or 1	SCLK_A[2:0]/ SCLK_A[2:0]#
0	2 or 3	SCLK_A[5:3]/ SCLK_A[5:3]#
1	0 or 1	SCLK_B[2:0]/ SCLK_B[2:0]#
1	2 or 3	SCLK_B[5:3]/ SCLK_B[5:3]#

4.2.8 COBNKARC—Channel A DRAM Bank Architecture

PCI Device:	MCHBAR
Function:	0
Address Offset:	10E–10Fh
Default:	0000h
Access:	R/W
Size:	16 bits

This register is used to program the bank architecture for each Rank.

Bit	Access & Default	Description
15:8		Reserved
7:6	R/W 00b	Rank 3 Bank Architecture: 00 = 4 Bank 01 = 8 Bank 1X = Reserved
5:4	R/W 00b	Rank 2 Bank Architecture: 00 = 4 Bank 01 = 8 Bank 1X = Reserved
3:2	R/W 00b	Rank 1 Bank Architecture:00 = 4 Bank01 = 8 Bank1X = Reserved
1:0	R/W 00b	Rank 0 Bank Architecture:00 = 4 Bank01 = 8 Bank1X = Reserved

4.2.9 C0DRT1—Channel 0 DRAM Timing Register

MMIO Range: Address Offset: Default: Access: Size: MCHBAR 114–117h 02483D22h R/W 32 bits

Bit	Access & Default	Description
31:23		Reserved
22:19	R/W 9h	Activate to Precharge delay (t_{RAS}): This bit controls the number of DRAM clocks for t_{RAS} . The minimum recommendations are beside their corresponding encodings.
		0h – 3h = Reserved
		4h – Fh = Four to fifteen clocks respectively.
18:10		Reserved
9:8	R/W 01b	CAS# Latency (t_{cL}): This value is programmable on DDR2 DIMMs. The value programmed here must match the CAS Latency of every DDR2 DIMM in the system.
		00 = 5
		01 = 4
		10 = 3
		11 = 6
7		Reserved
6:4	R/W 010b	DRAM RAS to CAS Delay (t_{RCD}): This bit controls the number of clocks inserted between a row activate command and a read or write command to that row.
		000 = 2 DRAM clocks
		001 = 3 DRAM clocks
		010 = 4 DRAM clocks
		011 = 5 DRAM clocks
		100 = 6 DRAM clocks
		101–111 = Reserved
3		Reserved
2:0	R/W 010b	DRAM RAS Precharge (t_{RP}): This bit controls the number of clocks that are inserted between a row precharge command and an activate command to the same rank.
		000 = 2 DRAM clocks
		001 = 3 DRAM clocks
		010 = 4 DRAM clocks
		011 = 5 DRAM clocks
		100 = 6 DRAM clocks
		101–111 = Reserved

4.2.10 C0DRC0—Channel 0 DRAM Controller Mode 0

MMIO Range: Address Offset: Default: Access: Size: MCHBAR 120–123h 4000280_00ss_h RO, R/W 32 bits

Bit	Access & Default	Description	
31:30		Reserved	
29	R/W 0b	Initialization Complete (IC): This bit is used for communication of software state between the memory controller and the BIOS. BIOS sets this bit to 1 after initialization of the DRAM memory array is complete.	
28:11		Reserved	
10:8	R/W 000b	Refresh Mode Select (RMS): This field determines whether refresh is enabled and, if so, at what rate refreshes will be executed.	
		000 = Refresh disabled	
		001 = Refresh enabled. Refresh interval 15.6 µsec	
		010 = Refresh enabled. Refresh interval 7.8 μsec	
		011 = Refresh enabled. Refresh interval 3.9 μsec	
		100 = Refresh enabled. Refresh interval 1.95 μsec	
		111 = Refresh enabled. Refresh interval 64 clocks (fast refresh mode)	
		Other = Reserved	
7	RO 0b	Reserved	

Bit	Access & Default	Description
6:4	R/W 000b	Mode Select (SMS): These bits select the special operational mode of the DRAM interface. The special modes are intended for initialization at power up.
		000 = Post Reset state – When the MCH exits reset (power-up or otherwise), the mode select field is cleared to "000". During any reset sequence, while power is applied and reset is active, the MCH de-asserts all CKE signals. After internal reset is de-asserted, CKE signals remain de-asserted until this field is written to a value different than "000". On this event, all CKE signals are asserted. During suspend, MCH internal signal triggers DRAM controller to flush pending commands and enter all ranks into Self-Refresh mode. As part of resume sequence, MCH will be reset, which will clear this bit field to "000" and maintain CKE signals de-asserted. After internal reset is de-asserted, CKE signals remain de-asserted until this field is written to a value different than "000". On this event, all CKE signals are asserted. During entry to other low power states (C3, S1), MCH internal signal triggers DRAM controller to flush pending commands and enter all ranks into Self-Refresh mode. During exit to normal mode, MCH signal triggers DRAM controller to exit Self-Refresh and resume normal operation without S/W involvement.
		001 = NOP Command Enable – All processor cycles to DRAM result in a NOP command on the DRAM interface.
		010 = All Banks Pre-charge Enable – All processor cycles to DRAM result in an "all banks precharge" command on the DRAM interface.
		011 = Mode Register Set Enable – All processor cycles to DRAM result in a "mode register" set command on the DRAM interface. Host address lines are mapped to DRAM address lines in order to specify the command sent, as shown in Volume 1, System Memory Controller section, memory Detection and Initialization. Refer to JEDEC Standard 79-2A Section 2.2.2 "Programming the Mode and Extended Mode Registers".
		100 = Extended Mode Register Set Enable – All processor cycles to DRAM result in an "extended mode register set" command on the DRAM interface. Host address lines are mapped to DRAM address lines in order to specify the command sent, as shown in Volume 1, System Memory Controller section, memory Detection and Initialization. Refer to JEDEC Standard 79-2A Section 2.2.2 "Programming the Mode and Extended Mode Registers".
		110 = CBR Refresh Enable – In this mode all processor cycles to DRAM result in a CBR cycle on the DRAM interface.
		111 = Normal operation
3:2		Reserved
1:0	RO	 DRAM Type (DT): This field is used to select between supported SDRAM types. 00 = Reserved 01 = Reserved 10 = Second Revision Dual Data Rate (DDR2) SDRAM 11 = Reserved

4.2.11 C0DRC1—Channel 0 DRAM Controller Mode 1

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/0/0/MCHBAR 124–127h 00000000h R/W 32 bits

Bit	Access & Default	Description
31	R/W 0b	Enhanced Addressing Enable (ENHADE): 0 =Disabled. DRAM address map follows the standard address map. 1 =Enabled. DRAM address map follows the enhanced address map.
30:0		Intel Reserved

4.2.12 C1DRB0—Channel B DRAM Rank Boundary Address 0

MMIO Range:MCHBARAddress Offset:180hDefault:00hAccess:R/WSize:8 bits

The operation of this register is detailed in the description for the C0DRB0 Register.

4.2.13 C1DRB1—Channel B DRAM Rank Boundary Address 1

MMIO Range:	MCHBAR
Address Offset:	181h
Default:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for the C0DRB0 Register.

4.2.14 C1DRB2—Channel B DRAM Rank Boundary Address 2

MCHBAR
182h
00h
R/W
8 bits

The operation of this register is detailed in the description for the C0DRB0 Register.

4.2.15 C1DRB3—Channel B DRAM Rank Boundary Address 3

MMIO Range: Address Offset: Default: Access: Size: MCHBAR 183h 00h R/W 8 bits

The operation of this register is detailed in the description for the C0DRB0 Register.

4.2.16 C1DRA0—Channel B DRAM Rank 0,1 Attribute

MMIO Range:	MCHBAR
Address Offset:	188h
Default:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for the C0DRA0 Register.

4.2.17 C1DRA2—Channel B DRAM Rank 2,3 Attribute

MCHBAR
189h
00h
R/W
8 bits

The operation of this register is detailed in the description for the C0DRA0 Register.

4.2.18 C1DCLKDIS—Channel B DRAM Clock Disable

MMIO Range:	MCHBAR
Address Offset:	18Ch
Default:	00h
Access:	R/W/L
Size:	8 bits

The operation of this register is detailed in the description for the C0DCLKDIS Register.

4.2.19 C1BNKARC—Channel B Bank Architecture

MMIO Range: Address Offset: Default: Access: Size: MCHBAR 18E–18Fh 0000h R/W 16 bits

The operation of this register is detailed in the description for the COBNKARC Register.

4.2.20

C1DRT1—Channel 1 DRAM Timing Register 1

MMIO Range: Address Offset: Default: Access: Size: MCHBAR 194–197h 02483D22h R/W 32 bits

The operation of this register is detailed in the description for the C0DRT1 Register.

4.2.21 C1DRC0—Channel 1 DRAM Controller Mode 0

MMIO Range: Address Offset: Default: Access: Size: MCHBAR 1A0–1A3h 4000280_00??h R/W 32 bits

The operation of this register is detailed in the description for the C0DRC0 Register.

4.2.22 C1DRC1—Channel 1 DRAM Controller Mode 1

MMIO Range: Address Offset: Default: Access: Size: MCHBAR 1A4–1A7h 00000000h RO, R/W, R/W/L 32 bits

The operation of this register is detailed in the description for the C0DRC1 Register.

4.2.23 PMCFG—Power Management Configuration

PCI Device: Address Offset: Default: Access: Size: MCHBAR F10–F13h 00000000h R/W 32 bits

Bit	Access & Default	Description
31:5		Reserved
4	R/W 0b	Enhanced Power Management Features Enable: 0 = Legacy power management mode 1 = Reserved.
3:0		Reserved

4.2.24 PMSTS—Power Management Status

MCHBAR F14–F17h
00000000h
R/W/C/S 32 bits

This register is reset by PWROK only.

Bit	Access & Default	Description
31:2		Reserved
1	R/WC/S 0 b	Channel B in Self-Refresh: Set by power management hardware after Channel B is placed in self-refresh as a result of a Power State or a Reset Warn sequence.
		Cleared by Power management hardware before starting Channel B self-refresh exit sequence initiated by a power management exit.
		Cleared by the BIOS in a warm reset (Reset# asserted while PWROK is asserted) exit sequence.
		0 = Channel B not ensured to be in self-refresh.
		1 = Channel B in Self-Refresh.
0	R/WC/S 0 b	Channel A in Self-Refresh: Set by power management hardware after Channel A is placed in self refresh as a result of a Power State or a Reset Warn sequence,
		Cleared by Power management hardware before starting Channel A self refresh exit sequence initiated by a power management exit.
		Cleared by the BIOS in a warm reset (Reset# asserted while PWROK is asserted) exit sequence.
		0 = Channel A not ensured to be in self-refresh.
		1 = Channel A in Self-Refresh.

4.3 EPBAR Registers—Egress Port Register Summary

The MCHBAR registers are offset from the EPBAR base address. Table 4-3 provides an address map of the registers listed by address offset in ascending order. Detailed bit descriptions of the registers follow the table. Link Declaration Topology is shown in Figure 4-1.

Table 4-3.	Earess	Port F	Reaister	Address	Мар
	-g				

Address Offset	Symbol	Register Name	Default Value	Access
044h–047h	EPESD	EP Element Self Description	00000301h	R/WO, RO
050h–053h	EPLE1D	EP Link Entry 1 Description	01000000h	R/WO, RO
058h–05Fh	EPLE1A	EP Link Entry 1 Address	000000000 0000000h	R/WO
060h–063h	EPLE2D	EP Link Entry 2 Description	02000002h	R/WO, RO
068h–06Fh	EPLE2A	EP Link Entry 2 Address	000000000 0008000h	RO
070h–073h	EPLE3D	EP Link Entry 3 Description	03000002h	R/WO, RO
078h–07Fh	EPLE3A	EP Link Entry 3 Address	000000000 0018000h	RO

Figure 4-1. Link Declaration Topology

4.3.1 EPESD—EP Element Self Description

MMIO Range: Address Offset: Default Value: Access: Size: EPBAR 044–047h 00000301h RO, R/WO 32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access & Default	Description	
31:24	RO 00h	Port Number: This field specifies the port number associated with this element with respect to the component that contains this element.	
		Value of 00 h indicates to configuration software that this is the default egress port.	
23:16	R/WO 00h	Component ID: This field identifies the physical component that contains this Root Complex Element. Component IDs start at 1.	
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.	
15:8	RO 03h	Number of Link Entries: This field indicates the number of link entries following the Element Self Description. This field reports 3 (one each for PEG0, PEG1, and DMI).	
7:4		Reserved	
3:0	RO 01h	Element Type: This field indicates the type of the Root Complex Element. Value of 1h represents a port to system memory	

4.3.2 EPLE1D—EP Link Entry 1 Description

MMIO Range: Address Offset: Default Value: Access: Size: EPBAR 050–053h 01000000h RO, R/WO 32 bits

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO 01h	Target Port Number: This field specifies the port number associated with the element targeted by this link entry (DMI). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	R/WO 00h	Target Component ID: This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO 0b	Link Type: This field indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	R/WO	Link Valid:
	0b	0 = Link Entry is not valid and will be ignored.
		1 = Link Entry specifies a valid link.

4.3.3 EPLE1A—EP Link Entry 1 Address

EPBAR
058–05Fh
00000000_0000000h
R/WO
64 bits

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description	
63:32		Reserved	
31:12	R/WO	Link Address: This field provides the memory mapped base address of the	
	0 0000 h	RCRB that is the target element (DMI) for this link entry.	
11:0		Reserved	

4.3.4 EPLE2D—EP Link Entry 2 Description

MMIO Range: Address Offset: Default Value: Access: Size: EPBAR 060–063h 00000000h RO, R/WO 32 bits

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO 02h	Target Port Number: This field specifies the port number associated with the element targeted by this link entry (PCI Express). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	R/WO 00h	Target Component ID: This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO 1b	Link Type: This field indicates that the link points to configuration space of the integrated device that controls the x16 root port. The link address specifies the configuration address (segment, bus, device, function) of the target root port.
0	R/WO	Link Valid:
	0b	0 = Link Entry is not valid and will be ignored. 1 = Link Entry specifies a valid link.

4.3.5 EPLE2A—EP Link Entry 2 Address

MMIO Range: Address Offset: Default Value: Access: Size: EPBAR 068–06Fh 0000000_000000h RO, R/WO 64 bits

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:28		Reserved
27:20	RO 00h	Bus Number:
19:15	RO 0 0001b	Device Number: Target for this link is PCI Express* x16 port (Device 1).
14:12	RO 000b	Function Number:
11:0		Reserved

4.3.6 EPLE3D—EP Link Entry 3 Description

MMIO Range: Address Offset: Default Value: Access: Size: EPBAR 070–073h 03000002h RO, R/WO 32 bits

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO 03h	Target Port Number: This field specifies the port number associated with the element targeted by this link entry (PEG1). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	R/WO 00h	Target Component ID: This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO 1b	Link Type (LTYP): Hardwired to 1 to indicate that the link points to configuration space of an integrated device.
		The link address specifies the configuration address (segment, bus, device, function) of the target root port.
0	R/WO	Link Valid:
	Ob	0 = Link Entry is Not valid and will be ignored. 1 = Link Entry specifies a valid link.

4.3.7 EPLE2A—EP Link Entry 3 Address

MMIO Range: Address Offset: Default Value: Access: Size: EPBAR 078–07Fh 00000000_00018000h RO 64 bits

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:20		Reserved
19:15	RO 0 0011b	Device Number: Target for this link is PEG1 (Device 3).
14:0		Reserved

§

5 Host-Primary PCI Express* Bridge Registers (D1:F0)

Device 1 contains the controls associated with the PCI Express x16 root port that is the intended attach point for external graphics. In addition, it also functions as the virtual PCI-to-PCI bridge. Table 5-1 provides an address map of the D1:F0 registers listed by address offset in ascending order. Section 5.1 provides a detailed bit description of the registers.

Warning: When reading the PCI Express "conceptual" registers such as this, you may not get a valid value unless the register value is stable.

The PCI Express* Specification defines two types of reserved bits: Reserved and Preserved.

- Reserved for future RW implementations; software must preserve value read for writes to bits.
- Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes to bits.

Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the Reserved and Preserved type, which have historically been the typical definition for Reserved.

Note: Most (if not all) control bits in this device cannot be modified unless the link is down. Software is required to first Disable the link, then program the registers, and then re-enable the link (which will cause a full-retrain with the new settings).

Address Offset	Symbol	Register Name	Default Value	Access
00–01h	VID1	Vendor Identification	8086h	RO
02–03h	DID1	Device Identification	277Dh	RO
04–05h	PCICMD1	PCI Command	0000h	RO, R/W
06–07h	PCISTS1	PCI Status	0010h	RO, R/W/C
08h	RID1	Revision Identification	See register description	RO
09–0Bh	CC1	Class Code	060400h	RO
0Ch	CL1	Cache Line Size	00h	R/W
0Dh	_	Reserved	_	_
0Eh	HDR1	Header Type	01h	RO
0F–17h	—	Reserved	—	_
18h	PBUSN1	Primary Bus Number	00h	RO

Table 5-1. Host-PCI Express* Graphics Bridge Register Address Map (D1:F0)

Address Offset	Symbol	Register Name	Default Value	Access
19h	SBUSN1	Secondary Bus Number	00h	RO
1Ah	SUBUSN1	Subordinate Bus Number	00h	R/W
1Bh	_	Reserved	_	_
1Ch	IOBASE1	I/O Base Address	F0h	RO
1Dh	IOLIMIT1	I/O Limit Address	00h	R/W
1Eh–1Fh	SSTS1	Secondary Status	00h	RO, R/W/C
20–21h	MBASE1	Memory Base Address	FFF0h	R/W
22–23h	MLIMIT1	Memory Limit Address	0000h	R/W
24–25h	PMBASE1	Prefetchable Memory Base Address	FFF1h	RO, R/W
26–27h	PMLIMIT1	Prefetchable Memory Limit Address	0000h	RO, R/W
28–2Bh	PMBASEU1	Prefetchable Memory Base Address	0000000Fh	R/W
2C–2Fh	PMLIMITU1	Prefetchable Memory Limit Address	00000000h	R/W
30–33h	_	Reserved	_	_
34h	CAPPTR1	Capabilities Pointer	88h	RO
35–3Bh	_	Reserved	_	_
3Ch	INTRLINE1	Interrupt Line	00h	R/W
3Dh	INTRPIN1	Interrupt Pin	01h	RO
3E–3Fh	BCTRL1	Bridge Control	0000h	RO, R/W
40–7Fh	—	Reserved	_	_
80–83h	PM_CAPID1	Power Management Capabilities	C8029001h	RO
84–87h	PM_CS1	Power Management Control/Status	00000000h	RO, R/W, R/W/S
88–8Bh	SS_CAPID	Subsystem ID and Vendor ID Capabilities	0000800Dh	RO
8C–8Fh	SS	Subsystem ID and Subsystem Vendor ID	00008086h	RO
90–91h	MSI_CAPID	Message Signaled Interrupts Capability ID	A005h	RO
92–93h	MC	Message Control	0000h	RO, R/W
94–97h	МА	Message Address	00000000h	RO, R/W
98–99h	MD	Message Data	0000h	R/W
9A–9Fh	_	Reserved	_	_
A0–A1h	PEGCAPL	PCI Express* Capability List	0010h	RO
A2–A3h	PCI_EXPRESS _CAP	PCI Express* Capabilities	0141h	RO, R/WO
A4–A7h	DCAP	Device Capabilities	00000000h	RO
A8–A9h	DCTL	Device Control	0000h	R/W

Address Offset	Symbol	Register Name	Default Value	Access
AA–ABh	DSTS	Device Status	0000h	RO
AC–AFh	LCAP	Link Capabilities	02012D01h	R/WO
B0–B1h	LCTL	Link Control	0000h	RO, R/W
B2–B3h	LSTS	Link Status	1001h	RO
B4–B7h	SLOTCAP	Slot Capabilities	00000000h	R/WO
B8–B9h	SLOTCTL	Slot Control	01C0h	R/W
BA–BBh	SLOTSTS	Slot Status	0000h	RO, R/W/C
BC–BDh	RCTL	Root Control	0000h	R/W
BE–BFh	—	Reserved	_	—
C0–C3h	RSTS	Root Status	00000000h	RO, R/W/C
C4–FFh	_	Reserved	_	_
EC-EFh	PEGLC	PCI Express* Legacy Control	00000000h	RO, R/W
100–103h	VCECH	Virtual Channel Enhanced Capability Header	14010002h	RO
104–107h	PVCCAP1	Port VC Capability Register 1	00000001h	RO, R/WO
108–10Bh	PVCCAP2	Port VC Capability Register 2	00000001h	RO
10C–10Dh	PVCCTL	Port VC Control	0000h	R/W
10E–10Fh	_	Reserved	_	_
110–113h	VC0RCAP	VC0 Resource Capability	00000000h	RO
114–117h	VC0RCTL	VC0 Resource Control	800000FFh	RO, R/W
118–119h	_	Reserved	_	—
11A–11Bh	VCORSTS	VC0 Resource Status	0002h	RO
11C–11Fh	VC1RCAP	VC1 Resource Capability	00008000h	RO
120–123h	VC1RCTL	VC1 Resource Control	01000000h	RO, R/W
124–125h		Reserved	—	_
126–127h	VC1RSTS	VC1 Resource Status	0002h	RO
128–13Fh	_	Reserved	—	_
140–143h	RCLDECH	Root Complex Link Declaration Enhanced Capability Header	00010005h	RO
144–147h	ESD	Element Self Description	02000200h	RO, R/WO
148–14Fh	_	Reserved	_	_
150–153h	LE1D	Link Entry 1 Description	00000000h	RO, R/WO
154–157h	_	Reserved	_	_
158–15Fh	LE1A	Link Entry 1 Address	000000000 0000000h	R/WO
160–163h	LE2D	Link Entry 2 Description	00000000h	RO, R/WO

Address Offset	Symbol	Register Name	Default Value	Access
164–167h	—	Reserved	—	—
168–16Fh	LE2A	Link Entry 2 Address	000000000 0018000	RO
1C4–1C7h	UESTS	Uncorrectable Error Status	00000000h	RO, R/WC/S
1C8–1CBh	UEMSK	Uncorrectable Error Mask	00000000h	RO, R/W/S
1CC-1CFh	—	Reserved	—	—
1D0–1D3h	CESTS	Correctable Error Status	00000000h	RO, R/WC/S
1D4–1D7h	CEMSK	Correctable Error Mask	00000000h	RO, R/W/S
1D8–217h	—	Reserved	_	—
218–21Fh	PEGSSTS	PCI Express* Sequence Status	000000000 0000FFFh	RO
220–FFFh	—	Reserved	—	—

5.1 Configuration Register Details (D1:F0)

5.1.1 VID1—Vendor Identification (D1:F0)

PCI Device:	1
Address Offset:	00–01h
Default Value:	8086h
Access:	RO
Size:	16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 8086h	Vendor Identification (VID1): PCI standard identification for Intel.

5.1.2 DID1—Device Identification (D1:F0)

PCI Device:	1
Address Offset:	02–03h
Default Value:	277Dh
Access:	RO
Size:	16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 277Dh	Device Identification Number (DID1): This field identifier is assigned to the MCH device 1 (virtual PCI-to-PCI bridge, PCI Express* Graphics port).

5.1.3 PCICMD1—PCI Command (D1:F0)

PCI Device:	1
Address Offset:	04–05h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

Bit	Access & Default	Description
15:11		Reserved
10	R/W	INTA Assertion Disable:
	0b	0 = This device is permitted to generate INTA interrupt messages.
		1 = This device is prevented from generating interrupt messages.
		Any INTA emulation interrupts already asserted must be de-asserted when this bit is set.
		This bit only affects interrupts generated by the device (PCI INTA from a PME or Hot Plug event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA-INTD asserts and de-assert messages.
9	RO 0b	Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired to 0.
8	R/W 0b	SERR Message Enable (SERRE1): This bit is an enable bit for Device 1 SERR messaging. The MCH communicates the SERR# condition by sending a SERR message to the Intel [®] ICH7. This bit, when set, enables reporting of non-fatal and fatal errors to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI Express* specific bits in the Device Control Register.
		0 = The SERR message is generated by the MCH for Device 1 only under conditions enabled individually through the Device Control Register.
		1 = The MCH is enabled to generate SERR messages that will be sent to the ICH7 for specific Device 1 error conditions generated/detected on the primary side of the virtual PCI to PCI Express bridge (not those received by the secondary side). The error status is reported in the PCISTS1 register.
7		Reserved
6	R/WO 0b	Parity Error Enable (PERRE): This bit controls whether or not the Master Data Parity Error bit in the PCI Status Register can bet set.
		0 = Master Data Parity Error bit in PCI Status register can Not be set.
		1 = Master Data Parity Error bit in PCI Status register can be set.
5	RO 0b	VGA Palette Snoop: Not Implemented. Hardwired to 0.
4	RO 0b	Memory Write and Invalidate Enable (MWIE): Not Implemented. Hardwired to 0.
3	RO 0b	Special Cycle Enable (SCE): Not Implemented. Hardwired to 0.

Bit	Access & Default	Description
2	R/W 0b	Bus Master Enable (BME): This bit controls the ability of the PCI Express port to forward memory and I/O read/write requests in the upstream direction.
		 0 = This device is prevented from making memory or I/O requests to its primary bus. Note that according to <i>PCI Local Bus Specification</i>, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, I/O writes/reads, peer writes/reads, and MSIs will all be treated as invalid cycles. Writes are forwarded to memory address 0 with byte enables de-asserted. Reads will be forwarded to memory address 0 and will return Unsupported Request status (or Master abort) in its completion packet. 1 = This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available. This bit does not affect forwarding of Completions from the primary interface to
		the secondary interface.
1	R/W 0b	Memory Access Enable (MAE):
	dU	0 = All of device 1's memory space is disabled.
		1 = Enable the Memory and Pre-fetchable memory address ranges defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.
0	R/W	IO Access Enable (IOAE):
	0b	0 = All of device 1's I/O space is disabled.
		1 = Enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers.

5.1.4 PCISTS1—PCI Status (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size:

1 06–07h 0010h RO, R/W/C 16 bits

This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express bridge embedded within the MCH.

Bit	Access & Default	Description
15	RO 0b	Detected Parity Error (DPE): Not Implemented. Hardwired to 0. Parity (generating poisoned TLPs) is not supported on the primary side of this device (The MCH does Not do error forwarding).
14	R/WC 0b	Signaled System Error (SSE):
		1 = This Device sent a SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command Register is 1. Both received (if enabled by BCTRL1[1]) and internally detected error messages do not affect this field.
13	RO 0b	Received Master Abort Status (RMAS): Not Implemented. Hardwired to 0. The concept of a master abort does not exist on primary side of this device.
12	RO 0b	Received Target Abort Status (RTAS): Not Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
11	RO 0b	Signaled Target Abort Status (STAS): Not Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
10:9	RO 00b	DEVSELB Timing (DEVT): This device is not the subtractive decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode.
8	RO 0b	Master Data Parity Error (PMDPE): Because the primary side of the PCI Express's virtual PCI-to-PCI bridge is integrated with the MCH functionality, there is no scenario where this bit will get set. Because hardware will never set this bit, software does not have an opportunity to clear this bit or otherwise test that it is implemented. The PCI specification defines it as a R/WC, but for this implementation a RO definition behaves the same way and will meet Microsoft testing requirements.
7	RO 0b	Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.
6		Reserved
5	RO 0b	66/60MHz capability (CAP66): Not Implemented. Hardwired to 0.
4	RO 1b	Capabilities List: This bit indicates that a capabilities list is present. Hardwired to 1.
3	RO 0b	INTA Status: This bit indicates that an interrupt message is pending internally to the device. Only PME and Hot Plug sources feed into this status bit (not PCI INTA-INTD assert and de-assert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit.
2:0		Reserved

5.1.5 **RID1—Revision Identification (D1:F0)**

PCI Device:	1
Address Offset:	08h
Default Value:	See register table below
Access:	RO
Size:	8 bits

This register contains the revision number of the MCH device 1. These bits are read only and writes to this register have no effect.

Bit	Access & Default	Description
7:0	RO	Revision Identification Number (RID1): This is an 8-bit value that indicates the revision identification number for the MCH. Refer to the <i>Intel</i> [®] 975X Express Chipset Specification Update for the value of the Revision ID Register.

5.1.6 CC1—Class Code (D1:F0)

PCI Device:	1
Address Offset:	09–0Bh
Default Value:	060400h
Access:	RO
Size:	24 bits

This register identifies the basic function of the device, a more specific sub-class, and a registerspecific programming interface.

Bit	Access & Default	Description
23:16	RO 06h	Base Class Code (BCC): This field indicates the base class code for this device. 06h = Bridge device.
15:8	RO 04h	Sub-Class Code (SUBCC): This field indicates the sub-class code for this device. 04h = PCI-to-PCI Bridge.
7:0	RO 00h	Programming Interface (PI): This field indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

5.1.7 CL1—Cache Line Size (D1:F0)

PCI Device:	1
Address Offset:	0Ch
Default Value:	00h
Access:	R/W
Size:	8 bits

Bit	Access & Default	Description
7:0	R/W 00h	Cache Line Size (Scratch pad): Implemented by PCI Express* devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.

5.1.8 HDR1—Header Type (D1:F0)

PCI Device:	1
Address Offset:	0Eh
Default Value:	01h
Access:	RO
Size:	8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access & Default	Description
7:0	RO 01h	Header Type Register (HDR): This field returns 01 to indicate that this is a single function device with bridge header layout.

5.1.9 PBUSN1—Primary Bus Number (D1:F0)

PCI Device:	1
Address Offset:	18h
Default Value:	00h
Access:	RO
Size:	8 bits

This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI bus 0.

Bit	Access & Default	Description
7:0	RO 00h	Primary Bus Number (BUSN): Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since device 1 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

5.1.10 SBUSN1—Secondary Bus Number (D1:F0)

PCI Device:	1
Address Offset:	19h
Default Value:	00h
Access:	RO
Size:	8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" bridge (i.e., to PCI Express). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express.

Bit	Access & Default	Description
7:0	R/W 00h	Secondary Bus Number (BUSN): This field is programmed by configuration software with the bus number assigned to PCI Express*.

5.1.11 SUBUSN1—Subordinate Bus Number (D1:F0)

PCI Device:	1
Address Offset:	1Ah
Default Value:	00h
Access:	R/W
Size:	8 bits

This register identifies the subordinate bus (if any) that resides at the level below PCI Express. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express.

Bit	Access & Default	Description
7:0	R/W 00h	Subordinate Bus Number (BUSN): This register is programmed by configuration software with the number of the highest subordinate bus behind the device 1 bridge. When only a single PCI device resides on the PCI Express* segment, this register will contain the same value as the SBUSN1 register.

5.1.12 IOBASE1—I/O Base Address (D1:F0)

PCI Device:	1
Address Offset:	1Ch
Default Value:	F0h
Access:	RO
Size:	8 bits

This register controls the processor-to-PCI Express I/O access routing based on the following formula:

 $\text{IO_BASE} \leq \text{address} \leq \text{IO_LIMIT}$

Only the upper 4 bits of this register are programmable. For the purpose of address decode, address bits A [11:0] are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB boundary.

Bit	Access & Default	Description
7:4	R/W Fh	I/O Address Base (IOBASE): This field corresponds to A [15:12] of the I/O addresses passed by bridge 1 to PCI Express*. BIOS must not set this register to 00h; otherwise, 0CF8h/0CFCh accesses will be forwarded to the PCI Express hierarchy associated with this device.
3:0		Reserved

5.1.13 IOLIMIT1—I/O Limit Address (D1:F0)

PCI Device:	1
Address Offset:	1Dh
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the processor-to-PCI Express I/O access routing based on the following formula:

 $\text{IO_BASE} \leq \text{address} \leq \text{IO_LIMIT}$

Only upper 4 bits of this register are programmable. For the purposes of address decode, address bits A [11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-KB aligned address block.

Bit	Access & Default	Description
7:4	R/W 0h	I/O Address Limit (IOLIMIT): This field corresponds to A[15:12] of the I/O address limit of device 1. Devices between this upper limit and IOBASE1 will be passed to the PCI Express* hierarchy associated with this device.
3:0		Reserved

SSTS1—Secondary Status (D1:F0) 5.1.14

PCI Device:	1
Address Offset:	1E–1Fh
Default Value:	00h
Access:	RO, R/W/C
Size:	16 bits

SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (i.e., PCI Express side) of the "virtual" PCI-to-PCI Bridge in the MCH.

Bit	Access & Default	Description
15	R/WC	Detected Parity Error (DPE):
	0b	0 = Parity error Not detected.
		1 = MCH received across the link (upstream) a Posted Write Data Poisoned TLP (EP=1)
14	R/WC	Received System Error (RSE):
	0b	0 = System error Not received.
		1 = Secondary side sends an ERR_FATAL or ERR_NONFATAL message due to an error detected by the secondary side, and the SERR Enable bit in the Bridge Control register is '1'.
13	R/WC	Received Master Abort (RMA):
	0b	0 = Master abort Not received.
		1 = Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status.
12	R/WC	Received Target Abort (RTA):
	Ob	0 = Target abort Not received.
		1 = Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status.
11	RO 0b	Signaled Target Abort (STA): Not Implemented. Hardwired to 0. The MCH does not generate Target Aborts (the MCH will never complete a request using the Completer Abort Completion status).
10:9	RO 00b	DEVSELB Timing (DEVT): Not Implemented. Hardwired to 0.
8		Reserved
7	RO 0b	Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.
6		Reserved
5	RO 0b	66/60 MHz capability (CAP66): Not Implemented. Hardwired to 0.
4:0		Reserved

5.1.15 MBASE1—Memory Base Address (D1:F0)

PCI Device:	1
Address Offset:	20–21h
Default Value:	FFF0h
Access:	R/W
Size:	16 bits

This register controls the processor-to-PCI Express non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE \leq address \leq MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Access & Default	Description
15:4	R/W FFFh	Memory Address Base (MBASE): This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express*.
3:0		Reserved

5.1.16 MLIMIT1—Memory Limit Address (D1:F0)

PCI Device:	
Address Offset:	
Default Value:	
Access:	
Size:	

1 22–23h 0000h R/W 16 bits

This register controls the processor-to-PCI Express non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE \le address \le MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Note: Memory range covered by MBASE and MLIMIT Registers are used to map non-prefetchable PCI Express address ranges (typically, where control/status memory-mapped I/O data structures of the Graphics Controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically, graphics local memory).

This segregation allows application of USWC space attribute to be performed in a true plug-andplay manner to the prefetchable address range for improved processor -to-PCI Express memory access performance.

Note: Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges (i.e., prevent overlap with each other and/or with the ranges covered with the main memory). There is no provision in the MCH hardware to enforce prevention of overlap and operations of the system in the case of overlap are not ensured.

Bit	Access & Default	Description
15:4	R/W 000h	Memory Address Limit (MLIMIT): This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express*.
3:0		Reserved

5.1.17 PMBASE1—Prefetchable Memory Base Address (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 24–25h FFF1h RO, R/W 16 bits

This register, in conjunction with the corresponding Upper Base Address register, controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

$\label{eq:prefetchable_memory_base} {\sf PREFETCHABLE_MEMORY_LIMIT}$

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Access & Default	Description
15:4	R/W FFFh	Prefetchable Memory Base Address (MBASE): This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express*.
3:0	RO 1h	64-bit Address Support: This field indicates that the upper 32-bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address Register (offset 2Ch).

5.1.18 PMLIMIT1—Prefetchable Memory Limit Address (D1:F0)

PCI Device:	1	
Address Offset:	26–27h	
Default Value:	0000h	
Access:	RO, R/W	
Size:	16 bits	
This register in conjuncti	on with the corresponding Upper Limit Addres	s regist

This register, in conjunction with the corresponding Upper Limit Address register, controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

$\mathsf{PREFETCHABLE_MEMORY_BASE} \leq \mathsf{address} \leq \mathsf{PREFETCHABLE_MEMORY_LIMIT}$

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Access & Default	Description
15:4	R/W 000h	Prefetchable Memory Address Limit (PMLIMIT): This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express*.
3:0	RO 0h	64-bit Address Support: This field indicates that the bridge has 32-bit address support only.

5.1.19 PMBASEU1—Prefetchable Memory Base Address

PCI Device: Address Offset: Default Value: Access: Size: 1 28–2Bh 0000000Fh R/W 32 bits

This register, in conjunction with the corresponding Upper Base Address register, controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

```
\mathsf{PREFETCHABLE\_MEMORY\_BASE} \leq \mathsf{address} \leq \mathsf{PREFETCHABLE\_MEMORY\_LIMIT}
```

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Access & Default	Description
31:4	R/W 0000000h	Reserved
3:0	R/W Fh	Prefetchable Memory Base Address (MBASEU): This field corresponds to A[35:32] of the lower limit of the prefetchable memory range that will be passed to PCI Express.

5.1.20 PMLIMITU1— Prefetchable Memory Limit Address

PCI Device:	
Address Offset:	
Default Value:	
Access:	
Size:	

1 2C–2Fh 00000000h R/W 32 bits

This register, in conjunction with the corresponding Upper Limit Address register, controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

 $\mathsf{PREFETCHABLE_MEMORY_BASE} \leq \mathsf{address} \leq \mathsf{PREFETCHABLE_MEMORY_LIMIT}$

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note: Prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Access & Default	Description
31:4	R/W 0000000h	Reserved
3:0	R/W 0h	Prefetchable Memory Address Limit (MLIMITU): This field corresponds to A[35:32] of the upper limit of the prefetchable Memory range that will be passed to PCI Express.

5.1.21 CAPPTR1—Capabilities Pointer (D1:F0)

PCI Device:	1
Address Offset:	34h
Default Value:	88h
Access:	RO
Size:	8 bits

The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities.

Bit	Access & Default	Description
7:0	RO 88h	First Capability (CAPPTR1): The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.

5.1.22 INTRLINE1—Interrupt Line (D1:F0)

PCI Device: 1	
Address Offset: 3Ch	
Default Value: 00h	
Access: R/W	
Size: 8 bits	

This register contains interrupt line routing information. The device itself does not use this value; rather, device drivers and operating systems use it to determine priority and vector information.

Bit	Access & Default	Description
7:0	R/W 00h	Interrupt Connection. This field communicates interrupt line routing information. POST software writes the routing information into this register as it initializes and configures the system. The value in this register indicates which input of the system interrupt controller is connected to this device's interrupt pin.

5.1.23 INTRPIN1—Interrupt Pin (D1:F0)

PCI Device:	1
Address Offset:	3Dh
Default Value:	01h
Access:	RO
Size:	8 bits

This register specifies which interrupt pin this device uses.

Bit	Access & Default	Description
7:0	RO 01h	Interrupt Pin. As a single function device, the PCI Express* device specifies INTA as its interrupt pin. 01h=INTA.

5.1.24 BCTRL1—Bridge Control (D1:F0)

PCI Device:	
Address Offset:	
Default Value:	
Access:	
Size:	

This register provides extensions to the PCICMD1 Register that are specific to PCI-to-PCI bridges. The BCTRL provides additional control for the secondary interface (i.e., PCI Express) as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge in the MCH (e.g., VGA compatible address ranges mapping).

1

3Eh

0000h RO, R/W

16 bits

Bit	Access & Default	Description
15:12		Reserved
11	RO 0b	Discard Timer SERR Enable: Not Implemented. Hardwired to 0.
10	RO 0b	Discard Timer Status: Not Implemented. Hardwired to 0.
9	RO 0b	Secondary Discard Timer: Not Implemented. Hardwired to 0.
8	RO 0b	Primary Discard Timer: Not Implemented. Hardwired to 0.
7	RO 0b	Fast Back-to-Back Enable (FB2BEN): Not Implemented. Hardwired to 0.
6	R/W 0b	Secondary Bus Reset (SRESET): Setting this bit triggers a hot reset on the corresponding PCI Express* Port.
5	RO 0b	Master Abort Mode (MAMODE): When acting as a master, unclaimed reads that experience a master abort returns all 1s and any writes that experience a master abort completes normally and the data is discarded. Hardwired to 0.
4	R/W 0b	VGA 16-bit Decode: This bit enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also 1, enabling VGA I/O decoding and forwarding by the bridge.
		0 = Execute 10-bit address decodes on VGA I/O accesses.
		1 = Execute 16-bit address decodes on VGA I/O accesses.
3	R/W 0b	VGA Enable (VGAEN): This bit controls the routing of processor-initiated transactions targeting VGA compatible I/O and memory address ranges. See the VGAEN/MDAP table in Device 0, offset 97h[0]. See the VGAEN/MDAP table in the LAC Register[0] (Device 0, offset 97h).

int_{el},

Bit	Access & Default	Description
2	R/W 0b	ISA Enable (ISAEN): This bit is needed to exclude legacy resource decode to route ISA resources to legacy decode path. This bit modifies the response by the MCH to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.
		0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to PCI Express.
		1 = MCH will not forward to PCI Express any I/O transactions addressing the last 768 bytes in each 1-KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. Instead of going to PCI Express these cycles will be forwarded to DMI where they can be subtractively or positively claimed by the ISA bridge.
1	R/W	SERR Enable (SERREN)
	Ob	0 = Disable. No forwarding of error messages from secondary side to primary side that could result in a SERR.
		1 = Enable. RR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register.
0	RO 0b	Parity Error Response Enable (PEREN): This bit controls whether or not the Master Data Parity Error bit in the Secondary Status register is set when the MCH receives across the link (upstream) a Read Data Completion Poisoned TLP.
		0 = Disable. Master Data Parity Error bit in Secondary Status register cannot be set.
		1 = Enable. Master Data Parity Error bit in Secondary Status register can be set.

5.1.25 PM_CAPID1—Power Management Capabilities (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 80–83h C8029001h RO 32 bits

Bit	Access & Default	Description
31:27	RO 19h	PME Support: This field indicates the power states in which this device may indicate PME wake via PCI Express messaging. D0, D3hot, and D3cold. This device is not required to do anything to support D3hot and D3cold; it simply must report that those states are supported. Refer to the <i>PCI Power Management Interface Specification, Revision 1.1</i> for encoding explanation and other power management details.
26	RO 0b	D2: Hardwired to 0 to indicate that the D2 power management state is NOT supported.
25	RO 0b	D1: Hardwired to 0 to indicate that the D1 power management state is NOT supported.
24:22	RO 000b	Auxiliary Current: Hardwired to 0 to indicate that there are no 3.3 V_{aux} auxiliary current requirements.
21	RO 0b	Device Specific Initialization (DSI): Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it.
20	RO 0b	Auxiliary Power Source (APS): Hardwired to 0.
19	RO 0b	PME Clock: Hardwired to 0 to indicate this device does NOT support PME# generation.
18:16	RO 010b	PCI PM CAP Version: Hardwired to 02h to indicate there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the <i>PCI Power Management Interface Specification</i> .
15:8	RO 90h / A0h	Pointer to Next Capability: This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h. If MSICH (CAPL[0] @ 7Fh) is 1, then the next item in the capabilities list is the PCI Express* capability at A0h.
7:0	RO 01h	Capability ID: The value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers.

5.1.26 PM_CS1—Power Management Control/Status (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 84h 00000000h RO, R/W, R/W/S 32 bits

Bit	Access & Default	Description
31:16		Reserved
15	RO 0b	PME Status: This bit indicates that this device does not support PME# generation from D3 _{cold} .
14:13	RO 00b	Data Scale: This field indicates that this device does not support the power management data register.
12:9	RO 0h	Data Select: This field indicates that this device does not support the power management data register.
8	R/W/S 0b	PME Enable: This bit indicates that this device does not generate PME# assertion from any D-state.
		0 = PME# generation not possible from any D State
		1 = PME# generation enabled from any D State
		The setting of this bit has no effect on hardware. See PM_CAP[15:11]
7:2		Reserved
1:0	R/W 00b	Power State: This field indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs.
		00 = D0
		01 = D1 (Not supported in this device.)
		10 = D2 (Not supported in this device.)
		11 = D3
		Support of D3 _{cold} does not require any special action.
		While in the $D3_{hot}$ state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state in order to be fully functional.
		There is no hardware functionality required to support these Power States.

5.1.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities (D1:F0)

PCI Device:1Address Offset:88hDefault Value:0000800DhAccess:ROSize:32 bits

This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence.

Bit	Access & Default	Description
31:16		Reserved
15:8	RO 80h	Pointer to Next Capability: This contains a pointer to the next item in the capabilities list which is the PCI Power Management capability.
7:0	RO 0Dh	Capability ID: The value of 0Dh identifies this linked list item (capability structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.

5.1.28 SS—Subsystem ID and Subsystem Vendor ID (D1:F0)

PCI Device: Address Offset:	1 8Ch
Default Value:	00008086h
Access:	RO
Size:	32 bits

System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and hardware reset.

Bit	Access & Default	Description
31:16	R/WO 0000h	Subsystem ID (SSID): This field identifies the particular subsystem and is assigned by the vendor.
15:0	R/WO 8086h	Subsystem Vendor ID (SSVID): This field identifies the manufacturer of the subsystem and is the same as the vendor ID that is assigned by the PCI Special Interest Group.

5.1.29 MSI_CAPID—Message Signaled Interrupts Capability ID (D1:F0)

PCI Device:	1
Address Offset:	90h
Default Value:	A005h
Access:	RO
Size:	16 bits

When a device supports MSI, it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address.

The reporting of the existence of this capability can be disabled by setting MSICH (CAPL[0] @ 7Fh). In that case walking this linked list will skip this capability and instead go directly from the PCI PM capability to the PCI Express capability.

Bit	Access & Default	Description
15:8	RO A0h	Pointer to Next Capability: This field contains a pointer to the next item in the capabilities list which is the PCI Express* capability.
7:0	RO 05h	Capability ID: The value of 05h identifies this linked list item (capability structure) as being for MSI registers.

5.1.30 MC—Message Control (D1:F0)

PCI Device:	1
Address Offset:	92h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

System software can modify bits in this register, but the device is prohibited from doing so.

If the device writes the same message multiple times, only one of those messages will be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

Bit	Access & Default	Description
15:8		Reserved
7	RO 0b	64-bit Address Capable: Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address.
6:4	R/W 000b	Multiple Message Enable (MME): System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested. The encoding is the same as for the MMC field below.
3:1	RO 000b	Multiple Message Capable (MMC): System software reads this field to determine the number of messages being requested by this device. 000 = 1 001–111 = Reserved
0	R/W 0b	 MSI Enable (MSIEN) This bit controls the ability of this device to generate MSIs. 0 = MSI will not be generated. 1 = MSI will be generated when the MCH receive PME or Hot Plug messages. INTA will not be generated and INTA Status (PCISTS1[3]) will not be set.

5.1.31 MA—Message Address (D1:F0)

PCI Device:	1
Address Offset:	94h
Default Value:	0000000h
Access:	RO, R/W
Size:	32 bits

Bit	Access & Default	Description
31:2	R/W 00000000h	Message Address: This field is used by system software to assign a MSI address to the device. The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO 00b	Force DWord Align: Hardwired to 0 so that addresses assigned by system software are always aligned on a DWord address boundary.

5.1.32 MD—Message Data (D1:F0)

1
98h
0000h
R/W
16 bits

Bit	Access & Default	Description
15:0	R/W 0000h	Message Data: Base message data pattern assigned by system software and used to handle an MSI from the device.
		When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA Register. The upper 16 bits are always set to 0. This register supplies the lower 16 bits.

5.1.33 **PEGCAPL—PCI Express* Capability List (D1:F0)**

PCI Device:	1
Address Offset:	A0–A1h
Default Value:	0010h
Access:	RO
Size:	16 bits

This register enumerates the PCI Express capability structure.

Bit	Access & Default	Description
15:8	RO 00h	Pointer to Next Capability: This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express* specific capabilities that are reported via this mechanism are in a separate capabilities list located entirely within PCI Express extended configuration space.
7:0	RO 10h	Capability ID: This field identifies this linked list item (capability structure) as being for PCI Express registers.

5.1.34 PCI_EXPRESS _CAP—PCI Express* Capabilities (D1:F0)

PCI Device:	
Address Offset:	
Default Value:	
Access:	
Size:	

1 A2–A3h 0141h RO, R/WO 16 bits

This register indicates PCI Express device capabilities.

Bit	Access & Default	Description
15:14		Reserved
13:9	RO 00h	Interrupt Message Number: Not Implemented. Hardwired to 0.
8	R/WO	Slot Implemented:
	1b	0 = The PCI Express* Link associated with this port is connected to an integrated component or is disabled.
		1 = The PCI Express Link associated with this port is connected to a slot.
		BIOS must initialize this field appropriately if a slot connection is not implemented.
7:4	RO 4h	Device/Port Type: Hardwired to 0100b to indicate root port of PCI Express Root Complex.
3:0	RO 1h	PCI Express Capability Version: Hardwired to 1 as it is the first version.

5.1.35 DCAP—Device Capabilities (D1:F0)

PCI Device:	1
Address Offset:	A4–A7h
Default Value:	00000000h
Access:	RO
Size:	32 bits

This register indicates PCI Express link capabilities.

Bit	Access & Default	Description
31:6		Reserved
5	RO 0b	Extended Tag Field Supported: Hardwired to indicate support for 5-bit Tags as a requestor.
4:3	RO 00b	Phantom Functions Supported: Not Implemented. Hardwired to 0.
2:0	RO 000b	Max Payload Size: Hardwired to indicate 128B maximum supported payload for Transaction Layer Packets (TLP).

5.1.36 DCTL—Device Control (D1:F0)

PCI Device:	1
Address Offset:	A8–A9h
Default Value:	0000h
Access:	R/W
Size:	16 bits

This register provides control for PCI Express device specific capabilities.

Note: The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by the Root Port is controlled exclusively by the Root Port Command Register.

Bit	Access & Default	Description
15:8		Reserved
7:5	7:5 R/W 000b	Max Payload Size:
		000 =128B maximum supported payload for Transaction Layer Packets (TLP). As a receiver, the Device must handle TLPs as large as the set value; as transmitter, the Device must not generate TLPs exceeding the set value.
		001–111 = Reserved.
4		Reserved
3	R/W	Unsupported Request Reporting Enable:
	0b	0 = Disable
		1 = Enable. Unsupported Requests will be reported.
		Note that reporting of error messages received by Root Port is controlled exclusively by Root Control register.
2	R/W	Fatal Error Reporting Enable:
	0b	0 = Disable
		1 = Enable. Fatal errors will be reported. For a Root Port, the reporting of fatal errors is internal to the root. No external ERR_FATAL message is generated.
1	R/W	Non-Fatal Error Reporting Enable:
	0b	0 = Disable
		1 = Enable. Non-fatal errors will be reported. For a Root Port, the reporting of non-fatal errors is internal to the root. No external ERR_NONFATAL message is generated. Uncorrectable errors can result in degraded performance.
0	R/W	Correctable Error Reporting Enable:
	Ob	0 = Disable
		1 = Enable. Correctable errors will be reported. For a Root Port, the reporting of correctable errors is internal to the root. No external ERR_CORR message is generated.

5.1.37 DSTS—Device Status (D1:F0)

PCI Device:	1
Address Offset:	AA–ABh
Default Value:	0000h
Access:	RO
Size:	16 bits

This register reflects status corresponding to controls in the Device Control register.

Note: The error reporting bits are in reference to errors detected by this device, not error messages received across the link.

Bit	Access & Default	Description
15:6		Reserved
5	RO	Transactions Pending:
	Ob	0 = All pending transactions (including completions for any outstanding non- posted requests on any used virtual channel) have been completed.
		 1 = Indicates that the device has transaction(s) pending (including completions for any outstanding non-posted requests for all used Traffic Classes).
4		Reserved
3	R/WC	Unsupported Request Detected:
	0b	0 = Unsupported Request Not detected.
		 1 = Indicates that the Device received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register.
2	R/WC 0b	Fatal Error Detected: When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the Correctable Error Mask Register.
		0 = Fatal Error Not detected.
		 1 = Indicates that fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register.
1	R/WC 0b	Non-Fatal Error Detected: When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the Correctable Error Mask Register.
		0 = Non-fatal error Not detected.
		 1 = Indicates that non-fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register.
0	R/WC 0b	Correctable Error Detected: When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the Correctable Error Mask Register.
		0 = Correctable error Not detected.
		 1 = Indicates that correctable error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register.

5.1.38 LCAP—Link Capabilities (D1:F0)

1
AC–AFh
02012D01h
R/WO
16 bits

This register indicates PCI Express device specific capabilities.

Bit	Access & Default	Description
31:24	RO 02h	Port Number: This field indicates the PCI Express* port number for the given PCI Express link. The field matches the value in Element Self Description [31:24].
23:18		Reserved
17:15	R/WO 010b	L1 Exit Latency: This field indicates the length of time this Port requires to complete the transition from L1 to L0. The value 010 b indicates the range of 2 μ s to less than 4 μ s. If this field is required to be any value other than the default, BIOS must initialize it accordingly.
		Both bytes of this register that contain a portion of this field must be written simultaneously to prevent an intermediate (and undesired) value from ever existing.
14:12	R/WO 010b	L0s Exit Latency: This field indicates the length of time this Port requires to complete the transition from L0s to L0. The value 010 b indicates the range of 128 ns to less than 256 ns. If this field is required to be any value other than the default, BIOS must initialize it accordingly.
11:10	RO 11b	Active State Link PM Support: L0s & L1 entry supported.
9:4	RO	Max Link Width: Hardwired to indicate X16.
	10h	When Force X1 mode is enabled on this PCI Express device, this field reflects X1 (01h).
3:0	RO 1h	Max Link Speed: Hardwired to indicate 2.5 Gb/s.

5.1.39 LCTL—Link Control (D1:F0)

PCI Device:	1
Address Offset:	B0–B1h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

This field allows control of PCI Express link.

Bit	Access & Default	Description
15:7		Reserved
6	R/W 0b	Common Clock Configuration: 0 = Indicates that this component and the component at the opposite end of
		 this Link are operating with asynchronous reference clock. 1 = Indicates that this component and the component at the opposite end of this Link are operating with a distributed common reference clock.
		Components use this common clock configuration information to report the correct L0s and L1 Exit Latencies.
5	R/W 0b	Retrain Link: This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0).
		0 = Normal operation
		1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0, L0s, or L1 states to the Recovery state.
4	R/W 0b	Link Disable: Link retraining happens automatically on 0 to 0 transition, just like when coming out of reset. Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state.
		0 = Normal operation
		 1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via Recovery) from L0, L0s, or L1 states.
3	RO 0b	Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte.
2		Reserved
1:0	R/W 00b	Active State PM: This field controls the level of active state power management supported on the given link.
		00 = Disabled 01 = L0s Entry Supported 10 = Reserved 11 = L0s and L1 Entry Supported

5.1.40 LSTS—Link Status (D1:F0)

PCI Device:	1
Address Offset:	B2–B3h
Default Value:	1001h
Access:	RO
Size:	16 bits

This register indicates PCI Express link status.

Bit	Access & Default	Description
15:13		Reserved
12	RO 1b	 Slot Clock Configuration: 0 = The device uses an independent clock irrespective of the presence of a reference on the connector. 1 = The device uses the same physical reference clock that the platform provides on the connector.
11	RO 0b	Link Training: This bit indicates that Link training is in progress. Hardware clears this bit once Link training is complete.
10	RO 0b	Training Error: This bit is set by hardware upon detection of unsuccessful training of the Link to the L0 Link state.
9:4	RO 00h	Negotiated Width: This field indicates negotiated link width. 00h = Reserved 01h = X1 04h = X4 08h = X8 10h = X16 All other encodings are reserved.
3:0	RO 1h	Negotiated Speed: This field indicates negotiated link speed. 1h = 2.5 Gb/s All other encodings are reserved.

5.1.41 SLOTCAP—Slot Capabilities (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 B4–B7h 00000000h R/WO 32 bits

PCI Express slot-related registers allow for the support of Hot-Plug.

Bit	Access & Default	Description
31:19	R/WO 0000h	Physical Slot Number: This field indicates the physical slot number attached to this Port. This field must be initialized by BIOS to a value that assigns a slot number that is globally unique within the chassis.
18:17		Reserved
16:15	R/WO 00b	Slot Power Limit Scale: This field specifies the scale used for the Slot Power Limit Value. If this field is written, the link sends a Set_Slot_Power_Limit message. 00 = 1.0x 01 = 0.1x 10 = 0.01x 11 = 0.001x
14:7	R/WO 00h	Slot Power Limit Value: This field, in combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field. If this field is written, the link sends a Set_Slot_Power_Limit message.
6	R/WO 0b	 Hot-plug Capable: This bit indicates that this slot is capable of supporting Hot-plug operations. 0 = Not capable 1 =Capable
5	R/WO 0b	 Hot-plug Surprise: This bit indicates that a device present in this slot might be removed from the system without any prior notification. 0 = No Hot-plug Surprise 1 = Hot plug Surprise capable.
4	R/WO 0b	 Power Indicator Present: This bit indicates that a Power Indicator is implemented on the chassis for this slot. 0 = Not Present 1 = Present
3	R/WO 0b	Attention Indicator Present: This bit indicates that an Attention Indicator is implemented on the chassis for this slot. 0 = Not Present 1 = Present
2:1		Reserved
0	R/WO 0b	 Attention Button Present: This bit indicates that an Attention Button is implemented on the chassis for this slot. The Attention Button allows the user to request hot-plug operations. 0 = Not Present 1 = Present

5.1.42 SLOTCTL—Slot Control (D1:F0)

1
B8–B9h
01C0h
R/W
16 bits

PCI Express slot related registers allow for the support of Hot-Plug.

Bit	Access & Default	Description
15:10		Reserved
9:8	R/W 01b	Power Indicator Control: Reads to this register return the current state of the Power Indicator. Writes to this register set the Power Indicator and cause the Port to send the appropriate POWER_INDICATOR_* messages.
		00 = Reserved 01 = On 10 = Blink 11 = Off
7:6	7:6 R/W 11b	Attention Indicator Control: Reads to this register return the current state of the Attention Indicator. Writes to this register set the Attention Indicator and cause the Port to send the appropriate ATTENTION_INDICATOR_* messages.
		00 = Reserved 01 = On 10 = Blink 11 = Off
5	R/W	Hot plug Interrupt Enable:
	Ob	0 = Disable
		1 = Enables generation of hot plug interrupt on enabled hot plug events.
4	R/W	Command Completed Interrupt Enable:
	Ob	0 = Disable
		1 = Enables the generation of hot plug interrupt when the Hot plug controller completes a command.
3	R/W	Presence Detect Changed Enable:
	0b	0 = Disable
		1 = Enables the generation of hot plug interrupt or wake message on a presence detect changed event.
2:1		Reserved
0	R/W	Attention Button Pressed Enable:
	0b	0 = Disable
		1 = Enables the generation of hot plug interrupt or wake message on an attention button pressed event.

5.1.43 SLOTSTS—Slot Status (D1:F0)

PCI Device:	1
Address Offset:	BA–BBh
Default Value:	0000h
Access:	RO, R/W/C
Size:	16 bits

PCI Express slot-related registers allow for the support of Hot-Plug.

Bit	Access & Default	Description
15:7		Reserved
6	RO Xb	Presence Detect State: This bit indicates the presence of a card in the slot. 0 = Slot Empty 1 = Card Present in slot.
5		Reserved
4	R/WC 0b	Command Completed: 0 = Command Not completed. 1 = Hot plug controller completes an issued command.
3	R/WC 0b	Presence Detect Changed: 0 = No Presence Detect change. 1 = Presence Detect change is detected. This corresponds to an edge on the signal that corresponds to bit 6 of this register (Presence Detect State).
2:1		Reserved
0	R/WC 0b	Attention Button Pressed: 0 = Attention button Not pressed. 1 = Attention Button is pressed.

5.1.44 RCTL—Root Control (D1:F0)

PCI Device:	1
Address Offset:	BC–BDh
Default Value:	0000h
Access:	R/W
Size:	16 bits

This register allows control of PCI Express Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when the device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register.

Bit	Access & Default	Description
15:4		Reserved
3	R/W	PME Interrupt Enable:
	0b	 0 = Disable. No interrupts are generated as a result of receiving PME messages.
		1 = Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit of the Root Status Register. A PME interrupt is also generated if the PME Status bit of the Root Status Register is set when this bit is set from a cleared state.
2	R/W 0b	System Error on Fatal Error Enable: This bit controls the Root Complex's response to fatal errors.
		0 = Disable. No SERR generated on receipt of fatal error.
		 1 = Indicates that an SERR should be generated if a fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
1	R/W 0b	System Error on Non-Fatal Uncorrectable Error Enable: This bit controls the Root Complex's response to non-fatal errors.
		0 = Disable. No SERR generated on receipt of non-fatal error.
		1 = Indicates that an SERR should be generated if a non-fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
0	R/W 0b	System Error on Correctable Error Enable: This bit controls the Root Complex's response to correctable errors.
		0 = Disable. No SERR generated on receipt of correctable error.
		 1 = Indicates that an SERR should be generated if a correctable error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.

5.1.45 RSTS—Root Status (D1:F0)

PCI Device:	1
Address Offset:	C0–C3h
Default Value:	0000000h
Access:	RO, R/W/C
Size:	32 bits

This register provides information about PCI Express Root Complex specific parameters.

Bit	Access & Default	Description
31:18		Reserved
17	RO 0b	 PME Pending: 0 = PME Not pending. 1 = Another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software; the PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending.
16	R/W/C 0b	 PME Status: 0 = Requestor ID did Not assert PME. 1 = Requestor ID indicated in the PME Requestor ID field asserted PME. Subsequent PMEs are kept pending until the status register is cleared by writing a 1 to this field.
15:0	RO 0000h	PME Requestor ID: This field indicates the PCI requestor ID of the last PME requestor.
5.1.46 **PEGLC—PCI Express* Legacy Control (D1:F0)**

PCI Device: Address Offset: Default: Access: Size: 1 EC–EFh 00000000h RO, R/W 32 bits

This field controls functionality that is needed by Legacy (non-PCI Express aware) operating systems during run time.

Bit	Access & Default	Description
31:3	RO 0000 0000h	Reserved
2	R/W	PME GPE Enable (PMEGPE):
	0b	0 = Disable. Do Not generate GPE PME message when PME is received.
		1 = Generate a GPE PME message when PME is received (Assert_PMEGPE and Deassert_PMEGPE messages on DMI). This enables the MCH to support PMEs on the PCI Express port under legacy operating systems.
1	R/W	Hot-Plug GPE Enable (HPGPE):
	Ob	0 = Disable. Do Not generate GPE Hot-Plug message when Hot-Plug event is received.
		1 = Generate a GPE Hot-Plug message when Hot-Plug Event is received (Assert_HPGPE and Deassert_HPGPE messages on DMI). This enables the MCH to support Hot-Plug on the PCI Express port under legacy operating systems.
0	R/W	General Message GPE Enable (GENGPE):
	Ob	0 = Disable. Do Not forward received GPE assert/de-assert messages.
		1 = Forward received GPE assert/de-assert messages. These general GPE message can be received via the PCI Express port from an external Intel device and will be subsequently forwarded to the Intel® ICH7 (via Assert_GPE and Deassert_GPE messages on DMI).

5.1.47 VCECH—Virtual Channel Enhanced Capability Header (D1:F0)

PCI Device: Address Offset:	1 100–103h
Default Value:	14010002h
Access:	RO
Size:	32 bits

This register indicates PCI Express device Virtual Channel capabilities.

Note: Extended capability structures for PCI Express devices are located in PCI Express extended configuration space and have different field definitions than standard PCI capability structures.

Bit	Access & Default	Description
31:20	RO 140h	Pointer to Next Capability: The Link Declaration Capability is the next in the PCI Express* extended capabilities list.
19:16	RO 1h	PCI Express* Virtual Channel Capability Version: Hardwired to 1 to indicate compliances with the <i>PCI Express specification, Revision 1.0a.</i>
15:0	RO 0002h	Extended Capability ID: Value of 0002h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.

5.1.48 **PVCCAP1—Port VC Capability Register 1 (D1:F0)**

PCI Device: Address Offset: Default Value: Access: Size: 1 104–107h 00000001h RO, R/WO 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:7		Reserved
6:4	RO 000b	Low Priority Extended VC Count: This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3		Reserved
2:0	R/WO 001b	Extended VC Count: This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.
		BIOS Requirement: Set this field to 000b for all configurations.

5.1.49 PVCCAP2—Port VC Capability Register 2 (D1:F0)

PCI Device:	1
Address Offset:	108–10Bh
Default Value:	0000001h
Access:	RO
Size:	32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:24	RO 00h	VC Arbitration Table Offset: This field indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority).
23:8		Reserved
7:0	RO 01h	VC Arbitration Capability: This field indicates that the only possible VC arbitration scheme is hardware fixed (in the root complex). VC1 is the highest priority, VC0 is the lowest priority.

5.1.50 PVCCTL—Port VC Control (D1:F0)

PCI Device:	
Address Offset:	
Default Value:	
Access:	
Size:	

1 10C–10Dh 0000h R/W 16 bits

Bit	Access & Default	Description
15:4		Reserved
3:1	R/W 000b	VC Arbitration Select: This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. The value 001b when written to this field will indicate the VC arbitration scheme is hardware fixed (in the root complex). This field can not be modified when more than one VC in the LPVC group is enabled.
0		Reserved

5.1.51 VC0RCAP—VC0 Resource Capability (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 110–113h 00000000h RO 32 bits

Bit	Access & Default	Description
31:16		Reserved
15	RO 0b	 Reject Snoop Transactions 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request.
14:0		Reserved

5.1.52 VC0RCTL—VC0 Resource Control (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 114–117h 800000FFh RO, R/W 32 bits

Controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access & Default	Description
31	RO 1b	VC0 Enable: For VC0, this is hardwired to 1 and read only as VC0 can never be disabled.
30:27		Reserved
26:24	RO 000b	VC0 ID: This field assigns a VC ID to the VC resource. For VC0, this is hardwired to 0 and read only.
23:8		Reserved
7:1	R/W 7Fh	TC/VC0 Map: This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO 1b	TC0/VC0 Map: Traffic Class 0 is always routed to VC0.

5.1.53 VC0RSTS—VC0 Resource Status (D1:F0)

PCI Device:	1
Address Offset:	11A–11Bh
Default Value:	0002h
Access:	RO
Size:	16 bits

This register reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO 1b	VC0 Negotiation Pending: This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as when the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state.
		0 = The VC negotiation is complete.
		 1 = The VC resource is still in the process of negotiation (initialization or disabling).
		Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0		Reserved

5.1.54 VC1RCAP—VC1 Resource Capability (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 11C–11Fh 00008000h RO 32 bits

Bit	Access & Default	Description
31:16		Reserved
15	RO 1b	 Reject Snoop Transactions: 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request.
14:0		Reserved

5.1.55 VC1RCTL—VC1 Resource Control (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 120–123h 01000000h RO, R/W 32 bits

Controls the resources associated with PCI Express Virtual Channel 1.

Bit	Access & Default	Description
31	R/W	VC1 Enable:
	0b	0 = Virtual Channel is disabled.
		1 = Virtual Channel is enabled. See exceptions in note below.
		Software must use the VC Negotiation Pending bit to check whether the VC negotiation is complete. When VC Negotiation Pending bit is cleared, a 1 read from this VC Enable bit indicates that the VC is enabled (Flow Control Initialization is completed for the PCI Express* port); a 0 read from this bit indicates that the Virtual Channel is currently disabled.
		 NOTES: To enable a Virtual Channel, the VC Enable bits for that Virtual Channel must be set in both Components on a Link. To disable a Virtual Channel, the VC Enable bits for that Virtual Channel must be cleared in both Components on a Link. Software must ensure that no traffic is using a Virtual Channel at the time it is disabled. Software must fully disable a Virtual Channel in both Components on a Link before re-enabling the Virtual Channel.
		BIOS Requirement: This field must not be set to 1b. VC1 is not a POR feature.
30:27		Reserved
26:24	R/W 001b	VC1 ID: This field assigns a VC ID to the VC resource. Assigned value must be non-zero.
		This field cannot be modified when the VC is already enabled.
23:8		Reserved
7:1	R/W 00h	TC/VC1 Map: This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. To remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO 0b	TC0/VC1 Map: Traffic Class 0 is always routed to VC0.

5.1.56 VC1RSTS—VC1 Resource Status (D1:F0)

PCI Device:	1
Address Offset:	126–127h
Default Value:	0002h
Access:	RO
Size:	16 bits

This register reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO	VC1 Negotiation Pending: This bit indicates the status of the process of Flow
	1 b	Control initialization. It is set by default on Reset, as well as when the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state.
		0 = The VC negotiation is complete.
		 1 = The VC resource is still in the process of negotiation (initialization or disabling).
		Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0		Reserved

5.1.57 RCLDECH—Root Complex Link Declaration Enhanced Capability Header (D1:F0)

PCI Device:	1
Address Offset:	140–143h
Default Value:	00010005h
Access:	RO
Size:	32 bits

This capability declares links from this element (PCI Express) to other elements of the root complex component to which it belongs. See the PCI Express specification for link/topology declaration requirements.

Bit	Access & Default	Description
31:20	RO 000h	Pointer to Next Capability: This is the last capability in the PCI Express* extended capabilities list
19:16	RO 1h	Link Declaration Capability Version: Hardwired to 1 to indicate compliances with <i>PCI Express Specification, Revision 1.0a</i> .
15:0	RO 0005h	Extended Capability ID: Value of 0005 h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability.

Note: See corresponding Egress Port Link Declaration Capability registers for diagram of Link Declaration Topology.

5.1.58 ESD—Element Self Description (D1:F0)

PCI Device:	
Address Offset:	
Default Value:	
Access:	
Size:	

1 144–147h 02000200h RO, R/WO 32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access & Default	Description
31:24	RO 02h	Port Number: This field specifies the port number associated with this element with respect to the component that contains this element. The egress port of the component to provide arbitration to this Root Complex Element uses this port number value.
23:16	R/WO 00h	Component ID: This field identifies the physical component that contains this Root Complex Element. Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:8	RO 02h	Number of Link Entries: This field identifies the number of link entries following the Element Self Description. This field reports 2 (to the other PEG port and to Egress port).
7:4		Reserved
3:0	RO 0h	Element Type: This field indicates the type of the Root Complex Element. Value of 0h represents a root port.

5.1.59 LE1D—Link Entry 1 Description (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 150–153h 00000000h RO, R/WO 32 bits

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO 00h	Target Port Number: This field specifies the port number associated with the element targeted by this link entry (Egress Port). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	R/WO 00h	Target Component ID: This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO 0b	Link Type (TYP): This bit indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	R/WO	Link Valid
	Ob	0 = Link Entry is not valid and will be ignored.
		1 = Link Entry specifies a valid link.

5.1.60 LE1A—Link Entry 1 Address (D1:F0)

PCI Device:	1
Address Offset:	158–15Fh
Default Value:	00000000000000000h
Access:	R/WO
Size:	64 bits

This register contains the second part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:32		Reserved
31:12	R/WO 0 0000h	Link Address: This field contains the memory mapped base address of the RCRB that is the target element (Egress Port) for this link entry.
11:0		Reserved

5.1.61 LE2D—Link Entry 2 Description (D1:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 160–163h 0000002h RO, R/WO 32 bits

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO 00h	Target Port Number: This field specifies the port number associated with the element targeted by this link entry (PEG1). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	R/WO 00h	Target Component ID: This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO 1b	Link Type (LTYP): This bit indicates that the link points to configuration space of an integrated device.
		The link address specifies the configuration address (segment, bus, device, function) of the target root port.
0	R/WO	Link Valid
	0b	0 = Link Entry is not valid and will be ignored.
		1 = Link Entry specifies a valid link.

5.1.62 LE2A— Link Entry 2 Address

PCI Device:1Address Offset:168–16FhDefault Value:00000000018000hAccess:ROSize:64 bits

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:20		Reserved
19:15	RO 0 0011b	Device Number: Target for this link is PEG1(Device 3).
14:0		Reserved

5.1.63 UESTS—Uncorrectable Error Status (D1:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1C4–1C7h 0000000h RO, R/WC/S 32 bits

This register reports error status of individual error sources on a PCI Express device. An individual error status bit that is set indicates that a particular error occurred. Software clears an error status by writing a 1 to the respective bit.

Bit	Access & Default	Description
31:21	RO 000h	Reserved
20	R/WC/S 0b	Unsupported Request Error Status: 0 = Error did Not occur 1 = Error occurred
19	RO 0b	Reserved
18	R/WC/S 0b	Malformed TLP Status: 0 = Error did Not occur 1 = Error occurred
17	R/WC/S 0b	Receiver Overflow Status: 0 = Error did Not occur 1 = Error occurred

int_{el}.

Bit	Access & Default	Description
16	R/WC/S 0b	Unexpected Completion Status: 0 = Error did Not occur 1 = Error occurred
15	RO 0b	Reserved
14	R/WC/S 0b	Completion Timeout Status: 0 = Error did Not occur 1 = Error occurred
13:5	RO 0b	Reserved
4	R/WC/S 0b	Data Link Protocol Error Status (DLPES): The Data Link Layer Protocol Error that causes this bit to be set will also cause the Fatal Error Detected bit in Device Status[2] to be set if not already set.
3:0	RO 000b	Reserved

5.1.64 UEMSK—Uncorrectable Error Mask (D1:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1C8–1CBh 00000000h RO, R/W/S 32 bits

This register controls reporting of individual errors by the device (or logic associated with this port) to the PCI Express Root Complex. As these errors are not originating on the other side of a PCI Express link, no PCI Express error message is sent, but the unmasked error is reported directly to the root control logic. A masked error (respective bit set to 1 in the mask register) has no action taken. There is a mask bit per error bit of the Uncorrectable Error Status register.

Bit	Access & Default	Description
31:2 1	RO 000h	Reserved
20	R/W/S 0b	Unsupported Request Error Mask:
	00	0 = Not Masked 1 = Masked
19	RO 0b	Reserved
18	R/W/S	Malformed TLP Mask:
	Ob	0 = Not Masked 1 = Masked
17	R/W/S 0b	Receiver Overflow Mask:
		0 = Not Masked 1 = Masked
16	R/W/S 0b	Unexpected Completion Mask:
	00	0 = Not Masked 1 = Masked
15	RO 0b	Reserved
14	R/W/S	Completion Timeout Mask:
	Ob	0 = Not Masked 1 = Masked
13:5	RO 0b	Reserved
4	R/W/S 0b	Data Link Protocol Error Mask:
		0 = Not Masked 1 = Masked
3:0	RO 000b	Reserved

5.1.65 CESTS—Correctable Error Status (D1:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1D0–1D3h 0000000h RO, R/WC/S 32 bits

This register reports error status of individual error sources on a PCI Express device. An individual error status bit that is set indicates that a particular error occurred. Software may clear an error status by writing a 1 to the respective bit.

Bit	Access & Default	Description
31:13	RO 00000h	Reserved
12	R/WC/S 0b	Replay Timer Timeout Status: 0 = Error did Not occur 1 = Error occurred
11:9	RO 000b	Reserved
8	R/WC/S 0b	Replay Number Rollover Status: 0 = Error did Not occur 1 = Error occurred
7	R/WC/S 0b	Bad DLLP Status: 0 = Error did Not occur 1 = Error occurred
6	R/WC/S 0b	Bad TLP Status: 0 = Error did Not occur 1 = Error occurred
5:1	RO 00h	Reserved
0	R/WC/S 0b	Receiver Errors will be indicated due to all of the following: 8b/10b Decode Errors, Framing Errors, Lane Deskew Errors, and Elasticity Buffer Overflow/Underflow. 0 = Error did Not occur 1 = Error occurred

5.1.66 CEMSK—Correctable Error Mask (D1:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1D4–1D7h 00000000h RO, R/W/S 32 bits

This register controls reporting of individual correctable errors by the device (or logic associated with this port) to the PCI Express Root Complex. As these errors are not originating on the other side of a PCI Express link, no PCI Express error message is sent, but the unmasked error is reported directly to the root control logic. A masked error (respective bit set to 1 in the mask register) has no action taken. There is a mask bit per error bit of the Correctable Error Status register.

Bit	Access & Default	Description
31:13	RO 00000h	Reserved
12	R/W/S 0b	Replay Timer Timeout Mask: 0 = Not Masked 1 = Masked
11:9	RO 000b	Reserved
8	R/W/S 0b	Replay Number Rollover Mask: 0 = Not Masked 1 = Masked
7	R/W/S 0b	Bad DLLP Mask: 0 = Not Masked 1 = Masked
6	R/W/S 0b	Bad TLP Mask: 0 = Not Masked 1 = Masked
5:1	RO 00h	Reserved
0	R/W/S 0b	Receiver Error Mask: 0 = Not Masked 1 = Masked

5.1.67 **PEGSSTS—PCI Express* Sequence Status (D1:F0)**

PCI Device: Address Offset: Default Value: Access: Size: 1 218–21Fh 00000000000FFFh RO 64 bits

PCI Express status reporting that is required by the PCI Express specification.

Bit	Access & Default	Description
63:60		Reserved
59:48	RO 000h	Next Transmit Sequence Number: This field contains the value of the NXT_TRANS_SEQ counter. This counter represents the transmit Sequence number to be applied to the next TLP to be transmitted onto the Link for the first time.
47:44		Reserved
43:32	RO 000h	Next Packet Sequence Number: This field contains the packet sequence number to be applied to the next TLP to be transmitted or re-transmitted onto the Link.
31:28		Reserved
27:16	RO 000h	Next Receive Sequence Number: This is the sequence number associated with the TLP that is expected to be received next.
15:12		Reserved
11:0	RO FFFh	Last Acknowledged Sequence Number: This is the sequence number associated with the last acknowledged TLP.

§

6 Host-Secondary PCI Express* Bridge Registers (D3:F0)

Device 3 contains the controls associated with the Secondary PCI Express x16 root port that is the intended attach point for external graphics. In addition, it also functions as the virtual PCI-to-PCI bridge. Table 5-1 provides an address map of the D3:F0 registers listed by address offset in ascending order. Section 5.1 provides a detailed bit description of the registers.

The PCI Express* Specification defines two types of reserved bits: Reserved and Preserved.

- Reserved for future RW implementations; software must preserve value read for writes to bits.
- Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes to bits.

Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the Reserved and Preserved type, which have historically been the typical definition for Reserved.

Note: Most (if not all) control bits in this device cannot be modified unless the link is down. Software is required to first Disable the link, then program the registers, and then re-enable the link (which will cause a full-retrain with the new settings).

Table 6-1. Host-PCI Express* Graphics Bridge Register Address Map (D3:F0)

Address Offset	Symbol	Register Name	Default Value	Access
00–01h	VID3	Vendor Identification	8086h	RO
02–03h	DID3	Device Identification	277Ah	RO
04–05h	PCICMD3	PCI Command	0000h	RO, R/W
06–07h	PCISTS3	PCI Status	0010h	RO, R/W/C
08h	RID3	Revision Identification	See register description	RO
09–0Bh	CC3	Class Code	060400h	RO
0Ch	CL3	Cache Line Size	00h	R/W
0Dh	—	Reserved	—	—
0Eh	HDR3	Header Type	01h	RO
0F–17h	—	Reserved	—	_
18h	PBUSN3	Primary Bus Number	00h	RO
19h	SBUSN3	Secondary Bus Number	00h	RO
1Ah	SUBUSN3	Subordinate Bus Number	00h	R/W

Address Offset	Symbol	Register Name	Default Value	Access
1Bh	—	Reserved	_	_
1Ch	IOBASE3	I/O Base Address	F0h	RO
1Dh	IOLIMIT3	I/O Limit Address	00h	R/W
1Eh–1Fh	SSTS3	Secondary Status	00h	RO, R/W/C
20–21h	MBASE3	Memory Base Address	FFF0h	R/W
22–23h	MLIMIT3	Memory Limit Address	0000h	R/W
24–25h	PMBASE3	Prefetchable Memory Base Address	FFF1h	RO, R/W
26–27h	PMLIMIT3	Prefetchable Memory Limit Address	0000h	RO, R/W
28–2Bh	PMBASEU3	Prefetchable Memory Base Address	0000000Fh	R/W
2C–2Fh	PMLIMITU3	Prefetchable Memory Limit Address	00000000h	R/W
30–33h	_	Reserved	_	_
34h	CAPPTR3	Capabilities Pointer	88h	RO
35–3Bh	—	Reserved	_	_
3Ch	INTRLINE3	Interrupt Line	00h	R/W
3Dh	INTRPIN3	Interrupt Pin	01h	RO
3E–3Fh	BCTRL3	Bridge Control	0000h	RO, R/W
40–7Fh	—	Reserved	_	_
80–83h	PM_CAPID3	Power Management Capabilities	C8029001h	RO
84–87h	PM_CS3	Power Management Control/Status	00000000h	RO, R/W, R/W/S
88–8Bh	SS_CAPID3	Subsystem Identification and Vendor Identification Capabilities	0000800Dh	RO
8C–8Fh	SS3	Subsystem ID and Subsystem Vendor ID	00008086h	RO
90–91h	MSI_CAPID3	Message Signaled Interrupts Capability Identification	A005h	RO
92–93h	MC3	Message Control	0000h	RO, R/W
94–97h	MA3	Message Address	00000000h	RO, R/W
98–99h	MD3	Message Data	0000h	R/W
9A–9Fh	—	Reserved	_	_
A0–A1h	PEGCAPL3	PCI Express* Capability List	0010h	RO
A2–A3h	PCI_EXPRESS _CAP3	PCI Express* Capabilities	0141h	RO, R/WO
A4–A7h	DCAP3	Device Capabilities	00000000h	RO
A8–A9h	DCTL3	Device Control	0000h	R/W
AA–ABh	DSTS3	Device Status	0000h	RO
AC–AFh	LCAP3	Link Capabilities	02012081h	R/WO

Address Offset	Symbol	Register Name	Default Value	Access
B0–B1h	LCTL3	Link Control	0000h	RO, R/W
B2–B3h	LSTS3	Link Status	1001h	RO
B4–B7h	SLOTCAP3	Slot Capabilities	00000000h	R/WO
B8–B9h	SLOTCTL3	Slot Control	01C0h	RO, R/W
BA–BBh	SLOTSTS3	Slot Status	0000h	RO, R/W/C
BC–BDh	RCTL3	Root Control	0000h	R/W
BE–BFh	—	Reserved	—	_
C0–C3h	RSTS3	Root Status	00000000h	RO, R/W/C
C4–FFh	—	Reserved	—	
EC–EFh	PEGLC3	PCI Express* Legacy Control	00000000h	RO, R/W
100–103h	VCECH3	Virtual Channel Enhanced Capability Header	14010002h	RO
104–107h	PVCCAP31	Port VC Capability Register 1	00000001h	RO, R/WO
108–10Bh	PVCCAP32	Port VC Capability Register 2	00000001h	RO
10C-10Dh	PVCCTL3	Port VC Control	0000h	R/W
10E–10Fh	—	Reserved	—	_
110–113h	VC0RCAP3	VC0 Resource Capability	00000000h	RO
114–117h	VC0RCTL3	VC0 Resource Control	800000FFh	RO, R/W
118–119h	_	Reserved	—	_
11A–11Bh	VC0RSTS3	VC0 Resource Status	0002h	RO
11C–11Fh	VC1RCAP3	VC1 Resource Capability	00008000h	RO
120–123h	VC1RCTL3	VC1 Resource Control	01000000h	RO, R/W
124–125h	—	Reserved	—	_
126–127h	VC1RSTS3	VC1 Resource Status	0002h	RO
128–13Fh	—	Reserved	—	—
140–143h	RCLDECH3	Root Complex Link Declaration Enhanced Capability Header	00010005h	RO
144–147h	ESD3	Element Self Description	02000200h	RO, R/WO
148–14Fh	_	Reserved	_	_
150–153h	LE1D3	Link Entry 1 Description	00000000h	RO, R/WO
154–157h	_	Reserved	_	_
158–15Fh	LE1A3	Link Entry 1 Address	000000000 0000000h	R/WO
160–163h	LE2D3	Link Entry 2 Description	00000000h	RO, R/WO
164–167h	_	Reserved	_	_

Address Offset	Symbol	Register Name	Default Value	Access
168–16Fh	LE2A3	Link Entry 2 Address	000000000 0010000	RO
1C4–1C7h	UESTS3	Uncorrectable Error Status	00000000h	RO, R/WC/S
1C8–1CBh	UEMSK3	Uncorrectable Error Mask	00000000h	RO, R/W/S
1CC-1CFh	_	Reserved	—	—
1D0–1D3h	CESTS3	Correctable Error Status	00000000h	RO, R/WC/S
1D4–1D7h	CEMSK3	Correctable Error Mask	00000000h	RO, R/W/S
1D8–217h	_	Reserved	—	—
218–21Fh	PEGSSTS3	PCI Express* Sequence Status	000000000 0000FFFh	RO
220–FFFh		Reserved	_	_

6.1 Configuration Register Details (D3:F0)

6.1.1 VID3—Vendor Identification (D3:F0)

PCI Device:	3
Address Offset:	00–01h
Default Value:	8086h
Access:	RO
Size:	16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO	Vendor Identification (VID3)
	8086h	PCI standard identification for Intel.

6.1.2 DID3—Device Identification (D3:F0)

PCI Device:	3
Address Offset:	02–03h
Default Value:	277Ah
Access:	RO
Size:	16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 277Ah	Device Identification Number (DID3): Identifier assigned to the MCH Device 3 (virtual PCI-to-PCI bridge, PCI Express* Graphics port).

6.1.3 PCICMD3—PCI Command (D3:F0)

PCI Device:	3
Address Offset:	04–05h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 – PCICMD1 Register.

6.1.4 PCISTS3—PCI Status (D3:F0)

PCI Device:	3
Address Offset:	06–07h
Default Value:	0010h
Access:	RO, R/W/C
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PCISTS1 Register.

6.1.5 **RID3—Revision Identification (D3:F0)**

PCI Device:	3
Address Offset:	08h
Default Value:	see register bit table
Access:	RO
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - RID1 Register.

6.1.6 CC3—Class Code (D3:F0)

PCI Device:	3
Address Offset:	09–0Bh
Default Value:	060400h
Access:	RO
Size:	24 bits

The operation of this register is detailed in the description for Device 1, Function 0 - CC1 Register.

6.1.7 CL3—Cache Line Size (D3:F0)

PCI Device:	3
Address Offset:	0Ch
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - CL1 Register.

6.1.8 HDR3—Header Type (D3:F0)

PCI Device:	3
Address Offset:	0Eh
Default Value:	01h
Access:	RO
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 – HDR1 Register.

6.1.9 PBUSN3—Primary Bus Number (D3:F0)

PCI Device:	3
Address Offset:	18h
Default Value:	00h
Access:	RO
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PBUSN1Register.

6.1.10 SBUSN3—Secondary Bus Number (D3:F0)

PCI Device:	3
Address Offset:	19h
Default Value:	00h
Access:	RO
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - SBUSN1Register.

SUBUSN3—Subordinate Bus Number (D3:F0) 6.1.11

PCI Device:	3
Address Offset:	1Ah
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - SUBUSN1Register.

6.1.12 IOBASE3—I/O Base Address (D3:F0)

PCI Device:	3
Address Offset:	1Ch
Default Value:	F0h
Access:	RO
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - IOBASE1 Register.

6.1.13 IOLIMIT3—I/O Limit Address (D3:F0)

PCI Device:	3
Address Offset:	1Dh
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - IOLIMIT1 Register.

6.1.14 SSTS3—Secondary Status (D3:F0)

PCI Device:	3
Address Offset:	1E–1Fh
Default Value:	00h
Access:	RO, R/W/C
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - SSTS1 Register.

6.1.15 MBASE3—Memory Base Address (D3:F0)

PCI Device:	3
Address Offset:	20–21h
Default Value:	FFF0h
Access:	R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - MBASE1 Register.

6.1.16 MLIMIT3—Memory Limit Address (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 22–23h 0000h R/W 16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - MLIMIT1 Register.

6.1.17 PMBASE3—Prefetchable Memory Base Address (D3:F0)

PCI Device:3Address Offset:24–25hDefault Value:FFF1hAccess:RO, R/WSize:16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PMBASE1 Register.

6.1.18 PMLIMIT3—Prefetchable Memory Limit Address (D3:F0)

PCI Device:3Address Offset:26–27hDefault Value:0000hAccess:RO, R/WSize:16 bits

The operation of this register is detailed in the description for Device 1, Function 0 – PMLIMIT1 Register.

6.1.19 PMBASEU3—Prefetchable Memory Base Address

PCI Device: Address Offset: Default Value: Access: Size: 3 28–2Bh 0000000Fh R/W 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PMBASEU1 Register.

6.1.20 PMLIMITU3— Prefetchable Memory Limit Address

PCI Device: Address Offset: Default Value: Access: Size:

3 2C-2Fh 0000000h R/W 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - 1PMLIMITU1 Register.

6.1.21 CAPPTR3—Capabilities Pointer (D3:F0)

PCI Device:	3
Address Offset:	34h
Default Value:	88h
Access:	RO
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - CAPPTR1Register.

INTRLINE3—Interrupt Line (D3:F0) 6.1.22

PCI Device:	3
Address Offset:	3Ch
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - INTRLINE1Register.

INTRPIN3—Interrupt Pin (D3:F0) 6.1.23

PCI Device:	3
Address Offset:	3Dh
Default Value:	01h
Access:	RO
Size:	8 bits

The operation of this register is detailed in the description for Device 1, Function 0 - INTRPIN1Register.

6.1.24 BCTRL3—Bridge Control (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size:

3Eh 0000h RO, R/W 16 bits

3

The operation of this register is detailed in the description for Device 1, Function 0 - BCTRL1 Register.

6.1.25 PM_CAPID3—Power Management Capabilities (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 80–83h C8029001h RO 32 bits

The operation of this register is detailed in the description for Device 1, Function $0 - PM_CAPID1$ Register.

6.1.26 PM_CS3—Power Management Control/Status (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 84h 00000000h RO, R/W 32 bits

The operation of this register is detailed in the description for Device 1, Function $0 - PM_CS1$ Register.

6.1.27 SS_CAPID3—Subsystem ID and Vendor ID Capabilities (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 88h 0000800Dh RO 32 bits

The operation of this register is detailed in the description for Device 1, Function $0 - SS_CAPID$ Register.

6.1.28 SS3—Subsystem ID and Subsystem Vendor ID (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 8Ch 00008086h RO 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - SS Register.

6.1.29 MSI_CAPID3—Message Signaled Interrupts Capability ID (D3:F0)

PCI Device:	3
Address Offset:	90h
Default Value:	A005h
Access:	RO
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function $0 - MSI_CAPID$ Register.

6.1.30 MC3—Message Control (D3:F0)

PCI Device:	3
Address Offset:	92h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - MC Register.

6.1.31 MA3—Message Address (D3:F0)

PCI Device:	3
Address Offset:	94h
Default Value:	0000000h
Access:	RO, R/W
Size:	32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - MA Register.

6.1.32 MD3—Message Data (D3:F0)

PCI Device:	3
Address Offset:	98h
Default Value:	0000h
Access:	R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - MD Register.

6.1.33 **PEGCAPL3—PCI Express* Capability List (D3:F0)**

PCI Device:	3
Address Offset:	A0–A1h
Default Value:	0010h
Access:	RO
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PEGCAPL Register.

6.1.34 PCI_EXPRESS _CAP3—PCI Express* Capabilities (D3:F0)

PCI Device:	3
Address Offset:	A2–A3h
Default Value:	0141h
Access:	RO, R/WO
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PEGCAP Register.

6.1.35 DCAP3—Device Capabilities (D3:F0)

3
A4–A7h
00000000h
RO
32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - DCAP Register.

6.1.36 DCTL3—Device Control (D3:F0)

PCI Device: Address Offset:	3 A8–A9h
Default Value:	0000h
Access:	R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - DCTL Register.

6.1.37 DSTS3—Device Status (D3:F0)

PCI Device:	3
Address Offset:	AA–ABh
Default Value:	0000h
Access:	RO
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - DSTS Register.

6.1.38 LCAP3—Link Capabilities (D3:F0)

PCI Device:	3
Address Offset:	AC–AFh
Default Value:	02012081h
Access:	R/WO
Size:	16 bits

This register indicates PCI Express device specific capabilities.

Bit	Access & Default	Description
31:24	RO 02h	Port Number: This field indicates the PCI Express* port number for the given PCI Express link. The field matches the value in Element Self Description [31:24].
23:18		Reserved
17:15	R/WO 010b	L1 Exit Latency: This field indicates the length of time this Port requires to complete the transition from L1 to L0. The value 010 b indicates the range of 2 μ s to less than 4 μ s. If this field is required to be any value other than the default, BIOS must initialize it accordingly.
		Both bytes of this register that contain a portion of this field must be written simultaneously to prevent an intermediate (and undesired) value from ever existing.
14:12	R/WO 010b	L0s Exit Latency: This field indicates the length of time this Port requires to complete the transition from L0s to L0. The value 010 b indicates the range of 128 ns to less than 256 ns. If this field is required to be any value other than the default, BIOS must initialize it accordingly.
11:10	RO 11b	Active State Link PM Support: L0s and L1 entry supported.
9:4	RO	Max Link Width: Hardwired to indicate X8.
	08h	When Force X1 mode is enabled on this PCI Express device, this field reflects X1 (01h).
3:0	RO 1h	Max Link Speed: Hardwired to indicate 2.5 Gb/s.

6.1.39 LCTL3—Link Control (D3:F0)

PCI Device:	3
Address Offset:	B0–B1h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - LCTL Register.

6.1.40 LSTS3—Link Status (D3:F0)

3
B2–B3h
1001h
RO
16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - LSTS Register.

3

6.1.41 SLOTCAP3—Slot Capabilities (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size:

B4–B7h 00000000h R/WO 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - SLOTCAP Register.

6.1.42 SLOTCTL3—Slot Control (D3:F0)

PCI Device:	3
Address Offset:	B8–B9h
Default Value:	01C0h
Access:	R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - SLOTCTL Register.

6.1.43 SLOTSTS3—Slot Status (D3:F0)

PCI Device:	3
Address Offset:	BA–BBh
Default Value:	0000h
Access:	RO, R/W/C
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - SLOTSTS Register.

6.1.44 RCTL3—Root Control (D3:F0)

PCI Device:	3
Address Offset:	BC–BDh
Default Value:	0000h
Access:	R/W
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - RCTL Register.

6.1.45 RSTS3—Root Status (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 C0–C3h 00000000h RO, R/W/C 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - RSTS Register.

6.1.46 PEGLC3—PCI Express* Legacy Control (D3:F0)

PCI Device:	3
Address Offset:	EC–EFh
Default:	0000000h
Access:	RO, R/W
Size:	32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PEGLC Register.

6.1.47 VCECH3—Virtual Channel Enhanced Capability Header (D3:F0)

PCI Device:	3
Address Offset:	100–103h
Default Value:	14010002h
Access:	RO
Size:	32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - VCECH Register.

6.1.48 PVCCAP31—Port VC Capability Register 1 (D3:F0)

PCI Device:	3
Address Offset:	104–107h
Default Value:	0000001h
Access:	RO, R/WO
Size:	32 bits

The operation of this register is detailed in the description for Device 1, Function 0 – PVCCAP1 Register.

6.1.49 PVCCAP32—Port VC Capability Register 2 (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 108–10Bh 00000001h RO 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PVCCAP2 Register.

6.1.50 PVCCTL3—Port VC Control (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 10C–10Dh 0000h R/W 16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PVCCTL Register.

6.1.51 VC0RCAP3—VC0 Resource Capability (D3:F0)

PCI Device:	3
Address Offset:	110–113h
Default Value:	0000000h
Access:	RO
Size:	32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - VCORCAP Register.

6.1.52 VC0RCTL3—VC0 Resource Control (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 114–117h 800000FFh RO, R/W 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - VCORCTL Register.

6.1.53 VC0RSTS3—VC0 Resource Status (D3:F0)

PCI Device:	3
Address Offset:	11A–11Bh
Default Value:	0002h
Access:	RO
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - VC0RSTS Register.

6.1.54 VC1RCAP3—VC1 Resource Capability (D3:F0)

PCI Device:	3
Address Offset:	11C–11Fh
Default Value:	00008000h
Access:	RO
Size:	32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - VC1RCAP Register.

6.1.55 VC1RCTL3—VC1 Resource Control (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 120–123h 01000000h RO, R/W 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - VC1RCTL Register.

6.1.56 VC1RSTS3—VC1 Resource Status (D3:F0)

PCI Device:	3
Address Offset:	126–127h
Default Value:	0002h
Access:	RO
Size:	16 bits

The operation of this register is detailed in the description for Device 1, Function 0 - VC1RSTS Register.

6.1.57 RCLDECH3—Root Complex Link Declaration Enhanced Capability Header (D3:F0)

PCI Device:	3
Address Offset:	140–143h
Default Value:	00010005h
Access:	RO
Size:	32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - RCLDECH Register.
6.1.58 ESD3—Element Self Description (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 144–147h 02000200h RO, R/WO 32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access & Default	Description	
31:24	RO 02h	Port Number: This field specifies the port number associated with this element with respect to the component that contains this element. The egress port of the component to provide arbitration to this Root Complex Element uses this port number value.	
23:16	R/WO 00h	Component ID: This field identifies the physical component that contains this Root Complex Element. Component IDs start at 1.	
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.	
15:8	RO 02h	Number of Link Entries: This field identifies the number of link entries following the Element Self Description. This field reports 2 (to the other PEG port and to Egress port).	
7:4		Reserved	
3:0	RO 0h	Element Type: This field identifies the type of the Root Complex Element. Value of 0h represents a root port.	

6.1.59 LE1D3—Link Entry 1 Description (D3:F0) PCI Device: 1

PCI Device: Address Offset: Default Value: Access: Size:

150–153h 00000000h RO, R/WO 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - LE1D Register.

6.1.60 LE1A3—Link Entry 1 Address (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 1 158–15Fh 0000000000000000 R/WO 64 bits

The operation of this register is detailed in the description for Device 1, Function 0 - LE1A Register.

6.1.61 LE2D3—Link Entry 2 Description (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 160–163h 0000002h RO, R/WO 32 bits

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO 00h	Target Port Number: This field specifies the port number associated with the element targeted by this link entry (PEG1). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	R/WO 00h	Target Component ID: This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO 1b	Link Type (LTYP): This bit indicates that the link points to configuration space of an integrated device.
		The link address specifies the configuration address (segment, bus, device, function) of the target root port.
0	R/WO	Link Valid
	0b	0 = Link Entry is not valid and will be ignored.
		1 = Link Entry specifies a valid link.

6.1.62 LE2A3— Link Entry 2 Address (D3:F0)

PCI Device: Address Offset: Default Value: Access: Size: 3 168–16Fh 00000000010000h RO 64 bits

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:20		Reserved
19:15	RO 0 0001b	Device Number: Target for this link is PEG0(Device 1).
14:0		Reserved

6.1.63 UESTS3—Uncorrectable Error Status (D3:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1C4–1C7h 00000000h RO, R/WC/S 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - UESTS Register.

6.1.64 UEMSK3—Uncorrectable Error Mask (D3:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1C8–1CBh 00000000h RO, R/W/S 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - UEMSK Register.

6.1.65 CESTS3—Correctable Error Status (D3:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1D0–1D3h 0000000h RO, R/WC/S 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - CESTS Register

6.1.66 CEMSK3—Correctable Error Mask (D3:F0)

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/1/0/MMR 1D4–1D7h 0000000h RO, R/W/S 32 bits

The operation of this register is detailed in the description for Device 1, Function 0 - CEMSK Register

6.1.67 PEGSSTS3—PCI Express* Sequence Status (D3:F0)

PCI Device:	1
Address Offset:	218–21Fh
Default Value:	0000000000000FFFh
Access:	RO
Size:	64 bits

The operation of this register is detailed in the description for Device 1, Function 0 - PEGSSTS Register

§

7 Direct Media Interface (DMI) RCRB

This Root Complex Register Block (RCRB) controls the MCH-ICH7 serial interconnect. The base address of this space is programmed in DMIBAR in D0:F0 configuration space. Table 7-1 provides an address map of the DMI registers listed by address offset in ascending order. Section 7.1 provides a detailed bit description of the registers.

Table 7-1. DMI Register Address Map

Address Offset	Symbol	Register Name	PCI Dev #	Access
000–003h	DMIVCECH	DMI Virtual Channel Enhanced Capability Header	DMIBAR	RO
004–007h	DMIPVCCAP1	DMI Port VC Capability Register 1	DMIBAR	RO
008–00Bh	DMIPVCCAP2	DMI Port VC Capability Register 2	DMIBAR	RO, R/WO
00C–00Dh	DMIPVCCTL	DMI Port VC Control	DMIBAR	RO
00E–00Fh	—	Reserved	—	—
010–013h	DMIVC0RCAP	DMI VC0 Resource Capability	DMIBAR	RO
014–017h	DMIVC0RCTL0	DMI VC0 Resource Control	DMIBAR	RO, R/W
018–019h	—	Reserved	—	—
01A–01B h	DMIVCORSTS	DMI VC0 Resource Status	DMIBAR	RO
01C–01F h	DMIVC1RCAP	DMI VC1 Resource Capability	DMIBAR	RO
020–023h	DMIVC1RCTL1	DMI VC1 Resource Control	DMIBAR	RO, R/W
024–025h	—	Reserved	—	_
026–027h	DMIVC1RSTS	DMI VC1 Resource Status	DMIBAR	RO
028–083h	—	Reserved	_	_
084–087h	DMILCAP	DMI Link Capabilities	DMIBAR	RO, R/WO
088–089h	DMILCTL	DMI Link Control	DMIBAR	R/W
08A–08Bh	DMILSTS	DMI Link Status	DMIBAR	RO
08C– 1C3h	—	Reserved	_	_
1C4–1C7h	DMIUESTS	DMI Uncorrectable Error Status	DMIBAR	RO, R/WC/S
1C8–1CBh	DMIUEMSK	DIM Uncorrectable Error Mask	DMIBAR	RO, R/W/S
1CC– 1CFh	_	Reserved	—	_
1D0–1D3h	DMICESTS	DMI Correctable Error Status	DMIBAR	RO, R/WC/S
1D4– FFFh		Reserved	_	_

7.1 DMI RCRB Configuration Register Details

7.1.1 DMIVCECH—DMI Virtual Channel Enhanced Capability Header

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 000–003h 14010002h RO 32 bits

This register indicates DMI Virtual Channel capabilities.

Bit	Access & Default	Description
31:20	RO 140h	Pointer to Next Capability: This field indicates the next item in the list.
19:16	RO 1h	Capability Version: This field indicates support as a version 1 capability structure.
15:0	RO 0002h	Capability ID: This field indicates this is the Virtual Channel capability item.

7.1.2 DMIPVCCAP1—DMI Port VC Capability Register 1

DMIBAR
004–007h
0000001h
RO, R/WO
32 bits

This register describes the configuration of Virtual Channels associated with this port.

Bit	Access & Default	Description
31:12		Reserved
11:10	RO 00b	Port Arbitration Table Entry Size (PATS): This field indicates the size of the port arbitration table is 4 bits (to allow up to 8 ports).
9:8	RO 00b	Reference Clock (RC): Fixed at 10 ns.
7		Reserved
6:4	RO 000b	Low Priority Extended VC Count (LPEVC): This field indicates that there are no additional VCs of low priority with extended capabilities.
3		Reserved
2:0	R/WO 001b	Extended VC Count: This field indicates that there is one additional VC (VC1) that exists with extended capabilities.

7.1.3 DMIPVCCAP2—DMI Port VC Capability Register 2

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 008–00Bh 00000001h RO 32 bits

This register describes the configuration of Virtual Channels associated with this port.

Bit	Access & Default	Description
31:24	RO 00h	VC Arbitration Table Offset (ATO): This field indicates that no table is present for VC arbitration since it is fixed.
23:8		Reserved
7:0	RO 01h	VC Arbitration Capability: This field indicates that the VC arbitration is fixed in the root complex. VC1 is highest priority and VC0 is lowest priority.

7.1.4 DMIPVCCTL—DMI Port VC Control

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 00C–00Dh 0000h RO 16 bits

Bit	Access & Default	Description
15:4		Reserved
3:1	R/W 000b	VC Arbitration Select: This field indicates which VC should be programmed in the VC arbitration table. The root complex takes no action on the setting of this field since there is no arbitration table.
0	RO 0b	Reserved

7.1.5 DMIVC0RCAP—DMI VC0 Resource Capability

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 010–013h 00000001h RO 32 bits

Bit	Access & Default	Description
31:23		Reserved
22:16	RO 00h	Maximum Time Slots (MTS): This VC implements fixed arbitration; therefore, this field is not used.
15	RO 0b	Reject Snoop Transactions (RTS): This VC must be able to take snoopable transactions.
14:8		Reserved
7:0	RO 01h	Port Arbitration Capability (PAC): This field indicates that this VC uses fixed port arbitration.

7.1.6 DMIVC0RCTL0—DMI VC0 Resource Control

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 014–017h 800000FEh RO, R/W 32 bits

This register controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access & Default	Description
31	RO 1b	Virtual Channel Enable (EN): 0 = Disable 1 = Enable
30:27		Reserved
26:24	RO 000b	Virtual Channel Identifier (ID): This field indicates the ID to use for this virtual channel.
23:20		Reserved
19:17	R/W 0h	Port Arbitration Select (PAS): This field indicates which port table is being programmed. The root complex takes no action on this setting since the arbitration is fixed and there is no arbitration table.
16:8		Reserved
7:1	R/W 7Fh	Transaction Class / Virtual Channel Map (TVM): This field indicates which transaction classes are mapped to this virtual channel.
		0 = Transaction class is Not mapped to the virtual channel.1 = This transaction class is mapped to the virtual channel.
0		Reserved

7.1.7 DMIVC0RSTS—DMI VC0 Resource Status

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 01A–01Bh 0002h RO 16 bits

This register reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO 1b	 VC Negotiation Pending (NP): 0 = VC Negotiation complete; Not pending 1 = Virtual channel is still being negotiated with ingress ports.
0		Reserved

7.1.8 DMIVC1RCAP—DMI VC1 Resource Capability

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 01C–01Fh 0008001h RO 32 bits

Bit	Access & Default	Description
31:16		Reserved
15	RO 1b	 Reject Snoop Transactions (RTS): 0 = Do Not reject snoop transactions 1 = All snoopable transactions on VC1 are rejected. This VC is for isochronous transfers only.
14:8		Reserved
7:0	RO 01h	Port Arbitration Capability (PAC): This field indicates the port arbitration capability is time-based WRR of 128 phases.

7.1.9 DMIVC1RCTL1—DMI VC1 Resource Control

MMIO Range: Address Offset: Default: Access: Size: DMIBAR 020–023h 0100000h RO, R/W 32 bits

This register controls the resources associated with Virtual Channel 1.

Bit	Access & Default	Description
31	R/W 0b	Virtual Channel Enable (EN): 0 = Disable. 1 = Enable.
30:27		Reserved
26:24	R/W 001b	Virtual Channel Identifier (ID): This field indicates the ID to use for this virtual channel.
23:20		Reserved
19:17	R/W 0h	Port Arbitration Select (PAS): This field indicates which port table is being programmed. The only permissible value of this field is 4h for the time-based WRR entries.
16:8		Reserved
7:1	R/W 00h	Transaction Class / Virtual Channel Map (TVM): This field indicates which transaction classes are mapped to this virtual channel. When a bit is set, this transaction class is mapped to the virtual channel.
0		Reserved

7.1.10 DMIVC1RSTS—DMI VC1 Resource Status

MMIO Range:DMIBARAddress Offset:026–027hDefault:0000hAccess:ROSize:16 bits

This register reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO 0b	 VC Negotiation Pending (NP): 0 = VC negotiation Not pending 1 = Virtual channel is still being negotiated with ingress ports.
0		Reserved

7.1.11 DMILCAP—DMI Link Capabilities

MMIO Range:	DMIBAR
Address Offset:	084–087h
Default:	00012C41h
Access:	RO, R/WO
Size:	32 bits

This register indicates DMI specific capabilities.

Bit	Access & Default	Description
31:18		Reserved
17:15	R/WO 010b	L1 Exit Latency (EL1): L1 not supported on DMI.
14:12	R/WO 010b	L0s Exit Latency (EL0): This field indicates that exit latency is 128 ns to less than 256 ns.
11:10	RO 11b	Active State Link PM Support (APMS): This field indicates that L0s is supported on DMI.
9:4	RO 4h	Maximum Link Width (MLW): This field indicates the maximum link width is 4 ports.
3:0	RO 1h	Maximum Link Speed (MLS): This field indicates the link speed is 2.5 Gb/s.

7.1.12 DMILCTL—DMI Link Control

MMIO Range:	DMIBAR
Address Offset:	088–089h
Default:	0000h
Access:	R/W
Size:	16 bits

This register allows control of DMI.

Bit	Access & Default	Description
15:8		Reserved
7	R/W 0h	Extended Synch (ES): 1 = Forces extended transmission of FTS ordered sets when exiting L0s prior to entering L0 and extra TS1 sequences at exit from L1 prior to entering L0.
6:2		Reserved
1:0	R/W 00b	Active State Link PM Control (APMC): This field indicates whether DMI should enter L0s.
		00 = Disabled 01 = L0s entry enabled 10 = Reserved 11 = Reserved

7.1.13 DMILSTS—DMI Link Status

MMIO Range:	DMIBAR
Address Offset:	08A–08Bh
Default:	0001h
Access:	RO
Size:	16 bits

This register indicates DMI status.

Bit	Access & Default	Description
15:10		Reserved
9:4	RO 00h	Negotiated Link Width (NLW): Negotiated link width is x4 (000100b).
3:0	RO 1h	Link Speed (LS): Link is 2.5 Gb/s.

7.1.14 DMIUESTS—DMI Uncorrectable Error Status

B/D/F/Type:
Address Offset:
Default Value:
Access:
Size:

0/0/0/DMIBAR 1C4–1C7h 00000000h RO, R/WC/S 32 bits

This register reports error status of individual uncorrectable error sources on DMI. An individual error status bit that is set indicates that a particular error occurred. Software can clear an error status by writing a 1 to the respective bit.

Bit	Access & Default	Description
31:21	RO 000h	Reserved
20	R/WC/S 0b	Unsupported Request Error Status: 0 = Error did Not occur 1 = Error occurred
19	RO 0b	Reserved
18	R/WC/S 0b	Malformed TLP Status: 0 = Error did Not occur 1 = Error occurred
17	R/WC/S 0b	Receiver Overflow Status: 0 = Error did Not occur 1 = Error occurred
16	R/WC/S 0b	Unexpected Completion Status: 0 = Error did Not occur 1 = Error occurred
15	RO 0b	Reserved
14	R/WC/S 0b	Completion Timeout Status: 0 = Error did Not occur 1 = Error occurred
13:5	RO 0b	Reserved
4	R/WC/S 0b	Data Link Protocol Error Status: 0 = Error did Not occur 1 = Error occurred
3:0	RO 000b	Reserved

7.1.15 DMIUEMSK—DMI Uncorrectable Error Mask

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/0/0/DMIBAR 1C8–1CBh 00000000h RO, R/W/S 32 bits

This register controls reporting of individual uncorrectable errors over DMI. A masked error (respective bit set to 1 in the mask register) has no action taken. There is a mask bit per error bit of the DMIUESTS Register.

Bit	Access & Default	Description
31:21	RO 000h	Reserved
20	R/W/S	Unsupported Request Error Mask:
	Ob	0 = Not Masked 1 = Masked
19	RO 0b	Reserved
18	R/W/S	Malformed TLP Mask:
	Ob	0 = Not Masked 1 = Masked
17	R/W/S	Receiver Overflow Mask:
	Ob	0 = Not Masked 1 = Masked
16	R/W/S	Unexpected Completion Mask:
	Ob	0 = Not Masked 1 = Masked
15	RO 0b	Reserved
14	R/W/S	Completion Timeout Mask:
	Ob	0 = Not Masked 1 = Masked
13:5	RO 00h	Reserved
4	R/W/S	Data Link Protocol Error Mask:
	Ob	0 = Not Masked 1 = Masked
3:0	RO 000b	Reserved

7.1.16 DMICESTS— DMI Correctable Error Status

B/D/F/Type: Address Offset: Default Value: Access: Size: 0/0/0/DMIBAR 1D0–1D3h 00000000h RO, R/WC/S 32 bits

This register reports error status of individual correctable error sources on DMI. An individual error status bit that is set indicates that a particular error occurred. Software can clear an error status by writing a 1 to the respective bit.

Bit	Access & Default	Description
31:13	RO 00000h	Reserved
12	R/WC/S 0b	Replay Timer Timeout Status: 0 = Error did Not occur 1 = Error occurred
11:9	RO 000b	Reserved
8	R/WC/S 0b	REPLAY_NUM Rollover Status: 0 = Error did Not occur 1 = Error occurred
7	R/WC/S 0b	Bad DLLP Status: 0 = Error did Not occur 1 = Error occurred
6	R/WC/S 0b	Bad TLP Status: 0 = Error did Not occur 1 = Error occurred
5:1	RO 00h	Reserved
0	R/WC/S 0b	Receiver Error Status (RES): Receiver errors will be indicated due to all of the following: 8b/10b Decode Errors, Framing Errors, Lane Deskew Errors, and Elasticity Buffer Overflow/Underflow. 0 = Error did Not occur 1 = Error occurred

§

8 System Address Map

The MCH supports 64 GB of addressable memory space (see Figure 8-1) and 64 KB+3 bytes of addressable I/O space. A programmable memory address space under the 1-MB region is divided into regions that can be individually controlled with programmable attributes such as disable, read/write, write only, or read only. This section focuses on how the memory space is partitioned and what the separate memory regions are used for. I/O address space has simpler mapping and is explained near the end of this section.

Addressing of memory ranges larger than 4 GB is supported. The HREQ[4:3] FSB signals are decoded to determine whether the access is above or below 4 GB.

The MCH does support PCI Express* port upper prefetchable base/limit registers. This allows the PCI Express to claim I/O accesses above 32 bit. Addressing of greater than 4 GB is allowed on both the DMI Interface and PCI Express interface. The MCH supports a maximum of 8 GB of DRAM; DRAM memory will Not be accessible above 12 GB. DRAM capacity is limited by the number of address signals available. There is no hardware lock to prevent the situation where more memory than is addressable is inserted.

In the following sections, it is assumed that all of the compatibility memory ranges reside on the DMI. The exception to this rule is VGA ranges that may be mapped to PCI Express or DMI. In the absence of more specific references, cycle descriptions referencing PCI should be interpreted as the DMI/PCI, while cycle descriptions referencing PCI Express are related to the PCI Express bus. The TOLUD Register is set to the appropriate value by BIOS. The remapbase/remaplimit registers remap logical accesses intended for addresses above 4 GB onto physical addresses that fall within DRAM.

The address map includes a number of programmable ranges:

- Device 0:
 - EPBAR Egress port registers. Necessary for setting up VC1 as an isochronous channel using time based weighted round robin arbitration. (4-KB window)
 - MCHBAR Memory mapped range for internal MCH registers. For example, memory buffer register controls. (16-KB window)
 - PCIEXBAR Flat memory-mapped address space to access device configuration registers. This mechanism can be used to access PCI configuration space (0–FFh) and Extended configuration space (100h–FFFh) for PCI Express devices. This enhanced configuration access mechanism is defined in the PCI Express specification. (64 MB, 128 MB, or 256-MB window)
 - DMIBAR This window is used to access registers associated with the MCH/ ICH7 (DMI) register memory range. (4-KB window)
 - IFPBAR Any write to this window will trigger a flush of the MCH's Global Write Buffer to let software provide coherency between writes from an isochronous agent and writes from the processor (4-KB window).

- Device 1, Function 0:
 - MBASE1/MLIMIT1 Primary PCI Express port non-prefetchable memory access window.
 - PMBASE1/PMLIMIT1 Primary PCI Express port prefetchable memory access window.
 - IOBASE1/IOLIMIT1 Primary PCI Express port I/O access window.
- Device 3, Function 0:
 - MBASE3/MLIMIT3 Secondary PCI Express port non-prefetchable memory access window.
 - PMBASE3/PMLIMIT3 Secondary PCI Express port prefetchable memory access window.
 - IOBASE3/IOLIMIT3 Secondary PCI Express port I/O access window.

The rules for the above programmable ranges are:

- All of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system designer's responsibility to limit memory population so that adequate PCI, PCI Express, High BIOS, PCI Express memory-mapped space, and APIC memory space can be allocated.
- In the case of overlapping ranges with memory, the memory decode will be given priority.
- There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges.
- Accesses to overlapped ranges may produce indeterminate results.
- The only peer-to-peer cycles allowed below the top of memory (TOLUD Register) are DMIto-PCI Express VGA range writes.

Figure 8-1 represents the system memory address map in a simplified form.

Figure 8-1. System Address Ranges

8.1 Legacy Address Range

This area is divided into the following address regions:

- 0 640 KB: DOS Area
- 640 768 KB: Legacy Video Buffer Area
- 768 896 KB in 16-KB sections (total of 8 sections): Expansion Area
- 896 960 KB in 16-KB sections (total of 4 sections): Extended System BIOS Area
- 960-KB 1-MB Memory: System BIOS Area

Figure 8-2. Microsoft MS-DOS* Legacy Address Range

8.1.1 DOS Range (0h–9_FFFFh)

The DOS area is 640 KB (0000_0000h-0009_FFFFh) in size and is always mapped to the main memory controlled by the MCH.

8.1.2 Legacy Video Area (A_0000h-B_FFFh)

The legacy 128-KB VGA memory range, frame buffer, (000A_0000h-000B_FFFFh) can be mapped to PCI Express* (Device 1 or 3), and/or to the DMI. Software will select one of the two graphics cards as the primary display. The selected graphics device will have it's VGA enable register enabled. Either device 1 or device 3 can have the VGA enable set. The VGA enable will never be set for both device 1 and device 3 simultaneously. The appropriate mapping depends on which devices are enabled and the programming of the VGA steering bits. Based on the VGA steering bits, priority for VGA mapping is constant. The MCH always decodes internally mapped devices first; internal to the MCH. The MCH always positively decodes internally mapped devices and PCI Express. Subsequent decoding of regions mapped to PCI Express or the DMI depends on the Legacy VGA configuration bits (VGA Enable and MDAP); see LAC Register (Device 0, offset 97h). This region is also the default for SMM space.

Compatible SMRAM Address Range (A_0000h-B_FFFFh)

When compatible SMM space is enabled, SMM-mode processor accesses to this range are routed to physical system DRAM at 000A_0000h-000B_FFFFh. Non-SMM-mode processor accesses to this range are considered to be to the Video Buffer Area as described above. PCI Express and DMI originated cycles to enabled SMM space are not allowed and are considered to be to the Video Buffer area. PCI Express and DMI initiated cycles are attempted as Peer cycles, and will master abort on PCI if no external VGA device claims them.

Monochrome Adapter (MDA) Range (B_0000h-B_7FFFh)

Legacy support requires the ability to have a second graphics controller (monochrome) in the system. Accesses in the standard VGA range are forwarded to PCI Express, or DMI (depending on configuration bits). Since the monochrome adapter may be mapped to any one of these devices, the MCH must decode cycles in the MDA range (000B_0000h-000B_7FFFh) and forward either to PCI Express, or the DMI. This capability is controlled by VGA steering bits and the legacy configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the MCH decodes I/O cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3Bah, and 3BFh and forwards them to the either PCI Express, and/or the DMI.

PCI Express* 16-bit VGA Decode

In the *PCI to PCI Bridge Architecture Specification, Revision 1.2*, it is required that 16-bit VGA decode be a feature. The VGA 16-bit decode originally was described in an ECR to the *PCI to PCI Bridge Architecture Specification, Revision 1.1*. This is now listed as a required feature in the updated Revision 1.2 specification.

8.1.3 Expansion Area (C_0000h–D_FFFFh)

This 128-KB ISA Expansion region (000C_0000h-000D_FFFFh) is divided into eight 16-KB segments (see Table 8-1). Each segment can be assigned one of four read/write states: read-only, write-only, read/write, or disabled. Typically, these blocks are mapped through the MCH and are subtractively decoded to ISA space. Memory that is disabled is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to main memory.

Table 8-1. Expansion Area Memory Segments

Memory Segments	Attributes	Comments
0C0000h-0C3FFFh	WE, RE	Add-on BIOS
0C4000h-0C7FFFh	WE, RE	Add-on BIOS
0C8000h-0CBFFFh	WE, RE	Add-on BIOS
0CC000h-0CFFFFh	WE, RE	Add-on BIOS
0D0000h-0D3FFFh	WE, RE	Add-on BIOS
0D4000h-0D7FFFh	WE, RE	Add-on BIOS
0D8000h-0DBFFFh	WE, RE	Add-on BIOS
0DC000h-0DFFFFh	WE, RE	Add-on BIOS

8.1.4 Extended System BIOS Area (E_0000h–E_FFFh)

This 64-KB area (000E_0000h-000E_FFFFh) is divided into four 16-KB segments (see Table 8-2). Each segment can be assigned independent read and write attributes so it can be mapped either to main memory or to DMI. Typically, this area is used for RAM or ROM. Memory segments that are disabled are not remapped elsewhere.

Non-snooped accesses from PCI Express or DMI to this region are always sent to main memory.

Table 8-2. Extended System BIOS Area Memory Segments

Memory Segments	Attributes	Comments
0E0000h-0E3FFFh	WE, RE	BIOS Extension
0E4000h-0E7FFFh	WE, RE	BIOS Extension
0E8000h-0EBFFFh	WE, RE	BIOS Extension
0EC000h-0EFFFFh	WE, RE	BIOS Extension

8.1.5 System BIOS Area (F_0000h–F_FFFh)

This area is a single 64-KB segment (000F_0000h-000F_FFFFh). This segment can be assigned read and write attributes. It is by default (after reset) read/write disabled and cycles are forwarded to the DMI. By manipulating the read/write attributes, the MCH can "shadow" BIOS into main memory. When disabled, this segment is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Table 8-3. System BIOS Area Memory Segments

Memory Segments	Attributes	Comments
0F0000h-0FFFFh	WE RE	BIOS Area

8.1.6 **Programmable Attribute Map (PAM) Memory Area Details**

The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM memory area. The MCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all memory residing on DMI should be set as non-cacheable, there will normally not be IWB cycles targeting DMI.

However, DMI becomes the default target for processor and DMI originated accesses to disabled segments of the PAM region. If the MTRRs covering the PAM regions are set to WB or RC it is possible to get IWB cycles targeting DMI. This may occur for DMI-originated cycles to disabled PAM regions.

For example, say that a particular PAM region is set for "Read Disabled" and the MTRR associated with this region is set to WB. A DMI master generates a memory read targeting the PAM region. A snoop is generated on the FSB and the result is an IWB. Since the PAM region is "Read Disabled", the default target for the memory read becomes DMI. The IWB associated with this cycle will cause the MCH to hang.

8.2 Main Memory Address Range (1 MB to TOLUD)

This address range (see Figure 8-3) extends from 1 MB to the top of physical memory that is permitted to be accessible by the MCH (as programmed in the TOLUD Register). All accesses to addresses within this range will be forwarded by the MCH to the main memory unless they fall into the optional TSEG or optional ISA Hole.

The MCH provides a maximum main memory address decode space of 8 GB. The MCH does not remap APIC or PCI Express memory space. This means that as the amount of physical memory populated in the system reaches 4 GB, there will be physical memory that exists yet is non-addressable and, therefore, unusable by the system. The MCH does not limit main memory address space in hardware.

Figure 8-3. Main Memory Address Range

8.2.1 ISA Hole (15 MB–16 MB)

A hole can be created at 15 MB–16 MB as controlled by the fixed hole enable bit in the LAC Register (Device 0, offset 97h). Accesses within this hole are forwarded to the DMI. The range of physical main memory disabled by opening the hole is not remapped to the top of the memory; that physical main memory space is not accessible. This 15 MB–16 MB hole is an optionally enabled ISA hole.

Video accelerators originally used this hole. It is also used by validation and customer SV teams for some of their test cards. That is why it is being supported. There is no inherent BIOS request for the 15–16-MB window.

8.2.2 TSEG

TSEG is optionally 1 MB, 2 MB, or 8 MB in size. SMM-mode processor accesses to enabled TSEG, access the physical DRAM at the same address. Non- processor originated accesses are not allowed to SMM space. PCI Express*, and DMI originated cycles to enabled SMM space are handled as invalid cycle type with reads and writes to location 0 and byte enables turned off for writes. When the extended SMRAM space is enabled, processor accesses to the TSEG range without SMM attribute or without WB attribute are also forwarded to memory as invalid accesses. Non-SMM-mode write-back cycles that target TSEG space are completed to main memory for cache coherency. When SMM is enabled, the maximum amount of memory available to the system is equal to the amount of physical DRAM minus the value in the TSEG register that is fixed at 1 MB, 2 MB, or 8 MB.

8.2.3 Pre-allocated Memory

Voids of physical addresses that are not accessible as general system memory and reside within the system memory address range (< TOLUD) are created for SMM-mode and legacy VGA graphics compatibility. It is the responsibility of BIOS to properly initialize these regions. Table 8-4 details the location and attributes of the regions.

Table 8-4. Pre-Allocated Memory Example for 64-MB DRAM, 1-MB VGA and 1-MB TSEG

Memory Segments	Attributes	Comments
0000_0000h - 03DF_FFFFh	R/W	Available System Memory 62 MB
03E0_0000h – 03EF_FFFFh	SMM Mode Only - processor Reads	TSEG Address Range and Pre-allocated Memory
03F0_0000h – 03FF_FFFFh	R/W	Pre-allocated Graphics VGA memory.

8.3 PCI Memory Address Range (TOLUD–4 GB)

This address range (see Figure 8-4), from the top of physical memory to 4 GB, is normally mapped via the DMI to PCI. Exceptions to this mapping include the BAR memory mapped regions that include:

- EPBAR, MCHBAR, DMIBAR.
- The second exception to the mapping rule deals with the PCI Express port:
 - Addresses decoded to the Primary PCI Express memory window defined by the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 Registers are mapped to PCI Express.
 - Addresses decoded to the Secondary PCI Express memory window defined by the MBASE3, MLIMIT3, PMBASE3, and PMLIMIT3 Registers are mapped to PCI Express.
 - Addresses decoded to PCI Express configuration space are mapped based on bus, device, and function number. (PCIEXBAR range).

Note: The AGP Aperture no longer exists with PCI Express.

The exceptions listed above for PCI Express ports **MUST NOT** overlap with APCI configuration, FSB interrupt space, and High BIOS address range.

Figure 8-4. PCI Memory Address Range

FFFF FFFFh		4 GB
_	High BIOS	4 00
FFE0_0000h	DMI Interface	4 GB – 2 MB
	(subtractive decode)	4 GB – 17 MB
FEF0_0000h	FSB Interrupts	
FEE0_0000h	DMI Interface (subtractive decode)	4 GB – 18 MB Optional HSEG ← FEDA_0000h to
FED0_0000h	Local (processor)	4 GB – 19 MB FEDB_FFFFh
FEC8_0000h	ÄPIC	
FEC0 0000h	I/O APIC	
	DMI Interface	4 GB – 20 MB
	(subtractive decode)	
F000_0000h		
		4 GB – 256 MB
	PCI Express* Configuration Space	Possible address range (Not fixed)
E000_0000h		4 GB – 512 MB
	DMI Interface	Programmable
	(subtractive decode)	windows, graphics ranges, PCI Express*
		Port could be here
		TOLUD
		MemMap_PCI

8.3.1 APIC Configuration Space (FEC0_0000h–FECF_FFFh)

This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in the ICH7 portion of the chipset, but can also exist as stand-alone components.

The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that may be populated in the system. Since it is difficult to relocate an interrupt controller using plug-and-play software, fixed address decode regions have been allocated for them. Processor accesses to the default IOAPIC region (FEC0_0000h to FEC7_FFFFh) are always forwarded to DMI.

8.3.2 HSEG (FEDA_0000h–FEDB_FFFh)

This optional segment from FEDA_0000h to FEDB_FFFh provides a remapping window to SMM space. It is sometimes called the High SMM memory space. SMM-mode processor accesses to the optionally enabled HSEG are remapped to 000A_0000h-000B_FFFFh. Non-SMM-mode processor accesses to enabled HSEG are considered invalid and are terminated immediately on the FSB. The exceptions to this rule are Non-SMM-mode write-back cycles that are remapped to SMM space to maintain cache coherency. PCI Express and DMI originated cycles to enabled SMM space are not allowed. Physical main memory behind the HSEG transaction address is not remapped and is not accessible. All cacheline writes with WB attribute or implicit write-backs to the HSEG range are completed to main memory like a SMM cycle.

8.3.3 FSB Interrupt Memory Space (FEE0_0000–FEEF_FFF)

The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any device on PCI Express or DMI may issue a memory write to 0FEEx_xxxxh. The MCH forwards this memory write, along with the data, to the FSB as an Interrupt Message Transaction. The MCH terminates the FSB transaction by providing the response and asserting HTRDY#. This memory write cycle does not go to main memory.

8.3.4 High BIOS Area

The top 2 MB (FFE0_0000h–FFFF_FFFh) of the PCI memory address range is reserved for system BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The processor begins execution from the High BIOS after reset. This region is mapped to the DMI so that the upper subset of this region aliases to the 16-MB–256-KB range. The actual address space required for the BIOS is less than 2 MB, but the minimum processor MTRR range for this region is 2 MB so that full 2 MB must be considered.

8.4 Main Memory Address Space (4 GB to Remaplimit)

The maximum main memory size supported is 8 GB total main memory. A hole between TOLUD and 4 GB occurs when main memory size approaches 4 GB or larger. As a result, a TOM Register and Remapbase/Remaplimit Registers become relevant.

The new remap configuration registers exist to reclaim lost main memory space.

Upstream write accesses above 36-bit addressing will be treated as peer writes by PCI Express and DMI. Upstream read accesses above 36-bit addressing will be treated as invalid cycles by PCI Express and DMI.

int_{el},

Top of Memory

This "Top of Memory" register reflects the total amount of populated physical memory. This is also the amount of addressable physical memory when remapping is used to ensure that no physical memory is wasted. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O).

The TOLUD Register is restricted to 4 GB memory (A[31:27]), but the MCH can support up to 8 GB, limited by DRAM pins. For physical memory greater than 4 GB, the TOM Register helps identify the address range in-between the 4 GB boundary and the top of physical memory. This identifies memory that can be directly accessed (no remap address calculation) which is useful for memory access indication, early path indication, and trusted read indication.

C1DRB3 cannot be used directly to determine the effective size of memory as the values programmed in the DRBs depend on the memory mode (stacked, interleaved). The Remap Base/Limit registers also can not be used because remapping can be disabled. The TOM Register is used for early memory channel identification (channel 0 vs. channel 1) in the case of stacked memory.

8.4.1 Memory Re-claim Background

The following are examples of memory mapped I/O devices that are typically located below 4 GB:

- High BIOS
- HSEG
- TSEG
- XAPIC
- Local APIC
- FSB Interrupts
- PCI Express BAR
- MCHBAR
- EPBAR
- DMIBAR
- PMBASE/PMLIMIT, including PMBASEU/PMLIMITU
- MBASE/MLIMIT

In previous generation MCHs, the physical main memory overlapped by the logical address space allocated to these memory mapped I/O devices was unusable. The result is that a large amount of physical memory populated in the system is unusable.

The MCH provides the capability to re-claim the physical memory overlapped by the memory mapped I/O logical address space. The MCH re-maps physical memory from the Top of Low Memory (TOLUD) boundary up to the 4 GB boundary to an equivalent sized logical address range located just above the top of physical memory.

8.4.2 Memory Re-mapping

An incoming address (referred to as a logical address) is checked to see if it falls in the memory re-map window. The bottom of the re-map window is defined by the value in the REMAPBASE Register. The top of the re-map window is defined by the value in the REMAPLIMIT Register. An address that falls within this window is remapped to the physical memory starting at the address defined by the TOLUD Register.

8.4.3 PCI Express* Configuration Address Space

The PCIEXBAR Register (Device 0, offset 48h) defines the base address for the 256-MB block of addresses below the top of addressable memory (currently 4 GB) for the configuration space associated with all devices and functions that are potentially a part of the PCI Express root complex hierarchy. This range will be aligned to a 64 MB, 128 MB or 256-MB boundary. BIOS must assign this address range such that it will not conflict with any other address ranges.

8.4.4 PCI Express* Graphics Attach

The MCH can be programmed to direct memory accesses to the PCI Express interface when addresses are within either of two ranges specified via registers in MCH's Device 1 configuration space.

- The first range is controlled via the Memory Base (MBASE) Register and Memory Limit (MLIMIT) Register.
- The second range is controlled via the Prefetchable Memory Base (PMBASE) Register and Prefetchable Memory Limit (PMLIMIT) Register.

The MCH positively decodes memory accesses to PCI Express memory address space as defined by the following inequalities:

 $Memory_Base_Address \leq Address \leq Memory_Limit_Address$

 $\label{eq:prefetchable_Memory_Base_Address} \leq Address \leq \\ Prefetchable_Memory_Limit_Address \\$

It is essential to support a separate Prefetchable range to apply the USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

Note that the MCH Device 1 memory range registers described above are used to allocate memory address space for any PCI Express devices on PCI Express that require such a window.

The PCICMD1 Register can override the routing of memory accesses to PCI Express. In other words, the memory access enable bit must be set in the device 1 PCICMD1 Register to enable the memory base/limit and prefetchable base/limit windows.

8.4.5 AGP DRAM Graphics Aperture

Unlike AGP4x, PCI Express has no concept of aperture for PCI Express devices. As a result, there is no need to translate addresses from PCI Express. Therefore, the MCH has no APBASE and APSIZE Registers.

8.5 System Management Mode (SMM)

System Management Mode uses main memory for System Management RAM (SMM RAM). The MCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and Top of Memory Segment (TSEG). System Management RAM space provides a memory area that is available for the SMI handlers and code and data storage. This memory resource is normally hidden from the system OS so that the processor has immediate access to this memory space upon entry to SMM. The MCH provides three SMRAM options:

- Below 1-MB option that supports compatible SMI handlers.
- Above 1-MB option that allows new SMI handlers to execute with write-back cacheable SMRAM.
- Optional TSEG area of 1 MB, 2 MB, or 8 MB in size.
- The above 1-MB solutions require changes to compatible SMRAM handlers' code to properly execute above 1 MB.

Note: DMI and PCI Express masters are not allowed to access the SMM space.

8.5.1 SMM Space Definition

SMM space is defined by its **addressed** SMM space and its DRAM SMM space. The addressed SMM space is defined as the range of bus addresses used by the processor to access SMM space. DRAM SMM space is defined as the range of physical main memory locations containing the SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible, High, and TSEG. The Compatible and TSEG SMM space is not remapped; therefore, the addressed and DRAM SMM space is the same address range. Since the High SMM space is remapped, the addressed and DRAM SMM space are different address ranges. Note that the High DRAM space is the same as the Compatible Transaction Address space. The following table describes three unique address ranges:

- Compatible Transaction Address
- High Transaction Address
- TSEG Transaction Address

SMM Space Enabled	Transaction Address Space	DRAM Space (DRAM)	
Compatible (C)	000A_0000h to 000B_FFFFh	000A_0000h to 000B_FFFFh	
High (H)	FEDA_0000h to FEDB_FFFFh	000A_0000h to 000B_FFFFh	
TSEG (T)	(TOLUD – TSEG) to TOLUD	(TOLUD-TSEG) to TOLUD	

int_el

8.5.2 SMM Space Restrictions

If any of the following conditions are not met, the results of SMM accesses are unpredictable and may cause the system to hang:

- 1. The Compatible SMM space **must not** be set up as cacheable.
- 2. High or TSEG SMM transaction address space **must not** overlap address space assigned to system main memory, or to any "PCI" devices (including DMI, PCI Express, and graphics devices). This is a BIOS responsibility.
- 3. Both D_OPEN and D_CLOSE **must not** be set to 1 at the same time.
- 4. When TSEG SMM space is enabled, the TSEG space **must not** be reported to the OS as available main memory. This is a BIOS responsibility.

8.5.3 SMM Space Combinations

When High SMM is enabled (G_SMRAME=1 and H_SMRAM_EN=1), the compatible SMM space is effectively disabled. Processor-originated accesses to the compatible SMM space are forwarded to PCI Express if VGAEN=1 (also depends on MDAP); otherwise, they are forwarded to the DMI. PCI Express and DMI originated accesses are **not** allowed to access SMM space.

Table 8-5. SMM Space

Global Enable G_SMRAME	High Enable H_SMRAM_EN	TSEG Enable TSEG_EN	Compatible (C) Range	High (H) Range	TSEG (T) Range
0	х	х	Disable	Disable	Disable
1	0	0	Enable	Disable	Disable
1	0	1	Enable	Disable	Enable
1	1	0	Disabled	Enable	Disable
1	1	1	Disabled	Enable	Enable

8.5.4 SMM Control Combinations

The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit allows software to write to the SMM ranges without being in SMM mode. BIOS software can use this bit to initialize SMM code at powerup. The D_LCK bit limits the SMM range access to only SMM mode accesses. The D_CLS bit causes SMM data accesses to be forwarded to the DMI or PCI Express*. The SMM software can use this bit to write to video memory while running SMM code out of main memory.

Table 8-6. SMM Control

G_SMRAME	D_LCK	D_CLS	D_OPEN	Processor in SMM Mode	SMM Code Access	SMM Data Access
0	х	Х	х	х	Disable	Disable
1	0	Х	0	0	Disable	Disable
1	0	0	0	1	Enable	Enable
1	0	0	1	х	Enable	Enable
1	0	1	0	1	Enable	Disable
1	0	1	1	x	Invalid	Invalid
1	1	Х	х	0	Disable	Disable
1	1	0	х	1	Enable	Enable
1	1	1	х	1	Enable	Disable

8.5.5 SMM Space Decode and Transaction Handling

Only the processor is allowed to access SMM space. PCI Express and DMI originated transactions are not allowed to SMM space.

8.5.6 Processor WB Transaction to an Enabled SMM Address Space

Processor writeback transactions (HREQ[1]# = 0) to enabled SMM address space must be written to the associated SMM main memory even though D_OPEN=0 and the transaction is not performed in SMM mode. This ensures SMM space cache coherency when cacheable extended SMM space is used.

8.5.7 Memory Shadowing

Any block of memory that can be designated as read-only or write-only can be "shadowed" into MCH main memory. Typically, this is done to allow ROM code to execute more rapidly out of main memory. ROM is used as read-only during the copy process while main memory at the same time is designated write-only. After copying, the main memory is designated read-only so that ROM is shadowed. Processor bus transactions are routed accordingly.

8.5.8 I/O Address Space

The MCH does not support the existence of any other I/O devices beside itself on the processor bus. The MCH generates either DMI or PCI Express bus cycles for all processor I/O accesses that it does not claim. Within the host bridge, the MCH contains two internal registers in the processor I/O space: Configuration Address (CONFIG_ADDRESS) Register and Configuration Data (CONFIG_DATA) Register. These locations are used to implement a configuration space access mechanism.

The processor allows 64 K+3 bytes to be addressed within the I/O space. The MCH propagates the processor I/O address without any translation on to the destination bus and, therefore, provides addressability for 64 K+3 byte locations. Note that the upper 3 locations can be accessed only during I/O address wrap-around when the processor bus HA16# address signal is asserted. HA16# is asserted on the processor bus whenever an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. HA16# is also asserted when an I/O access is made to 2 bytes from address 0FFFFh.

The I/O accesses (other than ones used for configuration space access) are forwarded normally to the DMI bus unless they fall within the PCI Express I/O address range as defined by the mechanisms explained below. I/O writes are **not** posted. Memory writes to ICH7 or PCI Express are posted. The PCICMD1 Register can disable the routing of I/O cycles to PCI Express.

The MCH responds to I/O cycles initiated on PCI Express or DMI with a UR status. Upstream I/O cycles and configuration cycles should never occur. If one does occur, the request will route as a read to memory address 0h so a completion is naturally generated (whether the original request was a read or write). The transaction will complete with a UR completion status.

For Pentium processors, I/O reads that lie within 8-byte boundaries but cross 4-byte boundaries are issued from the processor as 1 transaction. The MCH breaks this into 2 separate transactions. I/O writes that lie within 8-byte boundaries but cross 4-byte boundaries are assumed to be split into 2 transactions by the processor.

8.5.9 PCI Express* I/O Address Mapping

The MCH can be programmed to direct non-memory (I/O) accesses to the PCI Express bus interface when processor-initiated I/O cycle addresses are within the PCI Express I/O address range. This range is controlled via the I/O Base Address (IOBASE) and I/O Limit Address (IOLIMIT) Registers in MCH Device 1 configuration space.

8.5.10 MCH Decode Rules and Cross-Bridge Address Mapping

The following are MCH decode rules and cross-bridge address mapping used in this chipset:

- VGAA = 000A_0000 000A_FFFF
- MDA = 000B_0000 000B_7FFF
- VGAB = 000B_8000 000B_FFFF
- MAINMEM = 0100_0000 to TOLUD

8.5.11 Legacy VGA and I/O Range Decode Rules

The legacy 128-KB VGA memory range 000A_0000h-000B_FFFFh can be mapped to PCI Express (Device 1), and/or to the DMI depending on the programming of the VGA steering bits. Priority for VGA mapping is constant in that the MCH always decodes internally mapped devices first. The MCH always positively decodes internally mapped devices, namely PCI Express. Subsequent decoding of regions mapped to PCI Express or the DMI depends on the Legacy VGA configurations bits (VGA Enable and MDAP) in the LAC Register (Device 0).

§

9 Functional Description

This chapter describes the MCH interfaces and major functional units.

9.1 Host Interface

The MCH supports the Pentium 4 processor subset of the Enhanced Mode Scaleable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals. The address signals are double pumped and a new address can be generated every other bus clock. At 200/267 MHz bus clock the address signals run at 400/533 MT/s. The data is quad pumped and an entire 64 Byte cache line can be transferred in two bus clocks. At 200/267 MHz bus clock the data signals run at 800/1066 MT/s for a maximum bandwidth of 10.7 GB/s.

9.1.1 FSB IOQ Depth

The Scalable Bus supports up to 12 simultaneous outstanding transactions.

9.1.2 FSB OOQ Depth

The MCH supports only one outstanding deferred transaction on the FSB.

9.1.3 FSB GTL+ Termination

The MCH integrates GTL+ termination resistors on die. Also, approximately 2.8pf (fast) – 3.3pf (slow) per pad of on die capacitance will be implemented to provide better FSB electrical performance.

9.1.4 FSB Dynamic Bus Inversion

The MCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from the processor. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data phase. This decreases the worst-case power consumption of the MCH. HDINV[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad pumped data phase:

HDINV[3:0]#	Data Bits
HDINV0#	HD[15:0]#
HDINV1#	HD[31:16]#
HDINV2#	HD[47:32]#
HDINV3#	HD[63:48]#

When the processor or the MCH drives data, each 16-bit segment is analyzed. If more than 8 of the 16 signals would normally be driven low on the bus, the corresponding HDINV# signal will be asserted and the data will be inverted prior to being driven on the bus. When the processor or the MCH receives data, it monitors HDINV[3:0]# to determine if the corresponding data segment should be inverted.

9.1.4.1 APIC Cluster Mode Support

This is required for backwards compatibility with existing software, including various operating systems. As an example, beginning with Microsoft Windows* 2000, there is a mode (boot.ini) that allows an end user to enable the use of cluster addressing support of the APIC.

The MCH supports three types of interrupt re-direction:

- Physical
- Flat-Logical
- Clustered-Logical
9.2 System Memory Controller

The system memory controller supports two styles of memory organization (Interleaved and Asymmetric). Rules for populating DIMM slots are included in this section. Sample memory organizations are provided in Table 9-1 and Table 9-2.

Table 9-1. Sample System Memory Organization with Interleaved Channels

	Channel A population	Cumulative Top Address in Channel A	Channel B Population	Cumulative Top Address in Channel B
Rank 3	0 MB	2560 MB	0 MB	2560 MB
Rank 2	256 MB	2560 MB	256 MB	2560 MB
Rank 1	512 MB	2048 MB	512 MB	2048 MB
Rank 0	512 MB	1024 MB	512 MB	1024 MB

Table 9-2. Sample System Memory Organization with Asymmetric Channels

	Channel A population	Cumulative Top Address in Channel A	Channel B Population	Cumulative Top Address in Channel B
Rank 3	0 MB	1280 MB	0 MB	2560 MB
Rank 2	256 MB	1280 MB	256 MB	2560 MB
Rank 1	512 MB	1024 MB	512 MB	2304 MB
Rank 0	512 MB	512 MB	512 MB	1792 MB

Interleaved Mode

This mode provides maximum performance on real applications. Addresses are ping-ponged between the channels, and the switch happens after each cache line (64 byte boundary). If two consecutive cache lines are requested, both may be retrieved simultaneously, since they are on opposite channels. The drawbacks of Interleaved Mode are that the system designer must populate both channels of memory such that they have equal capacity; however, the technology and device width may vary from one channel to the other.

Enhanced Channel Interleaving

Transactions are issued to both channels simultaneously.

Asymmetric Mode

This mode trades performance for system design flexibility. Unlike the previous mode, addresses start in channel A and stay there until the end of the highest rank in channel A; then addresses continue from the bottom of channel B to the top. Real world applications are unlikely to make requests that alternate between addresses that sit on opposite channels with this memory organization. Thus, in most cases, bandwidth will be limited to that of a single channel. The system designer is free to populate or not to populate any rank on either channel, including either degenerate single channel case.

Figure 9-1. System Memory Styles

9.2.1 System Memory Configuration Registers Overview

The configuration registers located in the PCI configuration space of the MCH control the system memory operation. Following is a brief description of configuration registers.

DRAM Rank Boundary (CxDRBy): The x represents a channel, either A or B. They represent a rank, 0 through 3. DRB Registers define the upper addresses for a rank of DRAM devices in a channel. When the MCH is configured in asymmetric mode, each register represents a single rank. When the MCH is configured in a dual interleaved mode, each register represents a pair of corresponding ranks in opposing channels. There are 4 DRB Registers for each channel.

DRAM Rank Architecture (CxDRAy): The x represents a channel, either A or B. They represent a rank, 0 through 3. DRA Registers specify the architecture features of each rank of devices in a channel. The only architecture feature specified is page size. When the MCH is configured in asymmetric mode, each DRA represents a single rank in a single channel. When the MCH is configured in a dual-channel lock-step or interleaved mode, each DRA represents a pair of corresponding ranks in opposing channels. There are 4 DRA Registers per channel. Each requires only 3 bits, so there are two DRAs packed into a byte.

DRAM Timing (CxDRT1): The x represents a channel, A or B represented by 0 and 1 respectively. The DRT Register defines the timing parameters for all devices in a channel. The BIOS programs this register with "least common denominator" values after reading the SPD Registers of each DIMM in the channel.

DRAM Control (CxDRC0): The x represents a channel, A or B represented by 0 and 1 respectively. DRAM refresh mode, rate, and other controls are selected here.

9.2.2 DRAM Technologies and Organization

"Single sided" below is a logical term referring to the number of chip selects attached to the DIMM. A real DIMM may put the components on both sides of the substrate, but be logically indistinguishable from single-sided DIMM, if all components on the DIMM are attached to the same chip select signal.

- x8 means that each component has 8 data lines.
- x16 means that each component has 16 data lines

All standard 256-Mb, 512-Mb, and 1-Gb technologies and addressing are supported for x16 and x8devices.

```
For DDR2

533 (PC 4300)

ECC

Version A = Single sided x8

Version B = Double sided x8

667 (PC 5300)

ECC

Version F = Single sided x8

Version G = Double sided x8
```

There is No support for DIMMs with different technologies or capacities on opposite sides of the same DIMM. If one side of a DIMM is populated, the other side is either identical or empty.

The DRAM sub-system supports single or dual channels, 64b or72b wide per channel. There can be a maximum of 4 ranks populated (2 Double Sided DIMMs) per channel. Mixed mode DDR DS-DIMMs (x8 and x16 on the same DIMM) are not supported.

By using 1Gb technology, the largest memory capacity is: 8Gb (16K rows * 1K columns * 1 cell/(row * column) * 8 b/cell * 8 banks/device * 8 devices/rank * 4 ranks/channel * 2 channel *1M/(K*K) * 1G/1024M * 1B/8b = 8 Gb). Using 8 Gb of memory is only possible in Interleaved mode with all ranks populated at maximum capacity. By using 256 Mb technology, the smallest memory capacity is: 128 Mb (8K rows * 512 columns * 1 cell/ (row * column) * 16b/cell * 4 banks/device * 4 devices/rank * 1 rank * 1M/1024K * 1B/8b = 128 Mb).

9.2.2.1 Rules for Populating DIMM Slots

- In all modes, the frequency of system memory will be the lowest frequency of all DIMMs in the system, as determined through the SPD Registers on the DIMMs.
- In the Single Channel mode, any DIMM slot within the channel may be populated in any order. Either channel may be used. To save power, do not populate the unused channel.
- In Dual Channel Asymmetric mode, any DIMM slot may be populated in any order.
- In Dual Channel Interleaved mode, any DIMM slot may be populated in any order, but the total memory in each channel must be the same.

9.2.2.2 System Memory Supported Configurations

The MCH supports 256Mbit, 512Mbit, and 1Gbit technology based DIMMs from Table 9-3.

Table 9-3. DDR2 DIMM Supported Configurations

Technology	Configuration	# of Row Address Bits	# of Column Address Bits	# of Bank Address Bits	Page Size	Rank Size
256 Mbit	16M X 16	13	9	2	4K	128 MB
256 Mbit	32M X 8	13	10	2	8K	256 MB
512 Mbit	32M X 16	13	10	2	8K	256 MB
512 Mbit	64M X 8	14	10	2	8K	512 MB
1 Gbit	64M X 16	13	10	3	8K	512 MB
1 Gbit	128M X 8	14	10	3	8K	1 GB

9.2.2.3 Main Memory DRAM Address Translation and Decoding

Table 9-4 and Table 9-5 specify the host interface to memory interface address multiplex for the MCH. Refer to the details of the various DIMM configurations as described in Table 9-3. The address lines specified in the column header refer to the host (processor) address lines.

Table 9-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode)

Tech	Banks	Page Size	Rank Size	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
256 Mb x16	4i	4 KB	128 MB						r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	r12	b0	b1	c8	c7	c6	c5	c4	c3	c2	c1	c0
256 Mb x8	4i	8 KB	256 MB					r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	b1	b0	c9	c8	c7	c6	c5	c4	c3	c2	c1	c0
512 Mb x16	4i	8 KB	256 MB					r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	b1	b0	c9	c8	c7	c6	c5	c4	c3	c2	c1	c0
512 Mb x8	4i	8 KB	512 MB				r13	r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	b1	b0	c9	c8	c7	c6	c5	c4	c3	c2	c1	c0
1 Gb x16	8i	8 KB	512 MB				r11	r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	b0	b1	b2	c9	c8	c7	c6	c5	c4	c3	c2	c1	c0
1 Gb x8	8i	8 KB	1 GB			r13	r11	r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	b0	b1	b2	c9	c8	c7	c6	c5	c4	c3	c2	c1	c0

NOTES:

1. b – 'bank' select bit

2. c - 'column' address bit

3. r – 'row' address bit

Table 9-5. DRAM Address Translation (Dual Channel Symmetric Mode)

Tech	Banks	Page Size	Rank Size	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
256 Mb x16	4i	4 KB	128 MB					r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	r12	b0	b1	c8	c7	c6	c5	c4	c3	h	c2	c1	c0
256 Mb x8	4i	8 KB	256 MB				r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	b1	b0	c9	c8	c7	c6	c5	c4	c3	h	c2	c1	c0
512 Mb x16	4i	8 KB	256 MB				r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	b1	b0	c9	c8	c7	c6	c5	c4	c3	h	c2	c1	c0
512 Mb x8	4i	8 KB	512 MB			r13	r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	r11	b1	b0	c9	c8	c7	c6	c5	c4	c3	h	c2	c1	c0
1 Gb x16	8i	4 KB	512 MB			r11	r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	b0	b1	b2	c9	c8	c7	c6	c5	c4	c3	h	c2	c1	c0
1 Gb x8	8i	8 KB	1 GB		r13	r11	r12	r10	r9	r8	r7	r6	r5	r4	r3	r2	r1	r0	b0	b1	b2	c9	c8	c7	c6	c5	c4	c3	h	c2	c1	c0

NOTES:

1. b – 'bank' select bit

2. c - 'column' address bit

3. h – channel select bit

4. r – 'row' address bit

9.2.2.4 ECC Support

The MCH supports ECC (Error Checking and Correction) and uses an ECC algorithm to protect against soft errors, when enabled. The algorithm works on a QWord (64-bit) basis. It corrects any single-bit error and detects any two-bits of error. An odd number of errors greater than 1, will either be detected correctly or will be misinterpreted as a single-bit error, and cannot be corrected. An error in an even number of bits greater than two will either be detected as a multi-bit error or it may not be detected at all.

9.2.3 DRAM Clock Generation

The MCH generates three differential clock pairs for every supported DIMM. There are total of 6 clock pairs driven directly by the MCH to 2 DIMMs per channel.

9.2.4 Suspend To RAM and Resume

When entering the Suspend to RAM (STR) state, the SDRAM controller will flush pending cycles and then enter all SDRAM rows into self refresh. In STR, the CKE signals remain low so the SDRAM devices will perform self-refresh.

9.2.5 DDR2 On Die Termination

On die termination (ODT) is a feature that allows a DRAM to turn on/off internal termination resistance for each DQx, DMx, DQSx, and DQSx# signal for x8 and x16 configurations via the ODT control signals. The ODT feature is designed to improve signal integrity of the memory channel by allowing the termination resistance for the DQx, DMx, DQSx, and DQSx# signals to be located inside the DRAM devices themselves instead of on the motherboard. The MCH drives out the required ODT signals, based on memory configuration and which rank is being written to or read from, to the DRAM devices on a targeted DIMM rank to enable or disable their termination resistance.

9.3 PCI Express*

See Chapter 1 for a list of PCI Express features and the PCI Express specification for further details.

This MCH is part of a PCI Express root complex. This means it connects a host processor / memory subsystem to a PCI Express hierarchy. The control registers for this functionality are located in device 1 configuration space and two Root Complex Register Blocks (RCRBs). The DMI RCRB contains registers for control of the ICH7 attach ports.

9.3.1 PCI Express* Architecture

The PCI Express architecture is specified in layers. Compatibility with the PCI addressing model (a load-store architecture with a flat address space) is maintained to ensure that all existing applications and drivers operate unchanged. The PCI Express configuration uses standard mechanisms as defined in the PCI Plug-and-Play specification. The initial speed of 1.25 GHz (250 MHz internally) results in 2.5 Gb/s/direction that provides a 250 MB/s communications channel in each direction (500 MB/s total); this is close to twice the data rate of classic PCI per lane.

9.3.1.1 Transaction Layer

The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer's primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are used to communicate transactions (such as, read and write) as well as certain types of events. The Transaction Layer also manages flow control of TLPs.

9.3.1.2 Data Link Layer

The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link management, error detection, and error correction.

9.3.1.3 Physical Layer

The Physical Layer includes all circuitry for interface operation, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry.

9.4 Bifurcated PCI Express* Graphics

9.4.1 Configurations

These PCI Express* ports will be referred to as the PEG0 and PEG1. Device 1 contains the control registers for PEG0. Device 3 contains the control registers for PEG1.

The PCI Express* links are mapped through separate PCI-to-PCI bridge structures.

Figure 9-2. PCI Express* Related Register Structures in MCH

Config Name	Primary Slot (PEG0)	Secondary Slot (PEG1)	Example Figures
Single Primary	x1, x16	None	Empty x16 PRSNT1# PRSNT1# PRSNT1# PRSNT1# Dev 1 8 7 MCH Dev 1 PRSNT2# 0 DPEN# PRIPRSNT# 0 DPEN# PRIPRSNT# 0 DPEN# PRIPRSNT#
Single Secondary ² (Swap)	None ³	x1, x8	x8 Empty PRSNT1# PRSNT1# PRSNT1# Dev 3 8 7 MCH Dev 1 PRSNT2# 0 DPEN# PRIPRSNT# (PEG) 0 15 Dev 3 0 15 Dev 3 0 Dev 1 Dev 1 Dev 1 DPEN# PRIPRSNT#
Bifurcated PCI Express*	x1, x8	x1, x8	x8 PRSNT1# PRSNT1# PRSNT1# T Dev 3 8 7 MCH Dev 1 PRSNT2# (PEG1) PRSNT2# (PEG0) DEN# PRIPRSNT# 0 DEN# PRIPRSNT#

Table 9-6. Lane Mapping Configurations for PCI Express* Graphics

NOTES:

- 1. Graphics device attached to ICH7.
- It is an unsupported configuration to have a PCI Express* graphics card present in the secondary slot and nothing in the primary slot. System will boot and BIOS should display user warning to switch which slot the card is plugged into.
- 3. BIOS must not disable Device 1 so that the Device 1 clock is active.

Device 1 must be enabled any time any PCI Express* device is present (regardless of slot). Device 3 has a separate clock tree from Device 1 that will be gated based on the Device 3 enable configuration bit (PEG1 disabled=gated PEG1 clock).

9.4.2 Lane Reversal

Device 1 registers are always associated with the control of the primary slot (PEG0). Device 3 registers are always associated with the control of the secondary slot (PEG1).

When lane reversal is indicated to the MCH (same static/strap mechanism as in Intel[®] 945G/945P Express chipset family), all 16 lanes are reversed end-to-end. What was lane 0 now maps to lane 15 and vice versa. As shown in the following figure, the device controls associated with the lanes also changes such that the same logical lanes are always controlled by the same device.

Figure 9-3. Lane Reversal (Bifurcated PCI Express* Configuration Example)

9.4.3 PCI Express* Straps

There is no dynamic detection so straps are required to indicate the desired configuration to the MCH. Two straps are redefined in order to support Bifurcated PCI Express* functionality. Each will connect to the PRSNT2# pin of a PCI Express* connector and will indicate whether a PCI Express* card is present in the corresponding slot. Polarity needs to match as the PCI Express specification defines how the Present Detect signals work (PRSNT2# asserted low to indicate presence).

DPEN# is the low asserted motherboard signal indicating Bifurcated PCI Express* Enable. PRIPRSNT# is the low asserted motherboard signal indicating a PCI Express* card is present in the primary slot.

Table 9-7. Strap Combinations

Торіс	DPEN# = 0 (Secondary Slot)	DPEN# = 1 (Secondary Slot)
PRIPRSNT# = 0 (Primary Slot)	2x8 (Devices 1 and 3 Enabled)	1x16 (Device 1 Enabled)
PRIPRSNT# = 1 (Primary Slot)	1x8 in Secondary (Device 3 Enabled. Device 1 training blocked.)	No PCI Express* cards in slots

The PRSNT2# connector signals (and corresponding straps) are pulled low when a PCI Express* card is present in the slot. When the slot is empty, the signal is pulled high.

9.4.3.1 Bifurcated PCI Express* Indication

Secondary Slot (PEG1) PRSNT2# is connected to DPEN# to indicate whether a PCI Express* card is present in the secondary slot and, therefore, Bifurcated PCI Express* operation is desired. DPEN#=0 means PCI Express* card is present in secondary slot.

When the DPEN# strap is pulled low by a PCI Express* card in the secondary slot, the Device 3 Enable configuration bit = 1 (enabled) out of reset. When the DPEN# (DPEN#) strap is not pulled low, the Device 3 Enable configuration bit = 0 (disabled) out of reset.

When the Device 3 enable = 0 (disabled), the clock to the 2^{nd} PCI Express* port will be gated.

9.4.3.2 Primary Slot Device Present Indication

Primary Slot (PEG0) PRSNT2# is connected to PRIPRSNT# to indicate whether a PCI Express* card is present in the primary slot. PRIPRSNT#=0 means PCI Express* card is present in primary slot. In the case where Bifurcated PCI Express* is indicated by the DPEN# strap and the PRIPRSNT# strap indicates there is NOT a card present, it signals the MCH that this is the undesirable "Single Secondary" configuration. Device 3 is connected to only the upper 8 lanes of the only PCI Express* graphics card present, which is an undesirable configuration for graphics.

9.4.4 Bifurcated PCI Express* Decode Rules

Summary of decode rules

- 1. At most one device may set its VGAEN (Video Graphics Array Enable) bit.
- 2. If a device has set its VGAEN bit and has not also set its VGA16D (VGA 16-bit Decode) bit, then all other 16-bit I/O devices must set their ISAEN (Industry Standard Architecture I/O bus present in the system) bits to avoid decoding 16-bit aliases of 10-bit VGA addresses.
- 3. The MDAP bit (MDA Present) corresponding to a device may only be set if the VGAEN bit for that device is set.
- 4. The VGA16D bit in a device may only be set if the VGAEN bit for that device is set.
- 5. The I/O decode ranges for separate devices must not be programmed to overlap by the time I/O decode is enabled for the device. This also restricts programming an I/O range in one device to match any part of the VGA or MDA ranges when a different device has set both VGAEN and VGA16D.

Once all the above rules are met, **decode** is as follows with the earlier statements taking priority over later statements:

- 1. If MDAP and VGA16D are set for a device, and I/O decode is enabled for that device, then the following addresses go to DMI because no MCH device will claim them: 03B4h, 03B5h, 03B8h, 03B9h, 03BAh, 03BFh
- 2. If MDAP is set for a device, and I/O decode is enabled for that device, then the following addresses go to DMI because no MCH device will claim them: *xyB4h, xyB5h, xyB8h, xyB9h, xyB4h, xyBFh; where x is any hex value 0 to F, and y is 3, 7, B, or F.*
- 3. If VGA16D is set for a device, and I/O decode is enabled for that device, then that device will claim the following addresses:

03B0h to 03BBh, 03C0h to 03CFh, 03D0h to 03DFh

4. If VGAEN is set for a device, and I/O decode is enabled for that device, then that device will claim the following addresses:

xyB0h to xyBBh, xyC0h to xyCFh, xyD0h to xyDFh; where x is any hex value 0 to F, and y is 3, 7, B, or F.

 If ISAEN is set, and I/O decode is enabled for the device, then the following addresses go to DMI because no MCH device will claim them:

xy00h to xyFFh; where x, is any hex value 0 to F, and y is 1,2,3,5,6,7,9,A,B,D,E,or F.

- 6. If an I/O address falls within the IOBASE to IOLIMIT range of a device, and I/O decode is enabled for the device, that device claims the cycle.
- 7. The cycle goes to DMI.

9.4.5 Platform Firmware Considerations

There are special requirements due to the ability to have two display cards in their respective PCI Express* slots and a monitor plugged into only one of the display cards. Even in the case of a monitor being plugged into each display card, these rules need to be followed during system initialization. For proper display during initialization with one monitor, the card that is connected to the monitor should be configured/enabled by BIOS as a VGA display adapter for system boot, while the other card will be configured but left disabled, until the driver gets loaded for that display card. This disabled card will not respond/claim any VGA cycles.

It is anticipated that the two display cards are identical with both having BaseClass code 03h (display class) and SubClass code 00h (VGA subclass); however, whether or not this is a hard requirement is dependent on the driver(s).

System BIOS Requirements

- 1. System BIOS enables VGA by setting the VGAEN (and VGA16D as appropriate) bit on PEG0 and configures the display card behind it, then passes control to VBIOS init entry point of that card.
- 2. Video BIOS on the card attempts to detect the presence of an attached monitor and passes the results to system BIOS on return of the video BIOS init function during POST. One way this can be accomplished is to have VBIOS unload itself by writing a 0 to offset 2 of the VBIOS image at C000 segment if it determines that there is no monitor attached to the card.
- 3. System BIOS must check the info returned by VBIOS (as stated above). If it sees that no monitor is attached to the card, it should disable the card, clear the VGAEN bit of the port, and proceed to the next port (PEG1) and repeat steps 1 and 2 on the next port.
- At the time when system BIOS pass control to OS, one of the two cards will be enabled with VGAEN bit set for that port. The other card will have been configured (IO/memory/IRQ resource allocation) but left disabled (PCI Command register at offset 04h=0h)

The OS will attempt to load drivers for both cards. The PCI Express graphics driver must understand that the disabled card has VGAEN bit disabled and, therefore, will not respond to any VGA cycles. The driver will enable this card and operate the card in a way that no VGA resources are needed by this card.

9.4.6 Peer-to-Peer

- No peer-to-peer reads are required nor supported.
- Peer-to-peer writes are supported from DMI to both PEG0 and PEG1. This is via the "central" peer path that existed in past products.
- Peer-to-peer writes are supported in both directions between PEG0 and PEG1 via the new "performance" peer path. The performance peer path supports 36-bit addressing. Relaxed ordering must be disabled when using the performance peer path.

The MCH has an in/out dependency when peer traffic is involved. This is a violation of the PCI 2.3 specification. To prevent potential lockup in the system the MCH requires that the devices attached to the root ports involved be PCI 2.3 compliant (so the devices are known to not have this in/out dependency).

Peer-to-peer writes through the performance peer path ignore the D state of both of the MCH PCI Express* ports. Software that follows the PCI Power Management specification should not allow for such upstream/peer cycles to occur; however, if software allows this, the cycles will flow through the MCH as if in the D0 state. Peer-to-peer writes through the central peer path would be an unsupported request on the primary side of a PCI Express* port virtual bridge if in a non-D0 state.

If the performance peer path is enabled and a write occurs to that range (appropriate device defined memory and prefetchable memory ranges), then the central peer path state (enabled/disabled) is a don't care. If the performance peer path is disabled and a write occurs to that range, then the central peer path state controls whether that write will be completed to the intended device (enabled) or the write becomes unsupported (disabled).

Figure 9-4. Bifurcated PCI Express* Microarchitecture

9.4.7 Peer-to-Peer Bandwidth

Performance of these paths is critical to support dual graphics card implementations. Peer-to-peer bandwidth numbers shown in the following table are the maximum attainable by simulation when cards are both streaming at maximum rates.

Table 9-8. Peer-to-Peer Bandwidths¹

Product	Concurrent PEG0 ⇔ PEG1	DMI to PEG0/PEG1 only	Concurrent PEG ⇔ DMI	PEG0/PEG1 to DMI only
 Intel[®] 945G/945P Express chipset (G)MCH (measured via simulation) 	Not Possible	 750 MB/s (Streaming on DMI x4) 	 PEG = 610 MB/s DMI = 610 MB/s 1.22 GB/s total 	 750 MB/s (Streaming on DMI x4. This is Not a supported usage model.)
 MCH Bifurcated PCI Express* Targets² 	 PEG0 = 1300 MB/s PEG1 = 1300 MB/s (2.6 GB/s total. Streaming x8 in both directions) 	 750 MB/s (Streaming on DMI x4) 	 PEG = 610 MB/s DMI = 610 MB/s (1.22 GB/s total) This is Not a supported usage model 	 750 MB/s This is Not a supported usage model

NOTES:

- Data throughput as measured at the corresponding interfaces after subtracting out all bandwidth used by packet header and protocol overhead. For transactions with addresses above 4 GB, there is an additional 4B of packet overhead per TLP that will reduce these numbers slightly. This is true for all PCI Express transactions, not just those that are peer-to-peer.
- PCI Express* to PCI Express* peer-to-peer does not use the same path as DMI to PCI Express* peer-topeer. A "direct connection" is made between the two transaction layers with the goal to support maximum possible throughput for 2 PCI Express* x8 cards doing concurrent peer streaming.

9.4.8 Peer-to-Peer Latency

Initial simulations indicate that the best case lead off latency is ~ 180 ns, with typical latencies ranging from 250 ns to greater than 600 ns. This time is measured from when an upstream write starts on the external pins until the start of the downstream write is seen on the external pins.

9.4.9 Link Declaration Topology

Registers exist in the PCI Express* Root Complex Link Declaration Capability structures of each PCI Express element in both the MCH and ICH7 to support software discovery of the topology of the root complex. Figure 9-5 shows the topology that is defined by the MCH registers (Device 1, DMIBAR, EPBAR) as specified in the post 1.0a specification Root Complex Topology Discovery ECN.

Figure 9-5. Link Declaration Topology

9.4.10 PCI Express* Interrupt and GPE Flow

Each PCI Express* port individually sends a single Assert/De-assert message to DMI for legacy interrupts, MSIs, and GPEs. The XT PCI and GPE interrupts need to be routed and connected to the DMI block. The only PCI legacy interrupt sent by the new Device 3 from internally generated sources is INTA, just like all other MCH internal devices. The Device 1 and Device 3 bridge devices can pass INTA–INTD from the PCI Express* link to DMI.

9.5 Thermal Considerations

PCI Express throttling is not supported; virtual sensor (filter) logic is not being updated to comprehend multiple PCI Express* ports.

Thermal throttling to protect the DIMMs is anticipated to be the only throttling used in production Bifurcated PCI Express* systems. With 2 PCI Express graphics cards up to 75 W, or maybe even higher, the typical ambient temperature in the chassis is likely to be higher than standard 945G Express chipset systems. High-end systems that use the 82975X MCH will likely have better than typical cooling solutions (higher air flow, etc), but it will be important to have Dynamic CKE and any other DIMM thermal throttling related features fully functional.

9.6 Power Management

Power management feature include:

- ACPI 1.0b support
- ACPI S0, S1D, S3 (both Cold and Chipset Hot), S4, S5, C0, and C1. The C2, C3, C4 states and corresponding Enhanced states- S3hot, C2, C3, and C4 are not used in the MCH.
- Enhanced power management state transitions for increasing time that the processor spends in low power states
- Graphics Adapter States: D0, D3.
- PCI Express Link States: L0, L0s, L1, L2/L3 Ready, L3

9.7 Clocking

The MCH has PLLs that provide the internal clocks. The PLLs are:

- Host PLL Generates the main core clocks in the host clock domain. This PLL can also be used to generate memory core clocks. It uses the Host clock (HCLKIN) as a reference.
- Memory PLL Can be used to generate memory core clocks, when not generated by the Host PLL. This PLL is not needed in all configurations, but exists to provide more flexible frequency combinations without an unreasonable VCO frequency. It uses the Host clock (HCLKIN) as a reference.
- PCI Express PLL Generates all PCI Express related clocks, including the Direct Media Interface that connects to the ICH7. This PLL uses the 100 MHz (GCLKIN) as a reference.

Figure 9-6 illustrates the various clocks in the platform.

Figure 9-6. Platform Clocking Example

§

10 Electrical Characteristics

This chapter contains the MCH absolute maximum electrical ratings, power dissipation values, and DC characteristics.

10.1 Absolute Minimum and Maximum Ratings

Table 10-1 specifies the 82975X MCH's absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor longterm reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the MCH contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 10-1. Absolute Minimum and Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _{storage}	Storage Temperature	-55	150	°C	1
MCH Core					
V _{CC}	1.5 V Core Supply Voltage with respect to $V_{\mbox{\scriptsize SS}}$	-0.3	1.65	V	
Host Interfac	ce (800 MHz/1066 MHz)				
V _{TT}	System Bus Input Voltage with respect to V_{SS}	-0.3	1.65	V	
V _{CCA_HPLL}	1.5 V Host PLL Analog Supply Voltage with respect to $V_{\mbox{\scriptsize SS}}$	-0.3	1.65	V	
DDR2 Interfa	ace (533 MHz/667 MHz)				
V _{CCSM}	1.8 V DDR2 System Memory Supply Voltage with respect to $V_{\mbox{\scriptsize SS}}$	-0.3	4.0	V	
V _{CCA_SMPLL}	1.5 V System Memory PLL Analog Supply Voltage with respect to $\ensuremath{V_{SS}}$	-0.3	1.65	V	
PCI Express	*/DMI Interface				
V _{CC_EXP}	1.5 V PCI Express* and DMI Supply Voltage with respect to $V_{\mbox{\scriptsize SS}}$	-0.3	1.65	V	

Īn

Symbol	Parameter	Min	Max	Unit	Notes
V _{CCA_EXPPLL}	1.5 V PCI Express PLL Analog Supply Voltage with respect to $\ensuremath{V_{SS}}$	-0.3	1.65	V	
V _{CCA_3GBG}	2.5 V PCI Express Band-gap Supply Voltage with respect to $V_{\mbox{\scriptsize SS}}$	-0.3	2.65	V	
CMOS Interf	ace				
V _{CC2}	2.5 V CMOS Supply Voltage with respect to $V_{\rm SS}$	-0.3	2.65	V	

NOTES: 1.

Possible damage to the MCH may occur if the MCH temperature exceeds 150 °C. Intel does not warrant functionality for parts that have exceeded temperatures above 150 °C since this exceeds Intel's specification.

10.2 **Power Characteristics**

Symbol	Parameter	Signal Names	Min	Тур	Max	Unit	Notes
I _{VTT}	System Bus Supply Current	VTT	—	—	0.9	A	1, 4,5
I _{VCC}	1.5 V Core Supply Current	VCC	—	_	8.9	А	2,3,4, 5
I _{VCC_EXP}	1.5 V PCI Express* and DMI Supply Current	VCC_EXP	—	—	1.5	A	5
I _{VCCA_3GBG}	2.5 V PCI Express Band-gap Supply Current	VCCA_3GBG	—	_	1.0	mA	5
I _{VCC2}	2.5 V CMOS Supply Current	VCC2	—	—	2.0	mA	5
I _{VCCA_EXPPLL}	1.5 V PCI Express and DMI PLL Analog Supply Current	VCCA_EXPPLL	_	_	45	mA	5
Ivcca_hpll	1.5 V Host PLL Supply Current	VCCA_HPLL	_	_	45	mA	5

Table 10-2. Non Memory Power Characteristics

NOTES:

Estimate is only for maximum current coming through the MCH's supply balls. Rail includes DLLs and FSB sense amps. 1.

2.

Includes worst case leakage. 3.

4. Calculated for highest frequencies.

Icc maximum values are determined on a per-interface basis. Maximum currents cannot occur 5. simultaneously on all interfaces.

intal

Table 10-3. DDR2 Power Characteristics

Symbol	Parameter	Min	Мах	Unit	Notes
I _{VCCSM}	DDR2 System Memory Interface (1.8 V) Supply Current	_	4.4	A	1,2,3
I _{SUS_VCCSM}	DDR2 System Memory Interface (1.8 V) Standby Supply Current	_	25	mA	1
I _{SMVREF}	DDR2 System Memory Interface Reference Voltage (0.90 V) Supply Current	_	2	mA	1
I _{SUS_SMVREF}	DDR2 System Memory Interface Reference Voltage (0.90 V) Standby Supply Current		10	μA	1
I _{TTRC}	DDR2 System Memory Interface Resister Compensation Voltage (1.8 V) Supply Current	_	36	mA	1
I _{SUS_TTRC}	DDR2 System Memory Interface Resister Compensation Voltage (1.8 V) Standby Supply Current	_	10	μA	1
I _{VCCA_SMPLL}	System Memory PLL Analog (1.5 V) Supply Current	_	66	mA	1

NOTES:

Estimate is only for maximum current coming through the MCH's supply balls. 1.

2.

Calculated for highest frequencies. I_{cc} maximum values are determined on a per-interface basis. Maximum currents cannot occur 3. simultaneously on all interfaces.

Signal Groups 10.3

The signal description includes the type of buffer used for the particular signal:

GTL+	Open Drain GTL+ interface signal. Refer to the GTL+ I/O specification for complete details. The 82975X MCH integrates most GTL+ termination resistors.
DDR2	DDR2 system memory (1.8 V CMOS buffers)
PCI Express*	PCI Express interface signals. These signals are compatible with PCI Express 1.0a signaling environment AC Specifications. The buffers are not 3.3 V tolerant.
Analog	Analog signal interface
Ref	Voltage reference signal
HVCMOS	2.5 V Tolerant High Voltage CMOS buffers
SSTL-1.8	1.8 V Tolerant Stub Series Termination Logic

Table 10-4. Signal Groups

Signal Group	Signal Type	Signals	Notes
Host Interface	Signal Groups		
(a)	GTL+ Input/Outputs	HADS#, HBNR#, HBREQ0#, HDBSY#, HDRDY#, HDINV[3:0]#, HA[31:3]#, HADSTB[1:0]#, HD[63:0], HDSTBP[3:0]#, HDSTBN[3:0]#, HHIT#, HHITM#, HREQ[4:0]#, HLOCK#	
(b)	GTL+ Common Clock Outputs	HBPRI#, HCPURST#, HDEFER#, HTRDY#, HRS[2:0]#, HEDRDY#	
(c)	Asynchronous GTL+ Input	HPCREQ#	
(d)	Analog Host I/F Ref & Comp. Signals	HDVREF, HACCVREF, HSWING HRCOMP, HSCOMP	
(c1)	Misc. CMOS Inputs	BSEL[2:0]	
PCI-Express* G	iraphics Interface S	ignal Groups	
(e)	PCI Express Input	PCI Express Interface: EXP_RXN[15:0], EXP_RXP[15:0]	
(f)	PCI Express Output	PCI Express Interface: EXP_TXN[15:0], EXP_TXP[15:0]	
(g)	Analog PCI Express I/F Compensation Signals	EXP_COMPO EXP_COMPI	
DDR2 Interface	Signal Groups		•
(h)	SSTL – 1.8 DDR2 CMOS I/O	SDQ_A[63:0], SDQ_B[63:0], SDQS_A[8:0], SDQS_A[8:0]#, SDQS_B[8:0], SDQS_B[8:0]#, SCB_A[7:0], SCB_B[7:0]	
(i)	SSTL – 1.8 DDR2 CMOS Output	SDM_A[7:0], SDM_B[7:0], SMA_A[13:0], SMA_B[13:0] SBS_A[2:0], SBS_B[2:0], SRAS_A#, SRAS_B#, SCAS_A#, SCAS_B#, SWE_A#, SWE_B#, SODT_A[3:0], SODT_B[3:0], SCKE_A[3:0], SCKE_B[3:0], SCS_A[3:0]#, SCS_B[3:0]#, SCLK_A[5:0], SCLK_A[5:0]#, SCLK_B[5:0], SCLK_B[5:0]#	
(j)	DDR2 Reference Voltage	SMVREF[1:0]	
Clocks, Reset,	and Miscellaneous	Signal Groups	
(k)	HVCMOS Input	EXTTS#	
(I)	Miscellaneous Inputs	RSTIN#, PWROK	
	Miscellaneous HVCMOS Output	ICH_SYNC#	
(m)	Low Voltage Diff. Clock Input	HCLKN, HCLKP, GCLKP, GCLKN	

Signal Group	Signal Type	Signals	Notes
I/O Buffer Supp	ly Voltages		
(0)	System Bus Input Supply Voltage	VTT	
(p)	1.5 V PCI Express Supply Voltages	VCC_EXP	
(q)	1.8 V DDR2 Supply Voltage	VCCSM	
(r)	1.5 V DDR2 PLL Analog Supply Voltage	VCC_SMPLL	
(s)	1.5 V MCH Core Supply Voltage	VCC	
(t)	2.5 V CMOS Supply Voltage	VCC2	
(v)	PLL Analog Supply Voltages	VCCA_HPLL, VCCA_EXPPLL	
(W)	2.5 V PCI Express Band- gap Supply Voltage	VCCA_3GBG	

10.4 DC Characteristics

Table 10-5. DC Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Мах	Unit	Notes
I/O Buffer Supp	oly Voltage	(AC Noise not included)					
VCCSM	(q)	DDR2 I/O Supply Voltage	1.7	1.8	1.9	V	4
VCCA_SMPLL	(r)	DDR2 I/O PLL Analog Supply Voltage	1.425	1.5	1.575	V	
VCC_EXP	(p)	PCI-Express* Supply Voltage	1.425	1.5	1.575	V	
VTT	(0)	System Bus Input Supply Voltage	1.14	1.2	1.26	V	
VCC	(s)	MCH Core Supply Voltage	1.425	1.5	1.575	V	11
VCC2	(t)	CMOS Supply Voltage	2.375	2.5	2.625	V	
VCCA_HPLL, VCCA_ EXPPLL	(v)	Various PLL Analog Supply Voltages	1.425	1.5	1.575	V	
VCCA_3GBG	(W)	PCI Express Band-gap Supply Voltage	2.375	2.5	2.625	V	
Reference Volt	ages		<u> </u>				
HDVREF	(d)	Host Address, Data, and Common Clock Signal Reference Voltage	0.63 x V _{TT} -2%	0.63 x V _{TT}	0.63 x V _{TT} +2%	V	
HSWING	(d)	Host Compensation Reference Voltage	0.22 x V _{TT} –2%	$0.22 \text{ x V}_{\text{TT}}$	0.22 x V _{TT} +2%	V	
SMVREF	(j)	DDR2 Reference Voltage	0.49 x V _{CCSM}	0.50 х V _{ссѕм}	0.51 x V _{ссsм}	V	
Host Interface			<u> </u>				
V _{IL_H}	(a, c, c1)	Host GTL+ Input Low Voltage	-0.10	0	(0.63 x VTT) -0.1	V	
V _{IH_H}	(a, c, c1)	Host GTL+ Input High Voltage	(0.63 x V _{TT}) + 0.1	V _{TT}	V _{TT} +0.1	V	
V _{OL_H}	(a, b)	Host GTL+ Output Low Voltage	—	_	(0.22 x V _{TT})+0.1	V	
V _{OH_H}	(a, b)	Host GTL+ Output High Voltage	V _{TT} – 0.1	_	V _{TT}	V	
I _{OL_H}	(a, b)	Host GTL+ Output Low Current	_	_	V _{TTmax} * (1-0.22) / Rttmin	mA	$Rtt_{min} = 54 \Omega$
I _{LEAK_H}	(a, c, c1)	Host GTL+ Input Leakage Current	—	—	20	μA	V _{OL} <vpad< V_{TT}</vpad<

Symbol	Signal Group	Parameter	Min	Nom	Мах	Unit	Notes
C _{PAD}	(a, c, c1)	Host GTL+ Input Capacitance	2	—	2.5	pF	
C _{PCKG}	(a, c, c1)	Host GTL+ Input Capacitance (common clock)	0.90	—	2.5	pF	
DDR2 Interfac	e						
V _{IL(DC)}	(h)	DDR2 Input Low Voltage	—	_	SMVREF - 0.125	V	
V _{IH(DC)}	(h)	DDR2 Input High Voltage	SMVREF + 0.125	_	—	V	
V _{IL(AC)}	(h)	DDR2 Input Low Voltage	—	_	SMVREF - 0.250	V	
V _{IH(AC)}	(h)	DDR2 Input High Voltage	SMVREF + 0.250	_	—	V	
V _{OL}	(h, i)	DDR2 Output Low Voltage	—	—	0.3	V	1
V _{он}	(h, i)	DDR2 Output High Voltage	1.5		_	V	1
I _{Leak}	(h)	Input Leakage Current	—	_	±20	μA	5
I _{Leak}	(h)	Input Leakage Current	_	_	±550	μA	6
C _{I/O}	(h, i)	DDR2 Input/Output Pin Capacitance	3.0	_	6.0	pF	
1.5V PCI Expr	ess* Interfac	e 1.0a			<u> </u>		
V _{TX-DIFF P-P}	(f)	Differential Peak to Peak Output Voltage	0.800	—	1.2	V	2
V _{TX_CM-ACp}	(f)	AC Peak Common Mode Output Voltage	—	_	20	mV	
Z _{TX-DIFF-DC}	(f)	DC Differential TX Impedance	80	100	120	Ohms	
V _{RX-DIFF p-p}	(e)	Differential Peak to Peak Input Voltage	0.175	_	1.2	V	3
V _{RX_CM-ACp}	(e)	AC Peak Common Mode Input Voltage	—	_	150	mV	
Clocks, Reset	, and Miscel	laneous Signals			<u> </u>		
V _{IL}	(k)	Input Low Voltage	_	_	0.8	V	
V _{IH}	(k)	Input High Voltage	2.0		_	V	
I _{LEAK}	(k)	Input Leakage Current			± 20	μA	
C _{IN}	(k)	Input Capacitance	3.0		6.0	pF	
VIL	(m)	Input Low Voltage	- 0.150	0	_	V	
V _{IH}	(m)	Input High Voltage	0.660	0.700	0.850	V	
V _{CROSS(abs)}	(m)	Absolute Crossing Point	0.250		0.550	V	7, 9
V _{CROSS(rel)}	(m)	Relative Crossing Point	0.250 + 0.5 * (V _{Havg} – 0.700)	_	0.550 + 0.5 * (V _{Havg} - 0.770)	V	8, 9

Symbol	Signal Group	Parameter	Min	Nom	Мах	Unit	Notes
ΔV_{CROSS}	(m)	Range of Crossing Points	—	_	0.140	V	10
C _{IN}	(m)	Input Capacitance	1	-	3	pF	
V _{IL}	(I)	Input Low Voltage	—		0.8	V	
VIH	(I)	Input High Voltage	2.0			V	
I _{LEAK}	(I)	Input Leakage Current	—	_	±100	μA	0 <vin< V_{CC3_3}</vin<
C _{IN}	(I)	Input Capacitance	4.690	_	5.370	pF	

NOTES:

- 1. Determined with 2x MCH DDR2 Buffer Strength Settings into a 50 ohm to 0.5xV_{CCSM} test load.
- Specified at the measurement point into a timing and voltage compliance test load as shown in the Transmitter compliance eye diagram of the PCI Express specification and measured over any 250 consecutive TX UIs.
- Specified at the measurement point and measured over any 250 consecutive UIs. The test load shown in the Receiver compliance eye diagram of the PCI Express spec should be used as the RX device when taking measurements.
- 4. This is the DC voltage supplied at the MCH and is inclusive of all noise up to 20 MHz. Any noise above 20 MHz at the MCH generated from any source other than the MCH itself may not exceed the DC voltage range of 1.8V ±100 mV.
- 5. Applies to the pin to VCC or VSS leakage current for the SDQ_A[63:0], SDQ_B[63:0], SCB_A[7:0], and SCB_B[7:0] signals.
- Applies to the pin to pin leakage current between the SDQS_A[8:0], SDQS_A[8:0]#, SDQS_B[8:0], and SDQS_B[8:0]# signals.
- Crossing Voltage is defined as the instantaneous voltage value when the rising edge is equal to the falling edge.
- 8. V_{Havg} is the statistical average of the V_H measured by the oscilloscope.
- 9. The crossing point must meet the absolute and relative crossing point specifications simultaneously.
- 10. ΔV_{CROSS} is defined as the total variation of all crossing voltages as defined in note 7.
- 11. For all noise components ≤ 20 MHz, the sum of the DC voltage and AC noise component must be within the specified DC min/max operating range.

ş

11 Ballout and Package Information

This chapter provides the ballout and package information.

11.1 Ballout

The following two figures diagram the MCH ballout for platforms using DDR2 system memory, as viewed from the top side of the package. The figures are broken into a left-side view and right-side view of the package.

- *Note:* Balls that are listed as RSV are reserved. Board traces should Not be routed to these balls.
- Note: Some balls marked as reserved (RSV) are used in XOR testing. See Chapter 12 for details.
- Note: Some balls marked as reserved (RSV) can be used as test points. These are marked as RSV_TPx.
- Note: Balls that are listed as NC are No Connects.

	•						•	· · ·							
	43	42	41	40	39	38	37	36	35	34	33	32	31	30	
вс	NC	NC		VCCSM		SCS_A1#			VCCSM		SBS_A0		VCCSM		вс
вв	NC	VCCSM	VSS	SRAS_B#	VSS	VCCSM	SODT_A2		SCS_A0#	VSS	VCCSM	SMA_A0	SCLK_A3	SMA_A2	вв
вА		VSS	SWE_B#	SCS_B0#	SCS_A3#		SODT_A0		SWE_A#	SCS_A2#		SBS_A1	SCLK_A3#	SMA_A1	ва
AY	VCCSM	SODT_B0	VCCSM		SODT_A3	SODT_A1	SCAS_A#			SRAS_A#	SMA_A10	SCLK_A0		SMA_A3	AY
AW		SCAS_B#	SODT_B2	SCS_B2#			SMA_A13		SDQS_A4#	VCCSM		SCLK_A0#	VCCSM		AW
AV	SODT_B1	VCCSM		SMA_B13		SDQ_A39	VSS		VSS	SDQ_A33		SDQ_A36	VCCSM		AV
AU		SODT_B3	SCS_B3#	SCS_B1#	SDQ_A35	SDQ_B45	SDQ_A34		SDQS_A4	VSS		VSS	SDQ_B39		AU
АТ										SDM_A4		SDQ_A37	VSS		АТ
AR	VSS	SDQ_A45	SDQ_A44		VSS	SDM_B5	VSS		SDQ_B44	SDQ_A38		VSS	SDQ_B34		AR
AP		SDM_A5	SDQS_A5#	SDQ_A41	SDQ_A40	VSS	SDQ_B41	SDQ_B40	SDQS_B5	VSS		SDQ_A32	SDQ_B38		AP
AN	SDQ_A46	VSS		SDQS_A5								SDQ_B47	VSS		AN
AM		SDQ_A43	SDQ_A42	SDQ_A47	VSS	SDQ_B46	VSS	VSS	SDQS_B5#	VSS	SDQ_B42		SDQ_B35		АМ
AL	VSS	SDQ_A53	SDQ_A52		SDQ_A48	SCLK_B2	VSS	SCLK_B2#	VSS	SDQ_B53	VSS	SDQ_B52	VSS		AL
AK		SCLK_A2	SCLK_A2#	SDQ_A49										VSS	АК
AJ					SDM_B6	SCLK_B5	VSS	SCLK_B5#	VSS	SDQ_B49	VSS	SDQ_B48	SDQ_B43	VSS	AJ
АН	SCLK_A5	VSS		SCLK_A5#						_					АН
AG		SDQS_A6	SDQS_A6#	SDM_A6	VSS	VSS	VSS	VSS	SDQ_B54	SDQS_B6	VSS	SDQS_B6#	VSS	VCC	AG
AF	VSS	- SDQ_A55	SDQ_A54	-	SDQ_A50	VSS	SDQ_B61	VSS	SDQ_B60	SDQ_B51	VSS	SDQ_B50	VSS	VCC	AF
AE		_ SDQ_A60	SDQ_A61	SDQ_A51	_		_		_	_		-			AE
AD	SDQ_A57	VSS		SDQ_A56	SDQS_B7#	VSS	SDM_B7	SDQS_B7	VSS	SDQ_B57	VSS	SDQ_B55	VSS	VSS	AD
AC		SDQS_A7	SDQS_A7#	SDM_A7	VSS	VSS	VSS	VSS	SDQ_B63	SDQ B62	VSS	SDQ_B56	VSS	VCC	AC
AB	VSS	SDQ_A63	SDQ_A62												AB
AA		HA33#	HBREQ0#	SDQ_A59	SDQ_A58	HA35#	HA29#	VSS	HA32#	HA34#	VSS	SDQ_B59	VSS	VSS	AA
Y	HRS1#	VSS		HEDRDY#	VSS	HA28#	VSS	HA27#	VSS	HA31#	VSS	SDQ_B58	VSS	VCC	Y
w		HADS#	HHITM#	HTRDY#											w
v	VSS	HA25#	HDRDY#		VSS	VSS	VSS	VSS	HADSTB1#	VSS	HA22#	HA30#	RSV	VSS	v
U	100	HDBSY#	HHIT#	HLOCK#	HBNR#	VSS	HA19#	VSS	HA26#	HA23#	VSS	HA24#	VSS	VCC	U
т	HRS2#	VSS		HRS0#	TIB/TTG/		10100		11/120/	11/120/	100		100	100	т
R	TH COL	100		11100#	VSS	HA21#	VSS	HA18#	HA20#	VSS	HA10#	HA17#	VSS	VSS	R
P		HD2#	HD0#	HDEFER#			100	10100	10 200	100	10110		100	VSS	P
N	VSS	HA14#	HD4#		VSS	HA16#	HA15#	VSS	HA9#	HA12#	VSS	HA11#	VSS		N
м		HD3#	HD7#	HD5#	HD1#	HA13#	VSS	HADSTB0#	VSS	HA8#	HD33#		HCLKP		м
Ľ	HDSTBN0#	VSS		HD6#								HD30#	VSS		Ľ
ĸ		HD8#	HDSTBP0#	HDINV0#	VSS	HA4#	VSS	HREQ2#	HA6#	VSS		VSS	HD34#		ĸ
J	VSS	HA5#	HD10#		V33 HA3#	VSS	V33 HA7#		HD18#	HD27#		HD25#	HD31#		J
н		1.1.0.1	110 10#		1 1 10				112 10.7	HD23#		VSS	HD32#		н
G		HD11#	HD13#	HD12#	HD9#	VSS	HREQ3#		VSS	HDSTBN1#		VSS	VSS		G
F	HD15#	VSS	1010#	HD12#	112/3#	HPCREQ#	HD16#		HDSTBP1#	VSS		HD29#	HD37#		F
E	1010#	HREQ4#	HREQ0#	HD 14#		TH OKEQ#	HD16#		VSS	VSS HDSTBP3#		VSS	HD37#		E
E	VSS	HBPRI#		11230#	HD10#	UD52#			*33		HD54#		11040#	HD62#	D
c	v 33		HREQ1#	Vee	HD19#	HD53#	HD51#		HD55#	HD56#	HD94#	HD61#	HD59#	HD63#	C D
	NC	NC	HD20#	VSS	HD52#	VCC	HD24# HDSTBN3#			HD57#	VCC	HD60#		HCPURST#	
В	NC	NC	NC	HD22#	HD21#	VSS	HD91BN3#		HD26#	HD28#	VSS	HDINV3#	HD58#	HD62#	В
A	RSV	NC		VSS		HDINV1#			VSS		HD49#		VSS		A
	43	42	41	40	39	38	37	36	35	34	33	32	31	30	

Figure 11-1. Intel[®] 82975X MCH Ballout Diagram (Top View – Columns 43–30)

	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
BC		SMA_A4		VCCSM		SCKE_A1		VCCSM		SMA_B6		VCCSM		VCCSM	вс
BB		VCCSM	SMA_A8	SMA_A11	SBS_A2	VCCSM	SMA_B10	SMA_B2	SMA_B3	VCCSM	VSS	SMA_B11	SBS_B2	VCCSM	BB
BA			SMA_A5	SMA_A12	SCKE_A2		SBS_B0	SMA_B1	SMA_B4		SMA_B7	SMA_B12	SCKE_B1		BA
AY		SMA_A6	SMA_A7		SCKE_A0	SCKE_A3	SBS_B1		SMA_B5	SMA_B8	SMA_B9		SCKE_B2	SCKE_B0	AY
AW	VCCSM		SMA_A9	VCCSM		VCCSM	SMA_B0		VSS	VCCSM		VCCSM	VCCSM		AW
AV	SDQS_B4#		VSS	VSS		SCB_B2	VCCSM		VSS	SCB_A7		SDQS_A8#	VSS		AV
AU	VSS		SDQ_B37	VSS		VSS	VSS		VSS	VSS		SDQS_A8	VSS		AU
AT	SDQS_B4		VSS	VSS		SCB_B7	VSS		VSS	SCB_A6		VSS	VSS		AT
AR	SDM_B4		SDQ_B32	SCLK_B3#		VSS	SDQS_B8		SCB_A2	VSS		SCB_A1	SDQ_A27		AR
AP	VSS		SDQ_B36	SCLK_B3		SCB_B6	SDQS_B8#		SCB_A3	VSS		SCB_A0	SDQ_A26		AP
AN	SDQ_B33		VSS	VSS		VSS	SCB_B5		VSS	VSS		VSS	VSS		AN
AM	SCLK_B0		SCLK_B0#	SCB_B3		SCB_B0	SCB_B1		SCB_B4	SCB_A5		SCB_A4	SDQ_A31		AM
AL	VSS		VSS	VSS		VSS	VSS		VSS	VSS		VSS	RSV_TP3		AL
AK	VSS		VCC	VCC		VCC	VCC		VCC	VCC		VSS	RSV_TP2		AK
AJ	VCC		RSV	RSV		RSV	RSV		RSV	VCC		VSS	VSS		AJ
AH					-	-	-			-	-		-		AH
AG	VSS		RSV	RSV	RSV	RSV	RSV	RSV	RSV	VCC	VCC	VSS	VSS		AG
AF	VCC		VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		AF
AE			VCC	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC		AE
AD	VCC		VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		AD
AC	VCC		VCC	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC		AC
AB			VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		AB
AA	VCC		VCC	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC		AA
Y	VSS		VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC	VCC		Y
w			VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC		w
v	VCC		VCC	VCC	VSS	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC		v
U	VSS		VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC		U
т															т
R	VSS		RSV	VCC		VCC	VCC		VCC	VCC		VCC	VCC		R
Ρ	NC		RSV	VSS		VSS	VSS		VSS	VSS		VCC	VCC		Ρ
Ν	VSS		VSS	VSS		VSS	ICH_SYNC#		RSV_TP6	VSS		VCC	VCC		Ν
М	HCLKN		HD35#	HDSTBN2#		HD41#	VTT		VSS	EXTTS#		VCC	VCC		м
L	VSS		HD40#	VSS		VSS	VTT		RSV_TP4	BSEL2		VCC	VCC		L
к	HD36#		VSS	HD43#		HD46#	VTT		EXP_SLR	VSS		VCC	VCC		к
J	VSS		HDSTBP2#	HD42#		VSS	VTT		VSS	ALLZTEST		VCC	VCC		J
н	HD38#		VSS	VSS		HD45#	VTT		BSEL1	XORTEST		VCC	VCC		н
G	VSS		VSS	HD44#		VSS	VTT		VSS	VSS		VCC	VCC		G
F	HD39#		VTT	VSS		HD47#	VTT		BSEL0	DPEN#		VCC	VCC		F
E	HDINV2#		VTT	VTT		VTT	VTT		VSS	VSS		VCC	VCC_EXP		Е
D		HACC VREF	HDVREF		VTT	VTT	VTT		VSS	VSS	PM_ BMBUSY#		VCC_EXP	VCC_EXP	D
с			HSCOMP	VTT	VTT		VTT	VSS	VCCA_ SMPLL		PRIPRSNT#	VCC_EXP	VCC_EXP		с
в		VSS	HSWING	VTT	VTT	VTT	VSS	VSS	VSS	VCCA_ EXPPLL	VCC2	VCC_EXP	VCC_EXP	GCLKN	в
Α		HRCOMP		VTT		VTT		VCCA_HPLL		VCCA_3GBG		VCC_EXP		VCC_EXP	A
	29	28	27	26	25	24	23	22	21	20	19	18	17	16	

Figure 11-2. Intel[®] 82975X MCH Ballout Diagram (Top View – Columns 29–16)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
вс			VCCSM		SDQS_A2#		VSS			SCLK_A4#		VSS		NC	NC
вв		VSS	SDQ_A18	SDQ_A23	VSS	SDQ_A16	SDQ_A11		SDQ_A15	VSS	SDQS_A1	SDQS_A1#	NC	NC	NC
BA		SCKE_B3	SDQ_A19	SDQS_A2		SDQ_A17	SDQ_A10		SDQ_A14		SCLK_A1	VSS	SDQ_A9	NC	
AY		VCCSM		SDQ_A22	SDM_A2	SDQ_A21			SCLK_A4	SCLK_A1#	SDM_A1		SDQ_A13	SDQ_A8	VSS
AW	VCCSM		VSS	VSS		SDQ_A20	VSS		SDQ_B18			SDQ_A2	SDQ_A3	SDQ_A12	
AV	SDQ_A30		SDM_A3	SDQ_B30		VSS	SDM_B3		SDQ_B29	SDQ_B23		SDQ_A6		VSS	SDQ_A7
AU	VSS		VSS	VSS		SDQ_B25	VSS		SDQ_B19	VSS	SDM_A0	SDQ_A1	SDQS_A0	SDQS_A0#	
AT	SDQS_A3		SDQ_A25	VSS		SDQ_B24			_		_	-	_	-	
AR	VSS		SDQ_B27	SDQS_B3#		SDQS_B3	SDQ_B28		SDQS_B2#	SDQS_B2	VSS		SDQ_A5	SDQ_A0	VSS
AP	SDQS_A3#		SDQ_A29	VSS		VSS	SDQ_B22	SDM_B2	VSS	SDQ_B17	VSS	SDQ_B7	SDQ_B3	SDQ_A4	100
AN	VSS		VSS	SDQ_B26		100	000_022	00101_02	100	000_011	100	VSS	0000_00	VSS	SDQ_B2
AM	SDQ_A28		SDQ_A24	3DQ_020	SDQ_B31	SDQ_B16	VSS	SDQ_B21	VSS	SDQ_B20	SDM_B0	SDQ_B6	SDQS_B0#	SDQS_B0	3002_02
			VSS	CDO . 044				VSS				3DQ_60			VSS
AL	RSV_TP1	1/00	V55	SDQ_B11	VSS	SDQ_B10	SDQ_B14	V35	SDQ_B15	VSS	VSS	1/00	SDQ_B1	SDQ_B5	V55
AK	RSV_TP0	VSS	1/62	000 515	00116 51	1/6.5		1/62	001/1 5	00111 5 1	1/60	VSS	SDQ_B4	SDQ_B0	
AJ	VSS	VSS	VSS	SDQ_B13	SCLK_B1#	VSS	SCLK_B1	VSS	SCLK_B4	SCLK_B4#	VSS			115 -	
AH												VSS		VSS	SMVREFO
AG	VSS	VSS	VSS	VSS	SDQ_B9	VSS	SDM_B1	SDQS_B1#	VSS	SDQS_B1	VSS	VSS	SMVREF1	SRCOMP1	
AF	VCC	VSS	VSS	VSS	SDQ_B12	VSS	SDQ_B8	VSS	VSS	VSS	VSS		SOCOMP0	VSS	SRCOMPO
AE												VSS	RSTIN#	SOCOMP1	
AD	VCC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS		VSS	PWROK
AC	VCC	VSS	VSS	EXP_ COMPO	EXP_COMPI	VSS	DMI_RXP3	DMI_RXN3	VSS	VSS	VSS	DMI_TXN3	VSS	VSS	
AB													DMI_TXP3	VSS	DMI_TXN1
AA	VCC	VCC_EXP	VCC_EXP	VCC_EXP	VSS	DMI_RXN1	DMI_RXP1	VSS	DMI_TXP2	DMI_TXN2	VSS	DMI_RXP2	VSS	DMI_TXP1	
Y	VCC	VCC_EXP	VCC_EXP	VCC_EXP	VSS	VCC_EXP	VCC_EXP	VSS	VCC_EXP	VCC_EXP	VSS	DMI_RXN2		VSS	DMI_TXN0
w												EXP_TXN15	VSS	DMI_TXP0	
v	VCC	VCC_EXP	VCC_EXP	VCC_EXP	VSS	EXP_ RXN15	EXP_ RXP15	VSS	DMI_RXN0	DMI_RXP0	VSS		EXP_ TXP15	EXP_TXN14	VSS
U	VCC	VCC_EXP	VCC_EXP	VCC_EXP	VSS	VCC_EXP	VCC_EXP	VSS	VCC_EXP	VCC_EXP	VSS	EXP_TXN13	VSS	EXP_TXP14	
т												EXP_TXP13		VSS	EXP_RXN1
R	VCC_EXP	VCC_EXP	VCC_EXP	VSS	EXP_RXP12	EXP_ RXN12	VSS	EXP_ RXP13	EXP_ RXN13	VSS	VSS				
Ρ	VCC_EXP	VCC_EXP										EXP_TXN12	VSS	EXP_RXP14	
N	VCC_EXP		VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VSS		EXP_ TXP12	EXP_TXN11	VSS
М	VCC_EXP		VCC_EXP		VSS	VSS	VSS	VSS	EXP_ RXN10	EXP_ RXP10	VSS	EXP_TXN10	VSS	EXP_TXP11	
L.	VCC_EXP		VCC_EXP	VSS								EXP_TXP10		VSS	EXP_RXN1
к	VCC_EXP		VSS	VSS		VSS	EXP_RXP9	EXP_RXN9	VSS	VSS	VSS	EXP_TXN9	VSS	EXP_RXP11	
J	VCC_EXP		EXP_RXP2	VSS		VSS	EXP_RXP4		VSS	EXP_RXN7	VSS		EXP_TXP9	VSS	EXP_TXN8
н	VCC_EXP		EXP_RXN2	VSS		EXP_RXN4									
G	- VCC_EXP		VSS	EXP_RXP0		- VSS	VSS		VSS	EXP_RXP7	VSS	EXP_TXN7	VSS	EXP_TXP8	
F	VCC_EXP			EXP_RXN0			EXP_RXN5		EXP_RXP5	- VSS		EXP_TXP7		VSS	EXP_RXN
E	VCC_EXP		VCC_EXP	VSS		EXP_RXP3	VSS		VSS			VSS	VSS	EXP_RXP8	
D		EXP_TXP0		EXP_TXP2	EXP_TXN2	VSS			EXP_TXP5	EXP_TXN5	VSS		EXP_RXN6	VSS	VSS
c		VSS	EXP_TXN0	VSS		EXP_TXP3	EXP_TXN3		VSS		VSS	EXP_RXP6	VSS	NC	
в		GCLKP		EXP_TXN1	VSS	EXP_TXP3	VSS		EXP_TXN4	VSS	EXP_ TXN6	VSS	NC	NC	
						_	EXP_TXP4								
Α			VSS		EXP_RXP1					EXP_TXP6		VSS			

Figure 11-3. Intel[®] 82975X MCH Ballout Diagram (Top View – Columns 15–1)

Table 11-1. Intel[®] 82975X MCH Ballout – Sorted by Signal Name

Signal Name	Ball #
ALLZTEST	J20
BSEL0	F21
BSEL1	H21
BSEL2	L20
DMI_RXN0	V7
DMI_RXN1	AA10
DMI_RXN2	Y4
DMI_RXN3	AC8
DMI_RXP0	V6
DMI_RXP1	AA9
DMI_RXP2	AA4
DMI_RXP3	AC9
DMI_TXN0	Y1
DMI_TXN1	AB1
DMI_TXN2	AA6
DMI_TXN3	AC4
DMI_TXP0	W2
DMI_TXP1	AA2
DMI_TXP2	AA7
DMI_TXP3	AB3
EXP_COMPI	AC11
EXP_COMPO	AC12
EXP_RXN0	F12
EXP_RXN1	B10
EXP_RXN2	H13
EXP_RXN3	F10
EXP_RXN4	H10
EXP_RXN5	F9
EXP_RXN6	D3
EXP_RXN7	J6
EXP_RXN8	F1
EXP_RXN9	K8
EXP_RXN10	M7
EXP_RXN11	L1

1	
Signal Name	Ball #
EXP_RXN12	R10
EXP_RXN13	R7
EXP_RXN14	T1
EXP_RXN15	V10
EXP_RXP0	G12
EXP_RXP1	A11
EXP_RXP2	J13
EXP_RXP3	E10
EXP_RXP4	J9
EXP_RXP5	F7
EXP_RXP6	C4
EXP_RXP7	G6
EXP_RXP8	E2
EXP_RXP9	K9
EXP_RXP10	M6
EXP_RXP11	K2
EXP_RXP12	R11
EXP_RXP13	R8
EXP_RXP14	P2
EXP_RXP15	V9
EXP_SLR	K21
EXP_TXN0	C13
EXP_TXN1	B12
EXP_TXN2	D11
EXP_TXN3	C9
EXP_TXN4	B7
EXP_TXN5	D6
EXP_TXN6	B5
EXP_TXN7	G4
EXP_TXN8	J1
EXP_TXN9	K4
EXP_TXN10	M4
EXP_TXN11	N2
EXP_TXN12	P4

Signal Name	Ball #
EXP TXN13	U4
EXP TXN14	V2
EXP TXN15	W4
EXP_TXP0	D14
EXP_TXP1	B13
EXP TXP2	D12
EXP_TXP3	C10
EXP TXP4	A9
EXP_TXP5	D7
EXP_TXP6	A6
EXP TXP7	F4
EXP_TXP8	G2
EXP TXP9	J3
EXP_TXP10	L4
EXP_TXP11	M2
EXP_TXP12	N3
EXP_TXP13	T4
EXP_TXP14	U2
EXP_TXP15	V3
EXTTS#	M20
GCLKN	B16
GCLKP	B14
HBREQ0#	AA41
HEDRDY#	Y40
HA3#	J39
HA4#	K38
HA5#	J42
HA6#	K35
HA7#	J37
HA8#	M34
HA9#	N35
HA10#	R33
HA11#	N32
HA12#	N34

Signal Name	Ball #
HA13#	M38
HA14#	N42
HA15#	N37
HA16#	N38
HA17#	R32
HA18#	R36
HA19#	U37
HA20#	R35
HA21#	R38
HA22#	V33
HA23#	U34
HA24#	U32
HA25#	V42
HA26#	U35
HA27#	Y36
HA28#	Y38
HA29#	AA37
HA30#	V32
HA31#	Y34
HA32#	AA35
HA33#	AA42
HA34#	AA34
HA35#	AA38
HACCVREF	D28
HADS#	W42
HADSTB0#	M36
HADSTB1#	V35
HBNR#	U39
HBPRI#	D42
HCLKN	M29
HCLKP	M31
HCPURST#	C30
HD0#	P41
HD1#	M39
HD2#	P42

Signal Name	Ball #
HD3#	M42
HD4#	N41
HD5#	M40
HD6#	L40
HD7#	M41
HD8#	K42
HD9#	G39
HD10#	J41
HD11#	G42
HD12#	G40
HD13#	G41
HD14#	F40
HD15#	F43
HD16#	F37
HD17#	E37
HD18#	J35
HD19#	D39
HD20#	C41
HD21#	B39
HD22#	B40
HD23#	H34
HD24#	C37
HD25#	J32
HD26#	B35
HD27#	J34
HD28#	B34
HD29#	F32
HD30#	L32
HD31#	J31
HD32#	H31
HD33#	M33
HD34#	K31
HD35#	M27
HD36#	K29
HD37#	F31

Signal Name	Ball #
HD38#	H29
HD39#	F29
HD40#	L27
HD41#	M24
HD42#	J26
HD43#	K26
HD44#	G26
HD45#	H24
HD46#	K24
HD47#	F24
HD48#	E31
HD49#	A33
HD50#	E40
HD51#	D37
HD52#	C39
HD53#	D38
HD54#	D33
HD55#	C35
HD56#	D34
HD57#	C34
HD58#	B31
HD59#	C31
HD60#	C32
HD61#	D32
HD62#	B30
HD63#	D30
HDBSY#	U42
HDEFER#	P40
HDINV0#	K40
HDINV1#	A38
HDINV2#	E29
HDINV3#	B32
HDRDY#	V41
HDSTBN0#	L43
HDSTBN1#	G34

int_{el}.

Signal Name	Ball #
HDSTBN2#	M26
HDSTBN3#	B37
HDSTBP0#	K41
HDSTBP1#	F35
HDSTBP2#	J27
HDSTBP3#	E34
HDVREF	D27
HHIT#	U41
HHITM#	W41
HLOCK#	U40
HPCREQ#	F38
HRCOMP	A28
HREQ0#	E41
HREQ1#	D41
HREQ2#	K36
HREQ3#	G37
HREQ4#	E42
HRS0#	T40
HRS1#	Y43
HRS2#	T43
HSCOMP	C27
HSWING	B27
HTRDY#	W40
ICH_SYNC#	N23
NC	BC43
NC	BC42
NC	BC2
NC	BC1
NC	BB43
NC	BB3
NC	BB2
NC	BB1
NC	BA2
NC	P29
NC	C42

Signal Name	Ball #
NC	C2
NC	B43
NC	B42
NC	B41
NC	B3
NC	B2
NC	A42
PWROK	AD1
RSTIN#	AE3
RSV	V31
RSV	AJ27
RSV	AJ26
RSV	AJ24
RSV	AJ23
RSV	AJ21
RSV	AG27
RSV	AG26
RSV	AG25
RSV	AG24
RSV	AG23
RSV	AG22
RSV	AG21
PM_BMBUSY#	D19
RSV	A43
RSV	P27
RSV	R27
RSV_TP0	AK15
RSV_TP1	AL15
RSV_TP2	AK17
RSV_TP3	AL17
RSV_TP4	L21
PRIPRSNT#	C19
RSV_TP6	N21
DPEN#	F20
SBS_A0	BC33

Signal Name	Ball #
SBS_A1	BA32
SBS_A2	BB25
SBS_B0	BA23
SBS_B1	AY23
SBS_B2	BB17
SCAS_A#	AY37
SCAS_B#	AW42
SCB_A0	AP18
SCB_A1	AR18
SCB_A2	AR21
SCB_A3	AP21
SCB_A4	AM18
SCB_A5	AM20
SCB_A6	AT20
SCB_A7	AV20
SCB_B0	AM24
SCB_B1	AM23
SCB_B2	AV24
SCB_B3	AM26
SCB_B4	AM21
SCB_B5	AN23
SCB_B6	AP24
SCB_B7	AT24
SCKE_A0	AY25
SCKE_A1	BC24
SCKE_A2	BA25
SCKE_A3	AY24
SCKE_B0	AY16
SCKE_B1	BA17
SCKE_B2	AY17
SCKE_B3	BA14
SCLK_A0	AY32
SCLK_A0#	AW32
SCLK_A1	BA5
SCLK_A1#	AY6

int_{el},

Signal Name	Ball #
SCLK_A2	AK42
SCLK_A2#	AK41
SCLK_A3	BB31
SCLK_A3#	BA31
SCLK_A4	AY7
SCLK_A4#	BC6
SCLK_A5	AH43
SCLK_A5#	AH40
SCLK_B0	AM29
SCLK_B0#	AM27
SCLK_B1	AJ9
SCLK_B1#	AJ11
SCLK_B2	AL38
SCLK_B2#	AL36
SCLK_B3	AP26
SCLK_B3#	AR26
SCLK_B4	AJ7
SCLK_B4#	AJ6
SCLK_B5	AJ38
SCLK_B5#	AJ36
SCS_A0#	BB35
SCS_A1#	BC38
SCS_A2#	BA34
SCS_A3#	BA39
SCS_B0#	BA40
SCS_B1#	AU40
SCS_B2#	AW40
SCS_B3#	AU41
SDM_A0	AU5
SDM_A1	AY5
SDM_A2	AY11
SDM_A3	AV13
SDM_A4	AT34
SDM_A5	AP42
SDM_A6	AG40

	Bell
Signal Name	Ball #
SDM_A7	AC40
SDM_B0	AM5
SDM_B1	AG9
SDM_B2	AP8
SDM_B3	AV9
SDM_B4	AR29
SDM_B5	AR38
SDM_B6	AJ39
SDM_B7	AD37
SDQ_A0	AR2
SDQ_A1	AU4
SDQ_A2	AW4
SDQ_A3	AW3
SDQ_A4	AP2
SDQ_A5	AR3
SDQ_A6	AV4
SDQ_A7	AV1
SDQ_A8	AY2
SDQ_A9	BA3
SDQ_A10	BA9
SDQ_A11	BB9
SDQ_A12	AW2
SDQ_A13	AY3
SDQ_A14	BA7
SDQ_A15	BB7
SDQ_A16	BB10
SDQ_A17	BA10
SDQ_A18	BB13
SDQ_A19	BA13
SDQ_A20	AW10
SDQ_A21	AY10
SDQ_A22	AY12
SDQ_A23	BB12
SDQ_A24	AM13
SDQ_A25	AT13

	1
Signal Name	Ball #
SDQ_A26	AP17
SDQ_A27	AR17
SDQ_A28	AM15
SDQ_A29	AP13
SDQ_A30	AV15
SDQ_A31	AM17
SDQ_A32	AP32
SDQ_A33	AV34
SDQ_A34	AU37
SDQ_A35	AU39
SDQ_A36	AV32
SDQ_A37	AT32
SDQ_A38	AR34
SDQ_A39	AV38
SDQ_A40	AP39
SDQ_A41	AP40
SDQ_A42	AM41
SDQ_A43	AM42
SDQ_A44	AR41
SDQ_A45	AR42
SDQ_A46	AN43
SDQ_A47	AM40
SDQ_A48	AL39
SDQ_A49	AK40
SDQ_A50	AF39
SDQ_A51	AE40
SDQ_A52	AL41
SDQ_A53	AL42
SDQ_A54	AF41
SDQ_A55	AF42
SDQ_A56	AD40
SDQ_A57	AD43
SDQ_A58	AA39
SDQ_A59	AA40
SDQ_A60	AE42
int_{el}.

Signal Name	Ball #
SDQ_A61	AE41
SDQ_A62	AB41
SDQ_A63	AB42
SDQ_B0	AK2
SDQ_B1	AL3
SDQ_B2	AN1
SDQ_B3	AP3
SDQ_B4	AK3
SDQ_B5	AL2
SDQ_B6	AM4
SDQ_B7	AP4
SDQ_B8	AF9
SDQ_B9	AG11
SDQ_B10	AL10
SDQ_B11	AL12
SDQ_B12	AF11
SDQ_B13	AJ12
SDQ_B14	AL9
SDQ_B15	AL7
SDQ_B16	AM10
SDQ_B17	AP6
SDQ_B18	AW7
SDQ_B19	AU7
SDQ_B20	AM6
SDQ_B21	AM8
SDQ_B22	AP9
SDQ_B23	AV6
SDQ_B24	AT10
SDQ_B25	AU10
SDQ_B26	AN12
SDQ_B27	AR13
SDQ_B28	AR9
SDQ_B29	AV7
SDQ_B30	AV12
SDQ_B31	AM11

Signal Name	Ball #
SDQ_B32	AR27
SDQ_B33	AN29
SDQ_B34	AR31
SDQ_B35	AM31
SDQ_B36	AP27
SDQ_B37	AU27
SDQ_B38	AP31
SDQ_B39	AU31
SDQ_B40	AP36
SDQ_B41	AP37
SDQ_B42	AM33
SDQ_B43	AJ31
SDQ_B44	AR35
SDQ_B45	AU38
SDQ_B46	AM38
SDQ_B47	AN32
SDQ_B48	AJ32
SDQ_B49	AJ34
SDQ_B50	AF32
SDQ_B51	AF34
SDQ_B52	AL32
SDQ_B53	AL34
SDQ_B54	AG35
SDQ_B55	AD32
SDQ_B56	AC32
SDQ_B57	AD34
SDQ_B58	Y32
SDQ_B59	AA32
SDQ_B60	AF35
SDQ_B61	AF37
SDQ_B62	AC34
SDQ_B63	AC35
SDQS_A0	AU3
SDQS_A0#	AU2
SDQS_A1	BB5

Signal NameBail #SDQS_A1#BB4SDQS_A2BA12SDQS_A2#BC11SDQS_A3#AT15SDQS_A3#AP15SDQS_A3#AV35SDQS_A4#AW35SDQS_A5AN40SDQS_A5AP41SDQS_A6#AG42SDQS_A6#AG41SDQS_A6#AC42SDQS_A7#AC42SDQS_A8AU18SDQS_A8AV18SDQS_B0#AM2SDQS_B1#AG6SDQS_B2#AR6SDQS_B3#AR10SDQS_B3#AR12SDQS_B3#AR12SDQS_B4#AV29SDQS_B5AP35SDQS_B6#AG34SDQS_B6#AG34		
- BA12 SDQS_A2 BA12 SDQS_A2# BC11 SDQS_A3 AT15 SDQS_A3# AP15 SDQS_A3# AU35 SDQS_A4 AU35 SDQS_A5 AN40 SDQS_A5 AN40 SDQS_A5 AP41 SDQS_A6 AG42 SDQS_A6 AG41 SDQS_A7 AC42 SDQS_A7 AC42 SDQS_A7 AC41 SDQS_A8 AU18 SDQS_A8 AV18 SDQS_B0 AM2 SDQS_B0 AM3 SDQS_B1 AG6 SDQS_B2 AR6 SDQS_B3 AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5 AM35	Signal Name	
B B SDQS_A2# BC11 SDQS_A3 AT15 SDQS_A3# AP15 SDQS_A4 AU35 SDQS_A4# AW35 SDQS_A5 AN40 SDQS_A5 AN40 SDQS_A5 AP41 SDQS_A6 AG42 SDQS_A6 AG41 SDQS_A7 AC42 SDQS_A7 AC41 SDQS_A8 AU18 SDQS_A8 AU18 SDQS_B0 AM2 SDQS_B0 AM2 SDQS_B1# AG6 SDQS_B2# AR6 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35	SDQS_A1#	BB4
- AT15 SDQS_A3 AT15 SDQS_A3# AP15 SDQS_A4 AU35 SDQS_A4# AW35 SDQS_A5 AN40 SDQS_A5 AP41 SDQS_A6 AG42 SDQS_A6# AG41 SDQS_A7 AC42 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_A8 AV18 SDQS_B0 AM2 SDQS_B0 AM3 SDQS_B1 AG6 SDQS_B2# AR6 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35	SDQS_A2	BA12
- AP15 SDQS_A3# AU35 SDQS_A4 AW35 SDQS_A5 AN40 SDQS_A5 AN40 SDQS_A5 AP41 SDQS_A6 AG42 SDQS_A6# AG41 SDQS_A6# AC42 SDQS_A7# AC42 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_B0 AM2 SDQS_B0 AM3 SDQS_B1 AG6 SDQS_B2 AR6 SDQS_B2 AR6 SDQS_B3# AR12 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35	SDQS_A2#	BC11
- AU35 SDQS_A4 AW35 SDQS_A5 AN40 SDQS_A5 AP41 SDQS_A6 AG42 SDQS_A6# AG41 SDQS_A6# AG41 SDQS_A7 AC42 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_A8 AV18 SDQS_B0 AM2 SDQS_B0# AM3 SDQS_B1# AG6 SDQS_B2# AR6 SDQS_B2# AR6 SDQS_B3# AR10 SDQS_B3# AV29 SDQS_B4# AV29 SDQS_B5# AP35 SDQS_B5# AM35	SDQS_A3	AT15
- AW35 SDQS_A4# AW35 SDQS_A5 AN40 SDQS_A5# AP41 SDQS_A6 AG42 SDQS_A6# AG41 SDQS_A6# AG41 SDQS_A7 AC42 SDQS_A7# AC41 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_B0 AM2 SDQS_B0# AM3 SDQS_B1# AG6 SDQS_B1# AG8 SDQS_B2# AR6 SDQS_B2# AR6 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35	SDQS_A3#	AP15
- AN40 SDQS_A5 AN40 SDQS_A5# AP41 SDQS_A6 AG42 SDQS_A6# AG41 SDQS_A7 AC42 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_A8 AV18 SDQS_B0 AM2 SDQS_B0# AG6 SDQS_B1# AG6 SDQS_B2 AR6 SDQS_B2# AR6 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35	SDQS_A4	AU35
SDQS_A5# AP41 SDQS_A6 AG42 SDQS_A6# AG41 SDQS_A7 AC42 SDQS_A7# AC41 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_A8 AV18 SDQS_B0 AM2 SDQS_B0# AG6 SDQS_B1# AG6 SDQS_B2# AR6 SDQS_B2# AR6 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B6 AM35	SDQS_A4#	AW35
- AG42 SDQS_A6# AG41 SDQS_A6# AG41 SDQS_A7 AC42 SDQS_A7# AC41 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_A8# AV18 SDQS_B0 AM2 SDQS_B0# AM3 SDQS_B1# AG6 SDQS_B1# AG8 SDQS_B2# AR6 SDQS_B2# AR6 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35	SDQS_A5	AN40
SDQS_A6# AG41 SDQS_A7 AC42 SDQS_A7# AC41 SDQS_A8 AU18 SDQS_A8 AV18 SDQS_B0 AM2 SDQS_B0# AM3 SDQS_B1 AG6 SDQS_B2# AR6 SDQS_B2# AR7 SDQS_B3# AR12 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B6 AM35	SDQS_A5#	AP41
- AC42 SDQS_A7 AC41 SDQS_A8 AU18 SDQS_A8 AV18 SDQS_B0 AM2 SDQS_B0# AM3 SDQS_B1 AG6 SDQS_B1# AG8 SDQS_B2 AR6 SDQS_B2# AR10 SDQS_B3# AR12 SDQS_B3# AV19 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B6 AM35	SDQS_A6	AG42
SDQS_A7#AC41SDQS_A8AU18SDQS_A8#AV18SDQS_B0AM2SDQS_B0#AM3SDQS_B1AG6SDQS_B1#AG8SDQS_B2#AR6SDQS_B3#AR10SDQS_B3#AR12SDQS_B4#AV29SDQS_B5AP35SDQS_B6AG34	SDQS_A6#	AG41
SDQS_A8 AU18 SDQS_A8# AV18 SDQS_B0 AM2 SDQS_B0# AM3 SDQS_B0# AG6 SDQS_B1# AG6 SDQS_B2# AR6 SDQS_B2# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B6 AG34	SDQS_A7	AC42
SDQS_A8# AV18 SDQS_B0 AM2 SDQS_B0# AM3 SDQS_B1 AG6 SDQS_B1# AG8 SDQS_B2 AR6 SDQS_B2# AR7 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B6 AG34	SDQS_A7#	AC41
- AM2 SDQS_B0 AM3 SDQS_B1 AG6 SDQS_B1# AG8 SDQS_B2# AR6 SDQS_B2# AR7 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4 AV29 SDQS_B5 AP35 SDQS_B6 AG34	SDQS_A8	AU18
SDQS_B0# AM3 SDQS_B1 AG6 SDQS_B1# AG8 SDQS_B2 AR6 SDQS_B2# AR7 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B6 AM35	SDQS_A8#	AV18
SDQS_B1 AG6 SDQS_B1# AG8 SDQS_B2# AR6 SDQS_B2# AR7 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4 AV29 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B0	AM2
SDQS_B1# AG8 SDQS_B2 AR6 SDQS_B2# AR7 SDQS_B3 AR10 SDQS_B3# AR12 SDQS_B3# AR12 SDQS_B4 AV29 SDQS_B5 AP35 SDQS_B6 AG34	SDQS_B0#	AM3
SDQS_B2 AR6 SDQS_B2# AR7 SDQS_B3# AR10 SDQS_B3# AR12 SDQS_B4 AT29 SDQS_B5 AP35 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B1	AG6
SDQS_B2# AR7 SDQS_B3 AR10 SDQS_B3# AR12 SDQS_B4 AT29 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B1#	AG8
SDQS_B3 AR10 SDQS_B3# AR12 SDQS_B4# AT29 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B2	AR6
SDQS_B3# AR12 SDQS_B4 AT29 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B2#	AR7
SDQS_B4 AT29 SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B3	AR10
SDQS_B4# AV29 SDQS_B5 AP35 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B3#	AR12
SDQS_B5 AP35 SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B4	AT29
SDQS_B5# AM35 SDQS_B6 AG34	SDQS_B4#	AV29
SDQS_B6 AG34	SDQS_B5	AP35
	SDQS_B5#	AM35
SDQS_B6# AG32	SDQS_B6	AG34
	SDQS_B6#	AG32
SDQS_B7 AD36	SDQS_B7	AD36
SDQS_B7# AD39	SDQS_B7#	AD39
SDQS_B8 AR23	SDQS_B8	AR23
SDQS_B8# AP23	SDQS_B8#	AP23
SMA_A00 BB32	SMA_A00	BB32
SMA_A1 BA30	SMA_A1	BA30

Signal Name	Ball #
SMA_A2	BB30
SMA_A3	AY30
SMA_A4	BC28
SMA_A5	BA27
SMA_A6	AY28
SMA_A7	AY27
SMA_A8	BB27
SMA_A9	AW27
SMA_A10	AY33
SMA_A11	BB26
SMA_A12	BA26
SMA_A13	AW37
SMA_B0	AW23
SMA_B1	BA22
SMA_B2	BB22
SMA_B3	BB21
SMA_B4	BA21
SMA_B5	AY21
SMA_B6	BC20
SMA_B7	BA19
SMA_B8	AY20
SMA_B9	AY19
SMA_B10	BB23
SMA_B11	BB18
SMA_B12	BA18
SMA_B13	AV40
SMVREF0	AH1
SMVREF1	AG3
SOCOMP0	AF3
SOCOMP1	AE2
SODT_A0	BA37
SODT_A1	AY38
SODT_A2	BB37
SODT_A3	AY39
SODT_B0	AY42

[
Signal Name	Ball #
SODT_B1	AV43
SODT_B2	AW41
SODT_B3	AU42
SRAS_A#	AY34
SRAS_B#	BB40
SRCOMP0	AF1
SRCOMP1	AG2
SWE_A#	BA35
SWE_B#	BA41
VCC	AJ29
VCC	AJ20
VCC	AG20
VCC	AG19
VCC	AF29
VCC	AF27
VCC	AF26
VCC	AF24
VCC	AF22
VCC	AF20
VCC	AF18
VCC	AF17
VCC	AF15
VCC	AE27
VCC	AE26
VCC	AE25
VCC	AE23
VCC	AE21
VCC	AE19
VCC	AE17
VCC	AD29
VCC	AD27
VCC	AD26
VCC	AD24
VCC	AD22
VCC	AD20

Signal Name	Ball #
VCC	AD18
VCC	AD17
VCC	AD15
VCC	AC29
VCC	AC27
VCC	AC26
VCC	AC25
VCC	AC19
VCC	AC17
VCC	AC15
VCC	AB27
VCC	AB26
VCC	AB24
VCC	AB20
VCC	AB18
VCC	AB17
VCC	AA29
VCC	AA27
VCC	AA26
VCC	AA25
VCC	AA19
VCC	AA17
VCC	AA15
VCC	Y27
VCC	Y26
VCC	Y24
VCC	Y22
VCC	Y20
VCC	Y19
VCC	Y18
VCC	Y17
VCC	Y15
VCC	W27
VCC	W25
VCC	W23

Signal Name	Ball #
VCC	W21
VCC	W19
VCC	W18
VCC	W17
VCC	V29
VCC	V27
VCC	V26
VCC	V24
VCC	V23
VCC	V22
VCC	V21
VCC	V20
VCC	V19
VCC	V18
VCC	V17
VCC	V15
VCC	U27
VCC	U26
VCC	U25
VCC	U24
VCC	U23
VCC	U22
VCC	U21
VCC	U20
VCC	U19
VCC	U18
VCC	U17
VCC	U15
VCC	R26
VCC	R24
VCC	R23
VCC	R21
VCC	R20
VCC	R18
VCC	R17

Signal Name	Ball #
VCC	AK27
VCC	AK26
VCC	AK24
VCC	AK23
VCC	AK21
VCC	AK20
VCC	AG30
VCC	AF30
VCC	AC30
VCC	AC23
VCC	AC21
VCC	AB22
VCC	AA23
VCC	AA21
VCC	Y30
VCC	U30
VCC	P18
VCC	P17
VCC	N18
VCC	N17
VCC	M18
VCC	L18
VCC	L17
VCC	K18
VCC	K17
VCC	J18
VCC	J17
VCC	H18
VCC	H17
VCC	G18
VCC	G17
VCC	F18
VCC	F17
VCC	E18
VCC_EXP	R15

Signal Name	Ball #
VCC_EXP	AA14
VCC_EXP	AA13
VCC_EXP	AA12
VCC_EXP	Y14
VCC_EXP	Y13
VCC_EXP	Y12
VCC_EXP	Y10
VCC_EXP	Y9
VCC_EXP	Y7
VCC_EXP	Y6
VCC_EXP	V14
VCC_EXP	V13
VCC_EXP	V12
VCC_EXP	U14
VCC_EXP	U13
VCC_EXP	U12
VCC_EXP	U10
VCC_EXP	U9
VCC_EXP	U7
VCC_EXP	U6
VCC_EXP	R14
VCC_EXP	R13
VCC_EXP	P15
VCC_EXP	P14
VCC_EXP	N15
VCC_EXP	N13
VCC_EXP	N12
VCC_EXP	N11
VCC_EXP	N10
VCC_EXP	N9
VCC_EXP	N8
VCC_EXP	N7
VCC_EXP	N6
VCC_EXP	M15
VCC_EXP	M13

Signal Name	Ball #
VCC_EXP	L15
VCC EXP	L13
VCC_EXP	K15
VCC EXP	J15
VCC EXP	H15
VCC EXP	G15
 VCC_EXP	F15
VCC_EXP	F13
VCC_EXP	E17
VCC_EXP	E15
VCC_EXP	E13
VCC_EXP	D17
VCC_EXP	D16
VCC_EXP	C18
VCC_EXP	C17
VCC_EXP	B18
VCC_EXP	B17
VCC_EXP	A18
VCC_EXP	A16
VCC2	B19
VCCA_3GBG	A20
VCCA_EXPPLL	B20
VCCA_HPLL	A22
VCCA_SMPLL	C21
VCCSM	BC40
VCCSM	AY43
VCCSM	BC35
VCCSM	BC31
VCCSM	BC26
VCCSM	BC22
VCCSM	BC18
VCCSM	BC16
VCCSM	BC13
VCCSM	BB42
VCCSM	BB38

Signal Name	Ball #
VCCSM	BB33
VCCSM	BB28
VCCSM	BB24
VCCSM	BB20
VCCSM	BB16
VCCSM	AY41
VCCSM	AY14
VCCSM	AW34
VCCSM	AW31
VCCSM	AW29
VCCSM	AW26
VCCSM	AW24
VCCSM	AW20
VCCSM	AW18
VCCSM	AW17
VCCSM	AW15
VCCSM	AV42
VCCSM	AV31
VCCSM	AV23
VSS	BC4
VSS	AY1
VSS	AJ18
VSS	AJ17
VSS	AJ15
VSS	AG29
VSS	AG18
VSS	AG17
VSS	AG15
VSS	AF25
VSS	AF23
VSS	AF21
VSS	AF19
VSS	AE24
VSS	AE22
VSS	AE20

Signal Name	Ball #
VSS	AE18
VSS	AD25
VSS	AD23
VSS	AD21
VSS	AD19
VSS	AC24
VSS	AC20
VSS	AC18
VSS	AB25
VSS	AB19
VSS	AA24
VSS	AA20
VSS	AA18
VSS	Y29
VSS	Y25
VSS	Y23
VSS	Y21
VSS	W26
VSS	W24
VSS	W22
VSS	W20
VSS	V25
VSS	U29
VSS	R29
VSS	D43
VSS	D1
VSS	A40
VSS	A4
VSS	BC9
VSS	BB41
VSS	BB39
VSS	BB34
VSS	BB19
VSS	BB14
VSS	BB11

int_{el},

Signal Name	Ball #
VSS	BB6
VSS	BA42
VSS	BA4
VSS	AW21
VSS	AW13
VSS	AW12
VSS	AW9
VSS	AV37
VSS	AV35
VSS	AV27
VSS	AV26
VSS	AV21
VSS	AV17
VSS	AV10
VSS	AV2
VSS	AU34
VSS	AU32
VSS	AU29
VSS	AU26
VSS	AU24
VSS	AU23
VSS	AU21
VSS	AU20
VSS	AU17
VSS	AU15
VSS	AU13
VSS	AU12
VSS	AU9
VSS	AU6
VSS	AT31
VSS	AT27
VSS	AT26
VSS	AT23
VSS	AT21
VSS	AT18

Signal Name	Ball #	
VSS	AT17	
VSS	AT12	
VSS	AR43	
VSS	AR39	
VSS	AR37	
VSS	AR32	
VSS	AR24	
VSS	AR20	
VSS	AR15	
VSS	AR5	
VSS	AR1	
VSS	AP38	
VSS	AP34	
VSS	AP29	
VSS	AP20	
VSS	AP12	
VSS	AP10	
VSS	AP7	
VSS	AP5	
VSS	AN42	
VSS	AN31	
VSS	AN27	
VSS	AN26	
VSS	AN24	
VSS	AN21	
VSS	AN20	
VSS	AN18	
VSS	AN17	
VSS	AN15	
VSS	AN13	
VSS	AN4	
VSS	AN2	
VSS	AM39	
VSS	AM37	
VSS	AM36	

	D -11
Signal Name	Ball #
VSS	AM34
VSS	AM9
VSS	AM7
VSS	AL43
VSS	AL37
VSS	AL35
VSS	AL33
VSS	AL31
VSS	AL29
VSS	AL27
VSS	AL26
VSS	AL24
VSS	AL23
VSS	AL21
VSS	AL20
VSS	AL18
VSS	AL13
VSS	AL11
VSS	AL8
VSS	AL6
VSS	AL5
VSS	AL1
VSS	AK30
VSS	AK29
VSS	AK18
VSS	AK14
VSS	AK4
VSS	AJ37
VSS	AJ35
VSS	AJ33
VSS	AJ30
VSS	AJ14
VSS	AJ13
VSS	AJ10
VSS	AJ8

	1
Signal Name	Ball #
VSS	AJ5
VSS	AH42
VSS	AH4
VSS	AH2
VSS	AG39
VSS	AG38
VSS	AG37
VSS	AG36
VSS	AG33
VSS	AG31
VSS	AG14
VSS	AG13
VSS	AG12
VSS	AG10
VSS	AG7
VSS	AG5
VSS	AG4
VSS	AF43
VSS	AF38
VSS	AF36
VSS	AF33
VSS	AF31
VSS	AF14
VSS	AF13
VSS	AF12
VSS	AF10
VSS	AF8
VSS	AF7
VSS	AF6
VSS	AF5
VSS	AF2
VSS	AE4
VSS	AD42
VSS	AD38
VSS	AD35

Signal Name	Ball #
VSS	AD33
VSS	AD31
VSS	AD30
VSS	AD14
VSS	AD13
VSS	AD12
VSS	AD11
VSS	AD10
VSS	AD9
VSS	AD8
VSS	AD7
VSS	AD6
VSS	AD5
VSS	AD4
VSS	AD2
VSS	AC39
VSS	AC38
VSS	AC37
VSS	AC36
VSS	AC33
VSS	AC31
VSS	AC22
VSS	AC14
VSS	AC13
VSS	AC10
VSS	AC7
VSS	AC6
VSS	AC5
VSS	AC3
VSS	AC2
VSS	AB43
VSS	AB23
VSS	AB21
VSS	AB2
VSS	AA36

Signal Name	Ball #
VSS	AA33
VSS	AA31
VSS	AA30
VSS	AA22
VSS	AA11
VSS	AA8
VSS	AA5
VSS	AA3
VSS	Y42
VSS	Y39
VSS	Y37
VSS	Y35
VSS	Y33
VSS	Y31
VSS	Y11
VSS	Y8
VSS	Y5
VSS	Y2
VSS	W3
VSS	V43
VSS	V39
VSS	V38
VSS	V37
VSS	V36
VSS	V34
VSS	V30
VSS	V11
VSS	V8
VSS	V5
VSS	V1
VSS	U38
VSS	U36
VSS	U33
VSS	U31
VSS	U11

int_{el},

Signal Name	Ball #
VSS	U8
VSS	U5
VSS	U3
VSS	T42
VSS	T2
VSS	R39
VSS	R37
VSS	R34
VSS	R31
VSS	R30
VSS	R12
VSS	R9
VSS	R6
VSS	R5
VSS	P30
VSS	P26
VSS	P24
VSS	P23
VSS	P21
VSS	P20
VSS	P3
VSS	N43
VSS	N39
VSS	N36
VSS	N33
VSS	N31
VSS	N29
VSS	N27
VSS	N26
VSS	N24
VSS	N20
VSS	N5
VSS	N1
VSS	M37
VSS	M35

Signal Name	Ball #
VSS	M21
VSS	M11
VSS	M10
VSS	M9
VSS	M8
VSS	M5
VSS	М3
VSS	L42
VSS	L31
VSS	L29
VSS	L26
VSS	L24
VSS	L12
VSS	L2
VSS	K39
VSS	K37
VSS	K34
VSS	K32
VSS	K27
VSS	K20
VSS	K13
VSS	K12
VSS	K10
VSS	K7
VSS	K6
VSS	K5
VSS	К3
VSS	J43
VSS	J38
VSS	J29
VSS	J24
VSS	J21
VSS	J12
VSS	J10
VSS	J7

Signal Name # VSS J5 VSS J2 VSS H32 VSS H27 VSS H26 VSS H26 VSS G38 VSS G38 VSS G35 VSS G32 VSS G31 VSS G27 VSS G21 VSS G21 VSS G21 VSS G21 VSS G10 VSS G13 VSS G3 VSS F26 VSS F21 VSS E35 VSS E32 VSS	Cirruel News	Ball
VSS J2 VSS H32 VSS H27 VSS H26 VSS H12 VSS G38 VSS G35 VSS G31 VSS G21 VSS G21 VSS G21 VSS G21 VSS G21 VSS G21 VSS G13 VSS G10 VSS G10 VSS G3 VSS F26 VSS F26 VSS F21 VSS E35 VSS E20 VSS E12 VSS E35 VSS E35 VSS E32 <th>Signal Name</th> <th>#</th>	Signal Name	#
VSSH32VSSH27VSSH26VSSG38VSSG38VSSG35VSSG31VSSG31VSSG29VSSG21VSSG21VSSG20VSSG10VSSG10VSSG3VSSG3VSSG10VSSG3VSSG10VSSG3VSSG5VSSG3VSSF34VSSF26VSSF26VSSF21VSSE32VSSE12 <td>VSS</td> <td>J5</td>	VSS	J5
VSS H27 VSS H26 VSS G38 VSS G38 VSS G35 VSS G32 VSS G31 VSS G29 VSS G21 VSS G21 VSS G21 VSS G21 VSS G21 VSS G13 VSS G10 VSS G10 VSS G3 VSS F42 VSS F26 VSS F26 VSS F21 VSS E35 VSS E20 VSS E12 VSS <td< td=""><td>VSS</td><td>J2</td></td<>	VSS	J2
VSS H26 VSS H12 VSS G38 VSS G35 VSS G32 VSS G31 VSS G29 VSS G21 VSS G21 VSS G21 VSS G21 VSS G20 VSS G13 VSS G10 VSS G10 VSS G10 VSS G3 VSS F34 VSS F26 VSS F2 VSS E35 VSS E32 VSS E12 VSS E12 VSS E12 VSS E12 VSS <t< td=""><td>VSS</td><td>H32</td></t<>	VSS	H32
VSS H12 VSS G38 VSS G35 VSS G31 VSS G31 VSS G31 VSS G29 VSS G21 VSS G21 VSS G21 VSS G21 VSS G21 VSS G13 VSS G10 VSS G10 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS E35 VSS E32 VSS E12 VSS E12 VSS	VSS	H27
VSS G38 VSS G35 VSS G32 VSS G31 VSS G29 VSS G27 VSS G24 VSS G21 VSS G21 VSS G21 VSS G21 VSS G13 VSS G10 VSS G10 VSS G10 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS E35 VSS E32 VSS E12 VSS E12 VSS E12 VSS E12 VSS <t< td=""><td>VSS</td><td>H26</td></t<>	VSS	H26
VSS G35 VSS G31 VSS G31 VSS G29 VSS G27 VSS G27 VSS G21 VSS G21 VSS G20 VSS G21 VSS G20 VSS G20 VSS G10 VSS G10 VSS G9 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS F2 VSS E32 VSS E32 VSS E12 VSS E12 VSS E7 VSS E3 VSS E12 <tr td=""> VSS</tr>	VSS	H12
VSS G32 VSS G31 VSS G29 VSS G27 VSS G24 VSS G21 VSS G20 VSS G13 VSS G10 VSS G10 VSS G10 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS E35 VSS E32 VSS E12 VSS E12 VSS E12 VSS E12 VSS E12 VSS E	VSS	G38
VSS G31 VSS G29 VSS G27 VSS G24 VSS G21 VSS G20 VSS G20 VSS G13 VSS G10 VSS G10 VSS G7 VSS G7 VSS G7 VSS G3 VSS G3 VSS G3 VSS F34 VSS F26 VSS F26 VSS F21 VSS E32 VSS E21 VSS E20 VSS E12 VSS E12 VSS E12<	VSS	G35
VSS G29 VSS G27 VSS G24 VSS G21 VSS G20 VSS G20 VSS G13 VSS G10 VSS G10 VSS G7 VSS G3 VSS G3 VSS G3 VSS G3 VSS G3 VSS F34 VSS F26 VSS F26 VSS F21 VSS E32 VSS E21 VSS E20 VSS E12 VSS E9 VSS E7	VSS	G32
VSS G27 VSS G24 VSS G21 VSS G20 VSS G13 VSS G10 VSS G9 VSS G7 VSS G7 VSS G7 VSS G7 VSS G3 VSS F42 VSS F34 VSS F26 VSS F26 VSS F2 VSS E35 VSS E32 VSS E20 VSS E12 VSS E9 VSS E7	VSS	G31
VSS G24 VSS G20 VSS G13 VSS G10 VSS G10 VSS G9 VSS G7 VSS G5 VSS G3 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS F2 VSS E32 VSS E32 VSS E12 VSS E12 VSS E9 VSS E7	VSS	G29
VSS G21 VSS G20 VSS G13 VSS G10 VSS G9 VSS G7 VSS G5 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS E35 VSS E32 VSS E21 VSS E12 VSS E12 VSS E12 VSS E35 VSS E12 VSS E12 VSS E12 VSS E35	VSS	G27
VSS G20 VSS G13 VSS G10 VSS G9 VSS G7 VSS G7 VSS G3 VSS F34 VSS F26 VSS F2 VSS E33 VSS E32 VSS E21 VSS E12 VSS E9 VSS E7	VSS	G24
VSS G13 VSS G10 VSS G9 VSS G7 VSS G5 VSS G5 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS E32 VSS E32 VSS E21 VSS E12 VSS E9 VSS E7	VSS	G21
VSS G10 VSS G9 VSS G7 VSS G5 VSS G3 VSS F42 VSS F34 VSS F26 VSS F2 VSS E32 VSS E32 VSS E12 VSS E12 VSS E9 VSS E4	VSS	G20
VSS G9 VSS G7 VSS G5 VSS G3 VSS F42 VSS F34 VSS F26 VSS F6 VSS E35 VSS E32 VSS E12 VSS E12 VSS E9 VSS E4	VSS	G13
VSS G7 VSS G5 VSS G3 VSS F42 VSS F34 VSS F26 VSS F6 VSS F2 VSS E35 VSS E32 VSS E12 VSS E12 VSS E9 VSS E4	VSS	G10
VSS G5 VSS G3 VSS F42 VSS F34 VSS F26 VSS F26 VSS F2 VSS E32 VSS E32 VSS E20 VSS E12 VSS E9 VSS E4	VSS	G9
VSS G3 VSS F42 VSS F34 VSS F26 VSS F6 VSS F2 VSS E35 VSS E32 VSS E21 VSS E12 VSS E12 VSS E9 VSS E4	VSS	G7
VSS F42 VSS F34 VSS F26 VSS F26 VSS F2 VSS E35 VSS E32 VSS E21 VSS E12 VSS E12 VSS E9 VSS E4	VSS	G5
VSS F34 VSS F26 VSS F6 VSS F2 VSS E35 VSS E32 VSS E21 VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	G3
VSS F26 VSS F6 VSS E35 VSS E32 VSS E21 VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	F42
VSS F6 VSS F2 VSS E35 VSS E32 VSS E21 VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	F34
VSS F2 VSS E35 VSS E32 VSS E21 VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	F26
VSS E35 VSS E32 VSS E21 VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	F6
VSS E32 VSS E21 VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	F2
VSS E21 VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	E35
VSS E20 VSS E12 VSS E9 VSS E7 VSS E4	VSS	E32
VSS E12 VSS E9 VSS E7 VSS E4	VSS	E21
VSS E9 VSS E7 VSS E4	VSS	E20
VSS E7 VSS E4	VSS	E12
VSS E4	VSS	E9
	VSS	E7
VSS E3	VSS	E4
	VSS	E3

	1
Signal Name	Ball #
VSS	D21
VSS	D20
VSS	D10
VSS	D5
VSS	D2
VSS	C40
VSS	C22
VSS	C14
VSS	C12
VSS	C7
VSS	C5
VSS	C3
VSS	B38
VSS	B33
VSS	B28
VSS	B23
VSS	B22
VSS	B21
VSS	B11
VSS	В9
VSS	B6
VSS	B4
VSS	A35
VSS	A31
VSS	A13
VCC	M17
VTT	M23
VTT	L23
VTT	K23
VTT	J23
VTT	H23
VTT	G23
VTT	F27
VTT	F23
VTT	E27

Signal Name	Ball #
VTT	E26
VTT	E24
VTT	E23
VTT	D25
VTT	D24
VTT	D23
VTT	C26
VTT	C25
VTT	C23
VTT	B26
VTT	B25
VTT	B24
VTT	A26
VTT	A24
XORTEST	H20

11.2 Package

The MCH package measures 34 mm \times 34 mm; it is a 34 mm squared, 6-layer flip chip ball grid array (FC-BGA) package. The 1202 balls are located in a non-grid pattern. Figure 11-4 through Figure 11-6 show the physical dimensions of the package. For further information on the package, see the *Intel*[®] 975X Express Chipset Thermal/Mechanical Design Guidelines.

Figure 11-5. MCH Package Dimensions (Side View)

Figure 11-6. MCH Package Dimensions (Bottom View)

§

12 Testability

In the MCH, testability for Automated Test Equipment (ATE) board level testing has been implemented as an XOR chain. An XOR-tree is a chain of XOR gates each with one input pin connected to it.

12.1 Complimentary Pins

Table 12-1 contains pins that must remain complimentary while performing XOR testing. The first and third columns contain the pin and its compliment. The second and fourth columns specify which chain the associated pins are on. Also, in non ECC systems, SA_DQS8, SA_DQS8#, SB_DQS8 and SB_DQS8# do not need to be driven.

Table 12-1. Complimentary Pins to Drive

Complimentary Pin	XOR Chain	Complimentary Pin	XOR Chain
SDQS_A0	Not in XOR Chain	SDQS_A0#	4
SDQS_A1	Not in XOR Chain	SDQS_A1#	4
SDQS_A2	Not in XOR Chain	SDQS_A2#	4
SDQS A3	Not in XOR Chain	SDQS_A3#	4
SDQS_A4	Not in XOR Chain	SDQS_A4#	4
SDQS_A5	Not in XOR Chain	SDQS_A5#	4
SDQS_A6	Not in XOR Chain	SDQS_A6#	4
SDQS_A7	Not in XOR Chain	SDQS_A7#	4
SDQS_A8	Not in XOR Chain	SDQS_A8#	4
SDQS_B0	Not in XOR Chain	SDQS_B0#	5
SDQS_B1	Not in XOR Chain	SDQS_B1#	5
SDQS_B2	Not in XOR Chain	SDQS_B2#	5
SDQS_B3	Not in XOR Chain	SDQS_B3#	5
SDQS_B4	Not in XOR Chain	SDQS_B4#	5
SDQS_B5	Not in XOR Chain	SDQS_B5#	5
SDQS_B6	Not in XOR Chain	SDQS_B6#	5
SDQS_B7	Not in XOR Chain	SDQS_B7#	5
SDQS_B8	Not in XOR Chain	SDQS_B8#	5

12.2 XOR Test Mode Initialization

XOR test mode can be entered by pulling XORTEST (H20) and PRIPRSNT# (C19) low through the de-assertion of external reset (RSTIN#). It was intended that no clocks should be required to enter this test mode; however, it is recommended that customers use the following sequence.

On power up, hold PWROK, RSTIN#, and XORTEST (H20) low and start external clocks. After a few clock cycles, pull PWROK high. After ~3–4 clocks, de-assert RSTIN# (pull it high). Release XORTEST (H20) and PRIPRSNT# (C19). No external drive. Allow the clocks to run for an additional 32 clocks. Begin testing the XOR chains. Refer to Figure 12-1.

Figure 12-1. XOR Test Mode Initialization Cycles

12.3 XOR Chain Definition

The MCH chipset has 10 XOR chains. The XOR chain outputs are driven out on the following output pins. During full width testing, XOR chain outputs will be visible on both pins.

Table 12-2. XOR Chain Outputs

XOR Chain	Output Pins	Coordinate Location
xor_out0	BSEL2	L20
xor_out1	ALLZTEST	J20
xor_out2	XORTEST	H20
xor_out3	PRIPRSNT#	C19
xor_out4	EXP_SLR	K21
xor_out5	RSV_TP4	L21
xor_out6	DPEN#	F20
xor_out7	RSV_TP6	N21
xor_out8	BSEL1	H21
xor_out9	BSEL0	F21

12.4 XOR Chains

Table 12-3 through Table 12-12 show the XOR chains. Table 12-13 has a pin exclusion list.

Table 12-3. XOR Chain 0		
Pin Count	Ball #	Signal Name
1	N23	ICH_SYNC#
2	M20	EXTTS#
3	J26	HD42#
4	M24	HD41#
5	F24	HD47#
6	G26	HD44#
7	K26	HD43#
8	H24	HD45#
9	M27	HD35#
10	L27	HD40#
11	J27	HDSTBPB2#
12	M26	HDSTBNB2#
13	K24	HD46#
14	C30	HCPURST#
15	H29	HD38#
16	H31	HD32#
17	K31	HD34#
18	F31	HD37#
19	K29	HD36#
20	M33	HD33#
21	E29	HDINV2#
22	F29	HD39#
23	B31	HD58#
24	B32	HDINV3#
25	C39	HD52#
26	A33	HD49#
27	B30	HD62#
28	D32	HD61#
29	C31	HD59#
30	C32	HD60#
31	D33	HD54#
32	C34	HD57#
33	E34	HDSTBPB3#

Table 12-3. XOR Chain 0		
Pin Count	Ball #	Signal Name
34	B37	HDSTBNB3#
35	D30	HD63#
36	D38	HD53#
37	E31	HD48#
38	E40	HD50#
39	D34	HD56#
40	C35	HD55#
41	D37	HD51#
42	B34	HD28#
43	A38	HDINV1#
44	B39	HD21#
45	F32	HD29#
46	H34	HD23#
47	J32	HD25#
48	C37	HD24#
49	E37	HD17#
50	F35	HDSTBPB1#
51	G34	HDSTBNB1#
52	B35	HD26#
53	B40	HD22#
54	J31	HD31#
55	D39	HD19#
56	J34	HD27#
57	C41	HD20#
58	L32	HD30#
59	J35	HD18#
60	F37	HD16#
61	F43	HD15#
62	K41	HDSTBPB0#
63	G41	HD13#
64	L40	HD6#
65	M39	HD1#
66	D41	HREQ1#

int_{el}.

Г

Table 12-3. XOR Chain 0		
Pin Count	Ball #	Signal Name
67	K38	HA4#
68	J42	HA5#
69	K35	HA6#
70	N34	HA12#
71	N37	HA15#
72	P40	HDEFER#
73	U42	HDBSY#
74	Y40	HEDRDY#
75	D42	HBRI#

Table 12-4. XOR Chain 1		
Pin Count	Ball #	Signal Name
1	G42	HD11#
2	K42	HD8#
3	G40	HD12#
4	L43	HDSTBNB0#
5	G39	HD9#
6	M42	HD3#
7	J41	HD10#
8	P41	HD0#
9	P42	HD2#
10	K40	HDINV0#
11	M41	HD7#
12	M40	HD5#
13	N41	HD4#
14	G37	HREQ3#
15	J39	HA3#
16	K36	HREQ2#
17	M36	HADSTB0#
18	E41	HREQ0#
19	J37	HA7#

Table 12-4. XOR Chain 1		
Pin Count	Ball #	Signal Name
20	E42	HREQ4#
21	N42	HA14#
22	M38	HA13#
23	R33	HA10#
24	M34	HA8#
25	N32	HA11#
26	N38	HA16#
27	N35	HA9#
28	F38	HPCREQ#
29	T43	HRS2#
30	T40	HRS0#
31	U41	HHIT#
32	V41	HDRDY#
33	W41	HHITM#
34	W42	HADS#
35	U40	HLOCK#
36	Y43	HRS1#
37	U39	HBNR#
38	W40	HTRDY#
39	R32	HA17#
40	R36	HA18#
41	U35	HA26#
42	R35	HA20#
43	U34	HA23#
44	U37	HA19#
45	R38	HA21#
46	AA41	HBREQ0#
47	Y34	HA31#
48	V35	HADSTB1#
49	V33	HA22#
50	U32	HA24#
51	V32	HA30#
52	AA37	HA29#

Table 12-4. XOR Chain 1		
Pin Count	Ball #	Signal Name
53	Y36	HA27#
54	V42	HA25#
55	Y38	HA28#
56	AA42	HA33# ¹
57	AA38	HA35# ¹
58	AA34	HA34# ¹
59	AA35	HA32# ¹
60	F40	HD14#

NOTES:

1. For Greater than 4 GB Addressing Only.

Table 12-5. XOR Chain 2

Pin Count	Ball #	Signal Name
1	AE42	SDQ_A60
2	AD43	SDQ_A57
3	AB41	SDQ_A62
4	AB42	SDQ_A63
5	AD40	SDQ_A56
6	AE41	SDQ_A61
7	AA39	SDQ_A58
8	AA40	SDQ_A59
9	AC40	SDM_A7
10	AK40	SDQ_A49
11	AL41	SDQ_A52
12	AG40	SDM_A6
13	AL39	SDQ_A48
14	AF39	SDQ_A50
15	AF42	SDQ_A55
16	AF41	SDQ_A54
17	AH43	SCLK_A5
18	AK41	SCLK_A2#
19	AN43	SDQ_A46

Table 12-5. XOR Chain 2

Pin Count	Ball #	Signal Name
20	AM41	SDQ_A42
21	AR41	SDQ_A44
22	AR42	SDQ_A45
23	AP39	SDQ_A40
24	AP42	SDM_A5
25	AM40	SDQ_A47
26	BA39	SCS_A3#
27	AR34	SDQ_A38
28	AP32	SDQ_A32
29	AV34	SDQ_A33
30	AV38	SDQ_A39
31	AV32	SDQ_A36
32	AT32	SDQ_A37
33	AY39	SODT_A3
34	BA34	SCS_A2#
35	BB35	SCS_A0#
36	BC33	SBS_A0
37	AW37	SMA_A13
38	BC28	SMA_A4
39	AP18	SCB_A0
40	AT20	SCB_A6
41	AW32	SCLK_A0#
42	BA26	SMA_A12
43	AY25	SCKE_A0

Table 12-6. XOR Chain 3

Pin Count	Ball #	Signal Name
1	AD37	SDM_B7
2	AF37	SDQ_B61
3	AC35	SDQ_B63
4	Y32	SDQ_B58
5	AD34	SDQ_B57

Table 12-6. XOR Chain 3

Pin Count	Ball #	Signal Name
6	AA32	SDQ_B59
7	AC34	SDQ_B62
8	AJ32	SDQ_B48
9	AG35	SDQ_B54
10	AL34	SDQ_B53
11	AL32	SDQ_B52
12	AJ39	SDM_B6
13	AF34	SDQ_B51
14	AF32	SDQ_B50
15	AJ36	SCLK_B5#
16	AL36	SCLK_B2#
17	AL38	SCLK_B2
18	AN32	SDQ_B47
19	AJ31	SDQ_B43
20	AM33	SDQ_B42
21	AR35	SDQ_B44
22	AR38	SDM_B5
23	AM38	SDQ_B46
24	AP36	SDQ_B40
25	AP37	SDQ_B41
26	BA40	SCS_B0#
27	AW40	SCS_B2#
28	AU41	SCS_B3#
29	AW41	SODT_B2
30	AP27	SDQ_B36
31	AM31	SDQ_B35
32	AN29	SDQ_B33
33	AR27	SDQ_B32
34	AV40	SMA_B13
35	AP24	SCB_B6
36	AM27	SCLK_B0#
37	BA23	SBS_B0
38	BA41	SWE_B#

Table 12-6. XOR Chain 3

Pin Count	Ball #	Signal Name
39	AY19	SMA_B9
40	BB17	SBS_B2
41	BA18	SMA_B12
42	BB18	SMA_B11
43	BB22	SMA_B2
44	BC20	SMA_B6
45	AK17	RSV_TP2

Table 12-7. XOR Chain 4		
Pin Count	Ball #	Signal Name
1	AC41	SDQS_A7#
2	AL42	SDQ_A53
3	AE40	SDQ_A51
4	AG41	SDQS_A6#
5	AH40	SCLK_A5#
6	AK42	SCLK_A2
7	AP40	SDQ_A41
8	AM42	SDQ_A43
9	AP41	SDQS_A5#
10	AT34	SDM_A4
11	AU39	SDQ_A35
12	AU37	SDQ_A34
13	AW35	SDQS_A4#
14	BA37	SODT_A0
15	BC38	SCS_A1#
16	BA32	SBS_A1
17	BA30	SMA_A1
18	BB32	SMA_A0
19	BB31	SCLK_A3
20	AY28	SMA_A6
21	AY30	SMA_A3
22	AV18	SDQS_A8#

Table 12-7. XOR Chain 4		
Pin Count	Ball #	Signal Name
23	AP21	SCB_A3
24	AM20	SCB_A5
25	AM18	SCB_A4
26	BB26	SMA_A11
27	BB30	SMA_A2
28	BB25	SBS_A2
29	AY24	SCKE_A3
30	AK15	RSV_TP0
31	AP15	SDQS_A3#
32	AR17	SDQ_A27
33	AM13	SDQ_A24
34	AM15	SDQ_A28
35	BC11	SDQS_A2#
36	BB12	SDQ_A23
37	AY12	SDQ_A22
38	BA10	SDQ_A17
39	AY11	SDM_A2
40	BC6	SCLK_A4#
41	AY6	SCLK_A1#
42	BB7	SDQ_A15
43	AY3	SDQ_A13
44	BA7	SDQ_A14
45	AY5	SDM_A1
46	BB4	SDQS_A1#
47	AU2	SDQS_A0#
48	AR2	SDQ_A0
49	AV4	SDQ_A6

Table 12-8. XOR Chain 5		
Pin Count Ball Signal Name #		
1	AD39	SDQS_B7#
2	AF35	SDQ_B60

Table 12-8. XOR Chain 5		
Pin Count	Ball #	Signal Name
3	AC32	SDQ_B56
4	AG32	SDQS_B6#
5	AJ34	SDQ_B49
6	AD32	SDQ_B55
7	AJ38	SCLK_B5
8	AM35	SDQS_B5#
9	AU38	SDQ_B45
10	AU40	SCS_B1#
11	AU42	SODT_B3
12	AV29	SDQS_B4#
13	AU27	SDQ_B37
14	AV24	SCB_B2
15	AM23	SCB_B1
16	AM24	SCB_B0
17	AP23	SDQS_B8#
18	AM29	SCLK_B0
19	AP26	SCLK_B3
20	BB40	SRAS_B#
21	AY23	SBS_B1
22	BA21	SMA_B4
23	AW23	SMA_B0
24	BA19	SMA_B7
25	BB21	SMA_B3
26	AL17	RSV_TP3
27	AM11	SDQ_B31
28	AT10	SDQ_B24
29	AU10	SDQ_B25
30	AV7	SDQ_B29
31	AR12	SDQS_B3#
32	BA17	SCKE_B1
33	BA14	SCKE_B3
34	AV6	SDQ_B23
35	AP9	SDQ_B22

Table 12-8. XOR Chain 5		
Pin Count	Ball #	Signal Name
36	AP6	SDQ_B17
37	AM10	SDQ_B16
38	AR7	SDQS_B2#
39	AJ11	SCLK_B1#
40	AJ7	SCLK_B4
41	AL7	SDQ_B15
42	AL9	SDQ_B14
43	AL12	SDQ_B11
44	AG11	SDQ_B9
45	AG8	SDQS_B1#
46	AM3	SDQS_B0#
47	AL2	SDQ_B5
48	AP3	SDQ_B3
49	AM4	SDQ_B6
50	AK3	SDQ_B4

Table 12-9. XOR Chain 6		
Pin Count	Ball #	Signal Name
1	BB37	SODT_A2
2	AY38	SODT_A1
3	AY37	SCAS_A#
4	BA35	SWE_A#
5	AY34	SRAS_A#
6	AY33	SMA_A10
7	BA31	SCLK_A3#
8	AW27	SMA_A9
9	BB27	SMA_A8
10	AR18	SCB_A1
11	AV20	SCB_A7
12	AR21	SCB_A2
13	BA27	SMA_A5
14	AY32	SCLK_A0

Table 12-9. XOR Chain 6		
Pin Count	Ball #	Signal Name
15	AY27	SMA_A7
16	BC24	SCKE_A1
17	BA25	SCKE_A2
18	AL15	RSV_TP1
19	AP17	SDQ_A26
20	AV15	SDQ_A30
21	AV13	SDM_A3
22	AM17	SDQ_A31
23	AT13	SDQ_A25
24	AP13	SDQ_A29
25	BB10	SDQ_A16
26	BB13	SDQ_A18
27	BA13	SDQ_A19
28	AY10	SDQ_A21
29	AW10	SDQ_A20
30	AY7	SCLK_A4
31	BA5	SCLK_A1
32	BA9	SDQ_A10
33	BB9	SDQ_A11
34	BA3	SDQ_A9
35	AY2	SDQ_A8
36	AW2	SDQ_A12
37	AU5	SDM_A0
38	AR3	SDQ_A5
39	AV1	SDQ_A7
40	AW3	SDQ_A3
41	AU4	SDQ_A1
42	AP2	SDQ_A4
43	AW4	SDQ_A2

Table 12-10. XOR Chain 7

Pin Count	Ball #	Signal Name
1	AU31	SDQ_B39
2	AR31	SDQ_B34
3	AR29	SDM_B4
4	AP31	SDQ_B38
5	AY42	SODT_B0
6	AV43	SODT_B1
7	AN23	SCB_B5
8	AM21	SCB_B4
9	AT24	SCB_B7
10	AM26	SCB_B3
11	AR26	SCLK_B3#
12	AW42	SCAS_B#
13	BB23	SMA_B10
14	BA22	SMA_B1
15	AY20	SMA_B8
16	AY21	SMA_B5
17	AR13	SDQ_B27
18	AN12	SDQ_B26
19	AV12	SDQ_B30
20	AV9	SDM_B3
21	AR9	SDQ_B28
22	AY16	SCKE_B0
23	AY17	SCKE_B2
24	AW7	SDQ_B18
25	AU7	SDQ_B19
26	AP8	SDM_B2
27	AM6	SDQ_B20
28	AM8	SDQ_B21
29	AJ9	SCLK_B1
30	AJ6	SCLK_B4#
31	AF9	SDQ_B8
32	AL10	SDQ_B10
33	AG9	SDM_B1

Table 12-10. XOR Chain 7

Pin Count	Ball #	Signal Name
34	AJ12	SDQ_B13
35	AF11	SDQ_B12
36	AM5	SDM_B0
37	AL3	SDQ_B1
38	AN1	SDQ_B2
39	AK2	SDQ_B0
40	AP4	SDQ_B7

Table 12-11. XOR Chain 8		
Pin Count	Ball #	Signal Name
1	F12	EXP_RXN0
2	C13	EXP_TXN0
3	B10	EXP_RXN1
4	B12	EXP_TXN1
5	H13	EXP_RXN2
6	D11	EXP_TXN2
7	F10	EXP_RXN3
8	C9	EXP_TXN3
9	H10	EXP_RXN4
10	B7	EXP_TXN4
11	F9	EXP_RXN5
12	D6	EXP_TXN5
13	D3	EXP_RXN6
14	B5	EXP_TXN6
15	J6	EXP_RXN7
16	G4	EXP_TXN7
17	F1	EXP_RXN8
18	J1	EXP_TXN8
19	K8	EXP_RXN9
20	K4	EXP_TXN9
21	M7	EXP_RXN10
22	M4	EXP_TXN10

int_{el}.

Table 12-11. XOR Chain 8		
Pin Count	Ball #	Signal Name
23	L1	EXP_RXN11
24	N2	EXP_TXN11
25	R10	EXP_RXN12
26	P4	EXP_TXN12
27	R7	EXP_RXN13
28	U4	EXP_TXN13
29	T1	EXP_RXN14
30	V2	EXP_TXN14
31	V10	EXP_RXN15
32	W4	EXP_TXN15
33	G12	EXP_RXP0
34	D14	EXP_TXP0
35	A11	EXP_RXP1
36	B13	EXP_TXP1
37	J13	EXP_RXP2
38	D12	EXP_TXP2
39	E10	EXP_RXP3
40	C10	EXP_TXP3
41	J9	EXP_RXP4
42	A9	EXP_TXP4
43	F7	EXP_RXP5
44	D7	EXP_TXP5
45	C4	EXP_RXP6
46	A6	EXP_TXP6
47	G6	EXP_RXP7
48	F4	EXP_TXP7
49	E2	EXP_RXP8
50	G2	EXP_TXP8
51	K9	EXP_RXP9
52	J3	EXP_TXP9
53	M6	EXP_RXP10
54	L4	EXP_TXP10
55	K2	EXP_RXP11

Table 12-11. XOR Chain 8		
Pin Count	Ball #	Signal Name
56	M2	EXP_TXP11
57	R11	EXP_RXP12
58	N3	EXP_TXP12
59	R8	EXP_RXP13
60	T4	EXP_TXP13
61	P2	EXP_RXP14
62	U2	EXP_TXP14
63	V9	EXP_RXP15
64	V3	EXP_TXP15

Table 12-12. XOR Chain 9				
Pin Count	Ball Signal Name #			
1	V7	DMI_RXN0		
2	V6	DMI_RXP0		
3	Y1	DMI_TXN0		
4	W2	DMI_TXP0		
5	AA10	DMI_RXN1		
6	AA9	DMI_RXP1		
7	AB1	DMI_TXN1		
8	AA2	DMI_TXP1		
9	Y4	DMI_RXN2		
10	AA4	DMI_RXP2		
11	AA6	DMI_TXN2		
12	AA7	DMI_TXP2		
13	AC8	DMI_RXN3		
14	AC9	DMI_RXP3		
15	AC4	DMI_TXN3		
16	AB3	DMI_TXP3		

12.5 PADs Excluded from XOR Mode(s)

Some pads do not support XOR testing. The majority of the pads that fall into this category are analog related pins (see Table 12-13).

Table 12-13. XOR Pad Exclusion List

PCI Express*	FSB	SM	Miscellaneous
GCLKN	HCLKN	SRCOMP1	RSTIN#
GCLKP	HCLKP	SRCOMP0	
EXP_COMPO	HRCOMP	SMVREF1	
EXP_COMPI	HSCOMP	SMVREF0	
	HDVREF	SOCOMP1	
	HSWING	SOCOMP0	

§