

N-Channel Enhancement Mode Field Effect Transistor

General Description

The CMSA8053 uses advanced trench technology to provide excellent RDS (ON), This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Features

- Low On-Resistance
- 100% avalanche tested
- Small Footprint (5x6mm) for Compact Design
- RoHS Compliant

Product Summary

BVDSS	RDSON	ID
60V	15mΩ	30A

Applications

- DC-DC Converter
- Motor Drive
- Powertrain Management

DFN-8 5x6 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	60	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25℃	Continuous Drain Current	30	Α
I _D @T _C =100℃	Continuous Drain Current	21	Α
I _{DM}	Pulsed Drain Current	90	Α
EAS	Single Pulse Avalanche Energy ¹	169	mJ
P _D @T _C =25℃	Total Power Dissipation	35	W
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}$

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance, Junction-to-Ambient		55	°C/W
R _{θJC}	Thermal Resistance Junction -Case		3.57	°C/W

N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60			V
D	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =15A			15	_{m0}
R _{DS(ON)}	Static Drain-Source On-Nesistance	V_{GS} =5V , I_D =6A			22	mΩ
VGS(th)	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250 μ A	2		4	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V, V _{DS} =0V			±100	nA
Q_g	Total Gate Charge	V _{DD} =30V , I _D =20A 		20		nC
Q_{gs}	Gate-Source Charge			4.7		
Q_gd	Gate-Drain Charge			2.6		
$T_{d(on)}$	Turn-On Delay Time			10		
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_L =1.5 Ω		3		ne
$T_{d(off)}$	Turn-Off Delay Time	R _{GEN} =3Ω		26		ns
T _f	Fall Time			2.5		
C _{iss}	Input Capacitance			2150		
C _{oss}	Output Capacitance	V_{DS} =25V , V_{GS} =0V , f=1MHz		250		pF
C _{rss}	Reverse Transfer Capacitance			150		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Diode continuous forward current	V _G =V _D =0V , Force Current			30	Α
I _{S,pulse}	Diode pulse current				90	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _F =15A , Tj=25℃		0.83	1.2	V

Note:

1. The EAS data shows Max. rating . The test condition is V_{DD} =30V, V_{GS} =10V, L=0.5mH , I_{AS} =26A.

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.