

74HC14

■ 产品简介

74HC14是一款采用先进CMOS技术设计的低功耗逻辑门集成电路。它内部集成有六组具有施密特触发输入的独立反相器。

■ 产品特点

- 低输入电流
- 低静态功耗
- 封装形式: DIP14 、SOP14

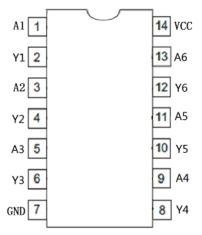
- 宽工作电压范围: 2.0V to 6.0V
- 缓冲输入

■ 产品用途

- 同步反相时钟输入
- 对开关进行去抖
- 数字逻辑驱动

- 工控应用(如抢答器,程控设备)等
- 对数字信号进行反相
- 其它应用领域

■ 封装形式和管脚功能定义


管脚序号	管脚	管脚序号	管脚
DIP14/SOP14	定义	DIP14/S0P14	定义
1	A1	14	VCC
2	Y1	13	A6
3	A2	12	Y6
4	Y2	11	A5
5	A3	10	Y5
6	ү 3	9	A4
7	GND	8	Y4

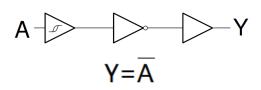
注 1: A----代表输入

Y----代表输出

注 2: 74HCxxxD 表示 DIP14 封装,74HCxxxS 表示 SOP14 封装。

DIP14/SOP14

■ 极限参数


参数	符号	极限值	单位
工作电压	Vcc	6. 5	V
输入/输出电压	VIN. VOUT	-0.3-Vcc+0.3V	V
单个管脚输出电流	Іоит	±25	mA
VCC 或 GND 电流	Icc	±50	mA
耗散功率	P_D	500	mW
工作温度	TA	0-70	$^{\circ}$ C
存储温度	Ts	-65-150	$^{\circ}\mathbb{C}$
引脚焊接温度	Tw	260, 10s	$^{\circ}\mathbb{C}$

Ver 1.0G

注:极限参数是指无论在任何条件下都不能超过的极限值。如果超过此极限值,将有可能造成产品劣化等物理性损伤; 同时在接近极限参数下,不能保证芯片可以正常工作。

■ 原理逻辑图

■ 真值表

Inputs A	Output Y
L	Н
Н	L

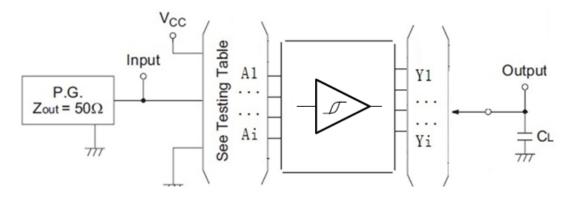
H=High logic level L=low logic level

■ 工作条件

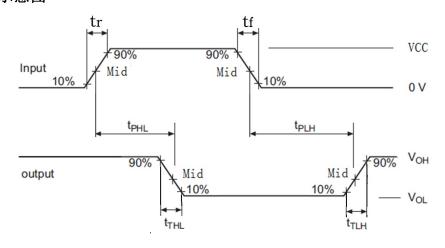
项目	符号	最小值	典型值	最大值	单位
工作电压	Vcc	2	5	6	V
输入输出电压	V _{IN} , Vout	0		VCC	V
工作温度	TA	0		60	${\mathbb C}$

■ 电学特性

直流电学特性: T_A=25℃


符号	项目	测试条件		VCC(V)	最小值	典型值	最大值	单位
				2.0	-	1.3	_	V
V _{T+} 高电平切换阈值电压				4. 5	-	2.6	-	V
				6.0	-	3. 4	-	V
				2.0	ı	0.8		V
V _T -	低电平切换阈值电压			4. 5	I	1.5	-	V
				6.0	ı	1.8		V
				2.0	_	0.5	_	V
ΔVT 迟滞电压 (V _{T+} -V _{T-})				4.5	_	1.2	_	V
				6.0	-	1.6	=	V
				2.0	1.9	1.99	_	V
		V _I =V _T -min, I _{OUT} ≤20μA		4.5	4. 4	4.49	-	V
V _{OH}	Von 高电平输出电压			6.0	5. 9	5.99	-	V
		V_{I} =	$ I_{\text{OUT}} \leq 4.0 \text{mA}$	4.5	3. 7	4. 3	_	V
		V _{T-} min	$ I_{\text{OUT}} \leqslant 5.2 \text{mA}$	6.0	5. 2	5.8	-	V
				2.0	_	0.01	0.1	V
		$V_I = V_{T+} max$, $ I_{OUT} \le 20 \mu A$		4.5	_	0.01	0.1	V
Vol 低电平输出电压	6.0			_	0.01	0.1	V	
		V_{I} =	Io∪⊤ ≪4.0mA	4.5	-	0.10	0. 25	V
		V _{T+} max	$ I_{\text{OUT}} \leqslant 5.2$ mA	6.0	-	0.10	0. 25	V
I _{IN}	输入电流	V _I =V _{CC} or GND		6.0	_	0.01	1	uA
Icc	工作电流	$V_I = V_{CC}$ or GND, $I_{OUT} = 0\mu A$		6.0	ı	0.5	20	uA

	T 2500 H 5 0H		
父流电字符性:	$Ta=25^{\circ}C V_{CC}=5.0V$	$t_r = t_f \leq 20 \text{ns}$	光测试力法。


项目	符号	测试条件	最小值	典型值	最大值	单位
传输延迟时间	t PHL	CL=47pF		25		ns
A to Y	t _{PLH}	C _L =47pF		30		ns
Y输出	t _{THL}	C _L =47pF		25		ns
上升\下降沿时间	tтьн	C _L =47pF		25		ns

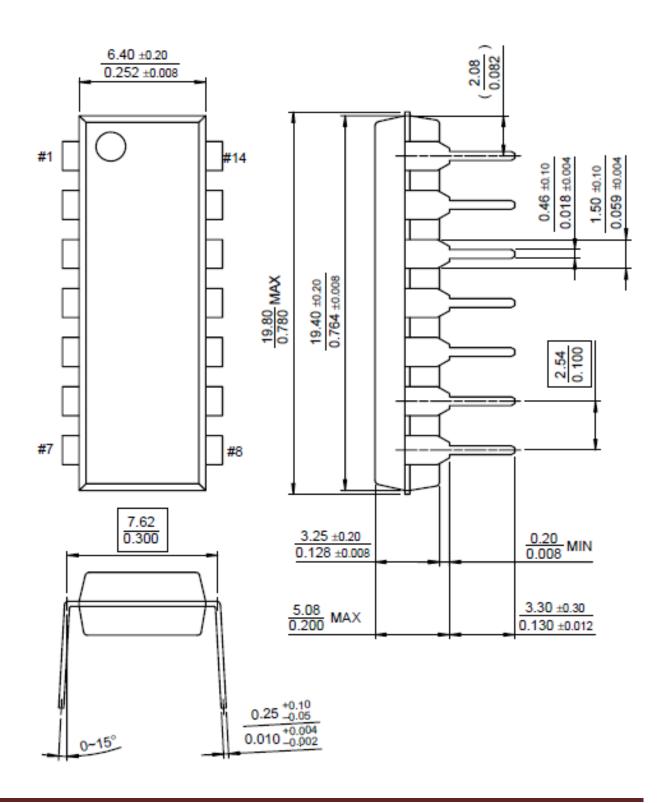
■ 测试方法

1、测试接线图

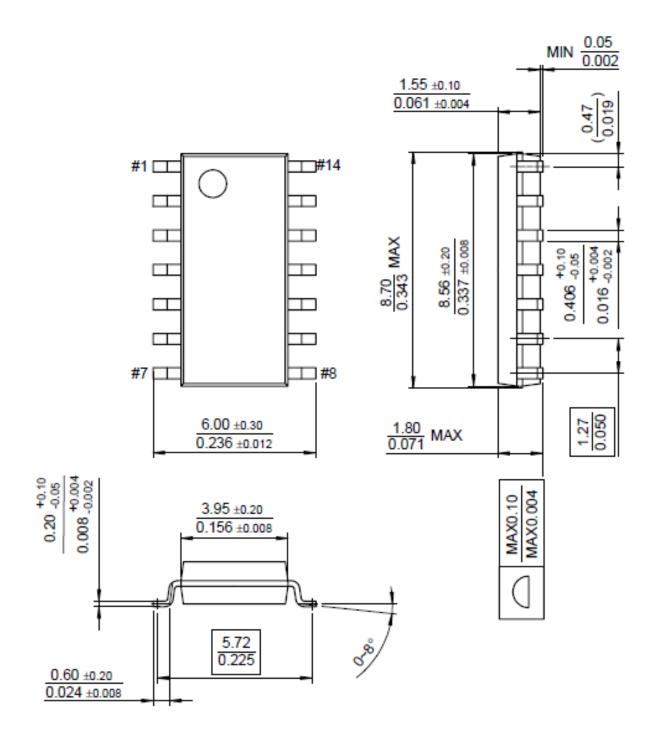
2、波形测量示意图

注: 1、See Testing Table 指交流电学特性表中相应测试项目;

2、CL 电容为外接贴片电容(0805),靠近输出管脚接入,电容地靠近芯片 GND;


3、Input: 端口输入电平, f=1MHz, D=50%; tr=tf≤20ns;

4、Output: Y端输出测试。


■ 封装信息

单位:毫米 / 英寸

DIP14

S0P14

