

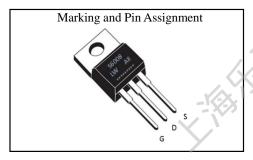
# **General Description:**

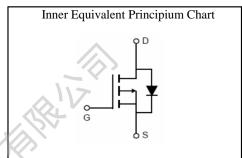
The LWS6008A8 uses advanced SGT technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications. The package form is TO-220AB, which accords with the ROHS standard and Halogen Free standard.

#### **Features:**

- Fast Switching
- Low Gate Charge and R<sub>DS(ON)</sub>
- Low Reverse transfer capacitances

## **Applications:**


- Battery switching application
- Hard switched and high frequency circuits
- Power Management


100% DVDS Tested 100% Avalanche Tested





# $V_{DSS}$ -60 V $I_{D}$ -110 A $P_{D}$ 180 W $R_{DS(ON) TYPE}$ 5.5 mΩ





# Package Marking and Ordering Information:

| Marking          | Part Number | Package  | Packing | Qty.   |
|------------------|-------------|----------|---------|--------|
| S6008/LW A8/D.C. | LWS6008A8   | TO-220AB | Tube    | 50 Pcs |

## **Absolute Maximum Ratings:**

| Symbol                | Parameter                           |                     | Value           | Units                |
|-----------------------|-------------------------------------|---------------------|-----------------|----------------------|
| V <sub>DSS</sub>      | Drain-to-Source Voltage             |                     | -60             | V                    |
| т                     | Continuous Drain Current            | $T_{C}=25^{\circ}C$ | -110            | A                    |
| $I_{D}$               | Continuous Drain Current            | $T_C=100^{\circ}C$  | -70             | A                    |
| ${ m I_{DM}}^{ m a1}$ | Pulsed Drain Current                |                     | -440            | A                    |
| $V_{GS}$              | Gate-to-Source Voltage              |                     | ±20             | V                    |
| $P_{D}$               | Power Dissipation                   |                     | 180             | W                    |
| $E_{AS}^{a2}$         | Single pulse avalanche energy       |                     | 960             | mJ                   |
| $T_{J}, T_{STG}$      | Operating Junction and Storage Temp | perature Range      | 150, -55 to 150 | $^{\circ}\mathbb{C}$ |
| TL                    | Maximum Temperature for Solderi     | ng                  | 260             | C                    |

## **Thermal Characteristics:**

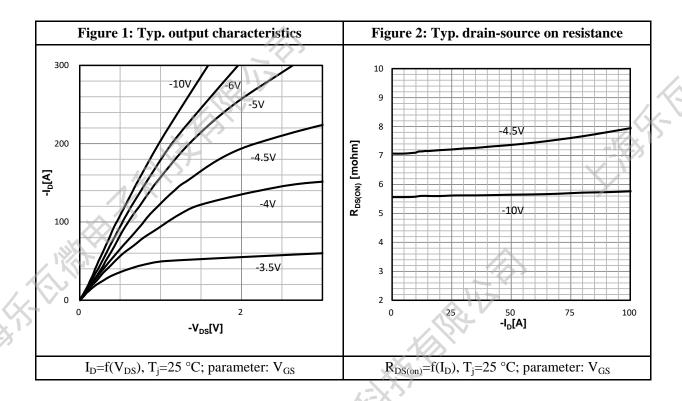
| Symbol         | Parameter                               | Value | Units |
|----------------|-----------------------------------------|-------|-------|
| $R_{	heta JC}$ | Thermal Resistance, Junction-to-Case    | 0.69  | °C/W  |
| $R_{	heta JA}$ | Thermal Resistance, Junction-to-Ambient | -60   | °C/W  |

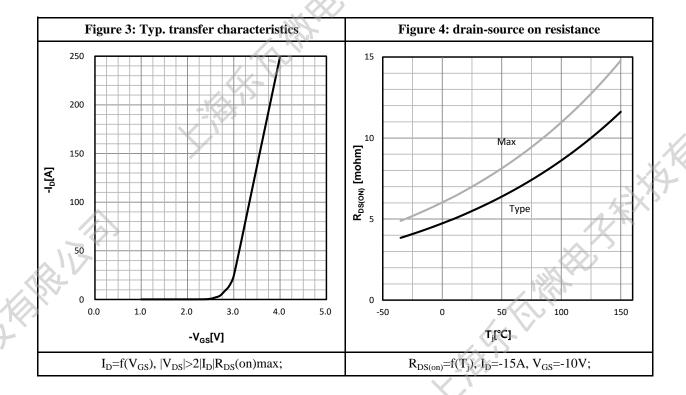


# **Electrical Characteristic** ( $T_A = 25$ °C, unless otherwise specified):

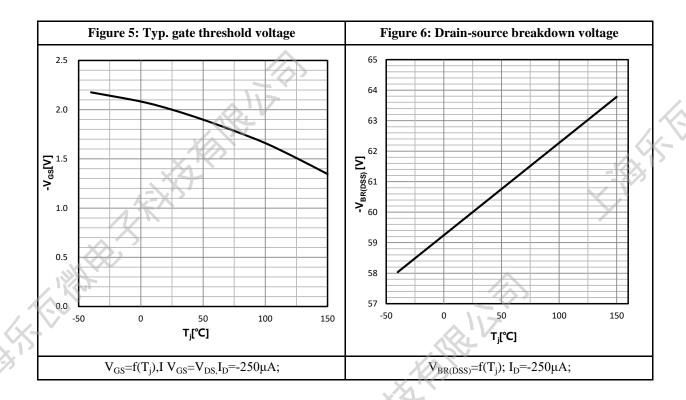
| Static Ch           | naracteristics                    |                                       |      |       |      |       |
|---------------------|-----------------------------------|---------------------------------------|------|-------|------|-------|
| Cramb of            | Domomoton                         | Tost Conditions                       |      | Value |      | TT '. |
| Symbol              | Parameter                         | Test Conditions                       | Min. | Тур.  | Max. | Units |
| $V_{\rm DSS}$       | Drain to Source Breakdown Voltage | $V_{GS} = 0V, I_D = -250 \mu A$       | -60  |       |      | V     |
| $I_{DSS}$           | Drain to Source Leakage Current   | $V_{DS} = -60V, V_{GS} = 0V$          |      |       | 1.0  | μΑ    |
| $I_{GSS(F)}$        | Gate to Source Forward Leakage    | $V_{GS}$ =-20V, $V_{DS}$ =0V          |      |       | 100  | nA    |
| $I_{GSS(R)}$        | Gate to Source Reverse Leakage    | $V_{GS} = +20V, V_{DS} = 0V$          |      |       | -100 | nA    |
| $V_{\text{GS(TH)}}$ | Gate Threshold Voltage            | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$ | -1.6 | -2.0  | -2.4 | V     |
| R <sub>DS(ON)</sub> | Drain-to-Source On-Resistance     | $V_{GS}$ =-10V, $I_{D}$ =-15A         |      | 5.5   | 7.0  | mΩ    |

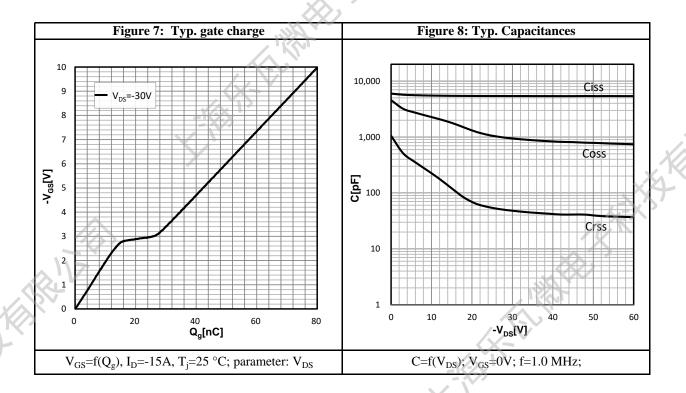
| Dynamic Characteristics |                              |                                          |                  |      |      |        |  |  |
|-------------------------|------------------------------|------------------------------------------|------------------|------|------|--------|--|--|
| Symbol                  | Parameter                    | Test Conditions                          | Value            |      |      | Units  |  |  |
| Symbol                  | rarameter                    | Test Conditions                          | Min.             | Typ. | Max. | Ullits |  |  |
| C <sub>iss</sub>        | Input Capacitance            | $V_{GS} = 0V$                            | 1                | 5403 |      |        |  |  |
| $C_{oss}$               | Output Capacitance           | $V_{DS} = -30V$                          | 7                | 941  |      | pF     |  |  |
| $C_{rss}$               | Reverse Transfer Capacitance | f = 1.0MHz                               | 186              | 48   |      |        |  |  |
| $R_{G}$                 | Gate resistance              | V <sub>GS</sub> =0V,V <sub>DS</sub> Open | ()) <del>-</del> | 2.0  |      | Ω      |  |  |


| Resistive Switching Characteristics |                     |                              |       |      |      |       |  |
|-------------------------------------|---------------------|------------------------------|-------|------|------|-------|--|
| Symbol                              | Parameter           | Test Conditions              | Value |      |      | Units |  |
| Symbol                              | Farameter           | Test Collections             | Min.  | Тур. | Max. | Omts  |  |
| $t_{d(ON)}$                         | Turn-on Delay Time  | $I_{D} = -15A$               |       | 4.5  |      |       |  |
| t <sub>r</sub>                      | Rise Time           | $I_D = -15A$ $V_{DS} = -30V$ |       | 2.5  |      | 200   |  |
| $t_{d(OFF)}$                        | Turn-Off Delay Time | $V_{GS} = -10V$              |       | 14.5 |      | ns    |  |
| $t_{\rm f}$                         | Fall Time           | $R_G = 3\Omega$              |       | 3.5  |      |       |  |
| $Q_{\mathrm{g}}$                    | Total Gate Charge   | $V_{GS} = -10V$              |       | 80   |      |       |  |
| $Q_{gs}$                            | Gate Source Charge  | $V_{DS} = -30V$              |       | 15   |      | nC    |  |
| $Q_{\mathrm{gd}}$                   | Gate Drain Charge   | $I_D = -15A$                 |       | 11   |      |       |  |

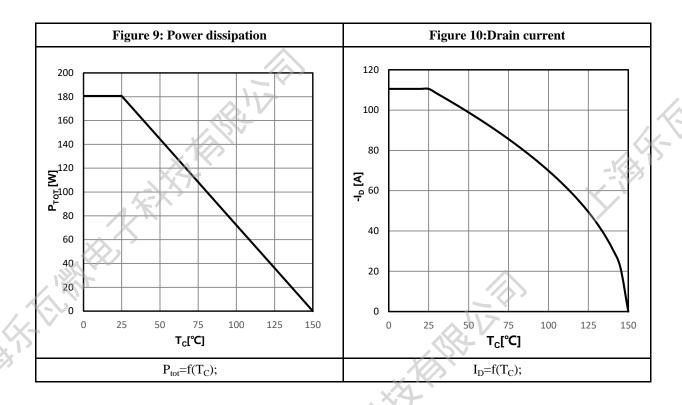

| Source-Dr       | Source-Drain Diode Characteristics |                                |       |      |       |      |  |  |
|-----------------|------------------------------------|--------------------------------|-------|------|-------|------|--|--|
| Symbol          | Parameter                          | Test Conditions                | Value |      | Units |      |  |  |
| Symbol          | r ai ailictei                      | Test Collutions                | Min.  | Typ. | Max.  | Omts |  |  |
| $I_{S}$         | Diode Forward Current              | $T_C = 25  ^{\circ}C$          |       |      | -110  | A    |  |  |
| $V_{SD}$        | Diode Forward Voltage              | $I_S$ =-15A, $V_{GS}$ =0V      |       |      | -1.2  | V    |  |  |
| t <sub>rr</sub> | Reverse Recovery time              | $I_{S}$ =-15A, $V_{DD}$ =-30V, |       | 60   |       | ns   |  |  |
| $Q_{rr}$        | Reverse Recovery Charge            | dI/dt=100A/us                  |       | 105  | 1     | nC   |  |  |

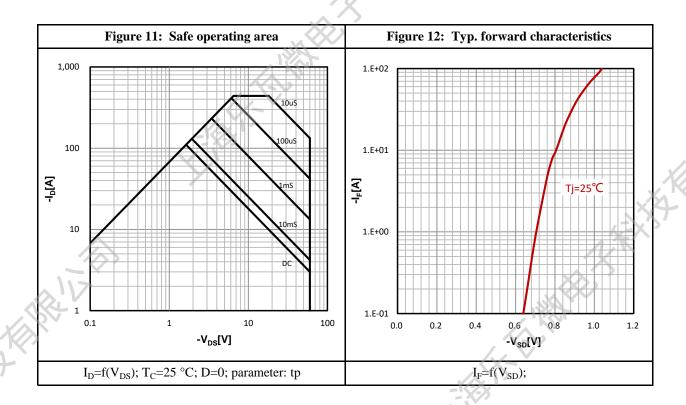
a1: Repetitive rating; pulse width limited by maximum junction temperature a2:  $V_{DD}$ =-30V,L=1.0mH,  $R_G$ =25 $\Omega$ , Starting  $T_j$ =25 $^{\circ}$ C



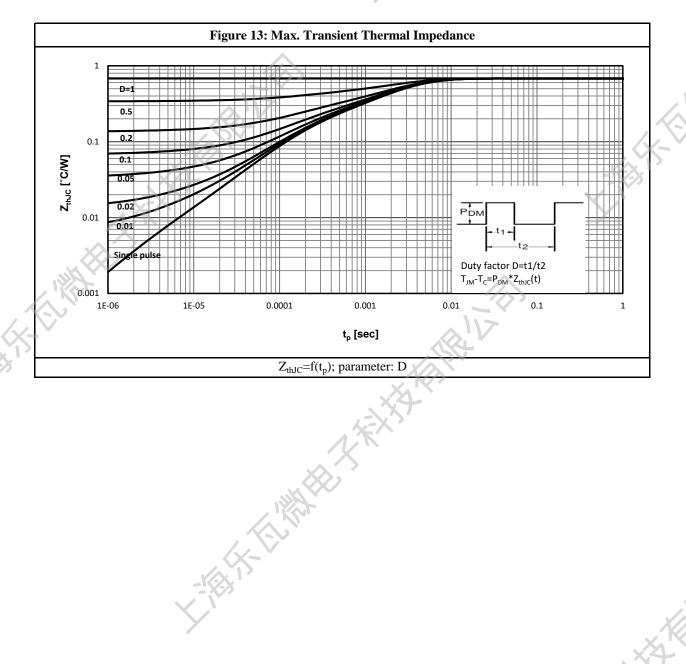


## **Characteristics Curve:**




















## **Test Circuit & Waveform:**

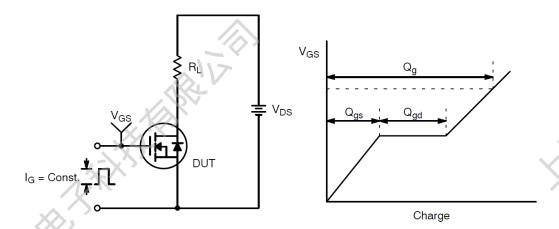



Figure 14: Gate Charge Test Circuit & Waveform

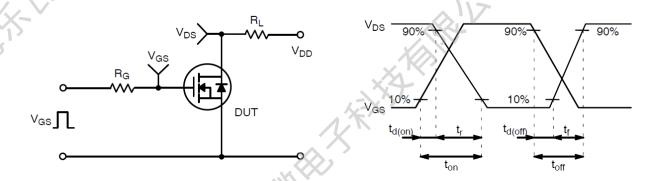
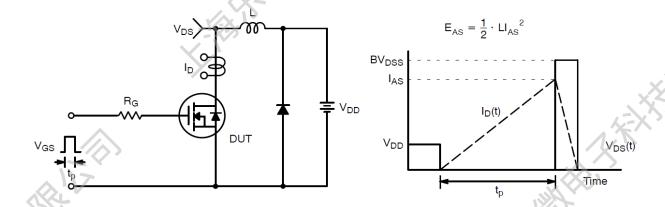
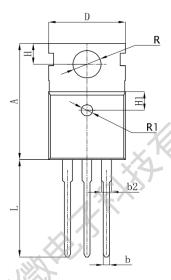
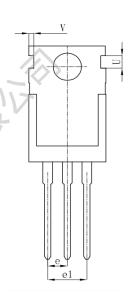
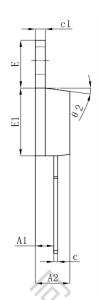
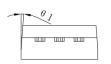



Figure 15: Resistive Switching Test Circuit & Waveforms



Figure 16: Unclamped Inductive Switching Test Circuit & Waveforms




## **Package Outline:**









| SYMBOL   | -1.7  | MILLIMETER |       |
|----------|-------|------------|-------|
| STIVIDOL | MIN   | NOM        | MAX   |
| А        | 15.4  | 15.6       | 15.8  |
| A1       | 2.3   | 2.4        | 2.5   |
| A2       | 4.4   | 4.5        | 4.7   |
| b        | 0.7   | 0.8        | 0.9   |
| b2       | 1.18  | 1.31       | 1.44  |
| С        | 0.44  | 0.5        | 0.56  |
| c1       | 1.28  | 1.3        | 1.32  |
| D        | 9.8   | 10         | 12.2  |
| E        | 6.4   | 6.5        | 6.6   |
| E1       | 9     | 9.1        | 9.2   |
| е        | 2.42  | 2.54       | 2.66  |
| e1       | 4.84  | 5.08       | 5.32  |
| Н        | 2.73  | 2.8        | 2.87  |
| H1       | 2.4   | 2.5        | 2.6   |
| L        | 13.02 | 13.37      | 13.72 |
| R        | 3.5   | 3.6        | 3.63  |
| R1       | 1.4   | 1.5        | 1.6   |
| U        | 1.65  | 1.75       | 1.85  |
| V        | 0.58  | 0.68       | 0.78  |
| q 1      | 2°    | 2.5°       | 3°    |
| q 2      | 6.5°  | 7°         | 7.5°  |

A XXX KANDER VANDOR OF THE PARTY OF THE PART



## **Revision History:**

| Γ    | Revison | Date     |                 | Descriptions |       |
|------|---------|----------|-----------------|--------------|-------|
|      | Rev 1.0 | Mar.2022 | Initial Version |              |       |
| _    |         |          |                 |              |       |
|      |         |          | 117             |              | _1    |
|      |         |          | R-              |              | , (-) |
|      |         | X        |                 |              | (X-V  |
|      |         | XX       |                 |              | -123  |
|      |         | ~=XX     |                 |              |       |
|      | 1       | T        |                 |              | Y     |
|      | x>.     |          |                 |              |       |
|      | Oct Du. |          |                 |              |       |
|      | I KIL   |          |                 |              |       |
| /, ~ |         |          |                 | 117          |       |
|      |         |          |                 |              |       |
| 153  |         |          |                 |              |       |
| ,    |         |          |                 | XX.          |       |
|      |         |          | ,               | -137         |       |
|      |         |          | 13              | K^           |       |

A NATIONAL DESIGNATION OF THE PARTY OF THE P



#### **Disclaimer:**

The information in this document is believed to be accurate and reliable. However, no responsibility is assumed by LW-Micro for its use. All operating parameters must be designed, validated and tested to ensure they meet the requirements of your application. LW-Micro reserves the right to make any specification and/or circuitry changes without prior notification. Before starting a brand-new project, please contact LW-Micro Sales to get the most recent relevant information.

Mailing Address: Room 301, Building 2, No.1690 CaiLun Road, China (Shanghai) Pilot Free Trade Zone Shanghai Lewa Micro-electronics Technology Co., Ltd