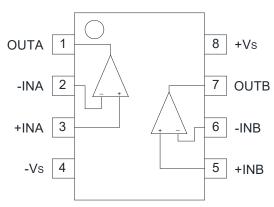


General Purpose Low Voltage Rail-to-Rail Output Amplifiers

General Description

The LMV358(dual) is rail-to-rail input and output voltage feedback amplifiers offering low cost. They have a wide input common-mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 2.1V and the maximum recommended supply voltage is 5.5 V. All are specified over the extended $-45^{\circ}C$ to $+85^{\circ}C$ temperature range.

The LMV358 provide 1MHz bandwidth at a low current consumption of $60\mu A$ per amplifier. Very low input bias currents of 10pA, enable LMV358 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail inputs and outputs are useful to designers buffering ASIC in single-supply systems.


Applications for the series amplifiers include safety monitor, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems

The LMV358 is available in SOP8、MSOP8 and TSSOP8 package.

Features

- Low Cost
- Rail-to-Rail Input and Output: 0.8mV Typical Vos
- Unity Gain Stable
- Gain Bandwidth Product: 1MHz
- Very Low Input Bias Currents: 10pA
- Operates on 2.1 V to 5.5 V Supplies
- Input Voltage Range: $-0.1 \text{ V to } +5.6 \text{ V with } V_S = 5.5 \text{ V}$
- Low Supply Current: 60μA/Amplifier

Block Diagram and Pin Configuration

LMV358(SOP8/MSOP8/TSSOP8)

Package Information

Part NO.	Package Description	Package Marking	Package Option
LMV358	SOP8	CHMC LMV358 SXXXX	100/Tube 4000/Reel
LMV358M	MSOP8	CHMC LMV358M SXXXX	100/Tube 4000/Reel
LMV358T	TSSOP8	CHMC LMV358T SXXXX	100/Tube 4000/Reel

CHMC:Trademark LMV358/LMV358M/LMV358T:Part NO. SXXXX:Lot NO.

Recommended Operating Conditions

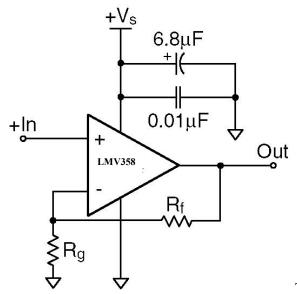
Characteristic	Min.	Max.	Unit
Operating Temperature Rangge	-40	+85	°C
Power Supply Operating Range	2.1	5.5	V

Absolute Maximum Ratings

Characteristic	Min.	Max.	Unit
Power Supply Voltage	0	+7.5	V
Maximum Junction Temperature		+160	°C
Input Voltage Range	-Vs-0.5	+V _S +0.5	V
Operating Temperature Range	-45	+85	°C
Storage Temperature Range	-65	+150	°C
Lead Temperature, 10 seconds		+260	°C

Electrical Characteristics (Vs=+5V, R_L=10kΩ to Vs/2, V_{Out}=Vs/2; unless otherwise noted)

Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
AC Performance		•			
Gain bandwidth product	C _L =100pF		1.0		MHz
Phase margin			52		Deg
Gain margin			17		dB
Slew rate	Vo=1Vpp		0.52		V/µs
Input voltage noise	>50kHz		36		nV/√Hz
DC Performance					
Input offset voltage			±0.8	±5	mV
Input bias current			10		pA
Input offset current			10		pA
Power supply rejection ratio	Vs=+2.5V~+5.5V	60	82		dB
Supply current			120	240	μА
Input characteristics					
Input common mode voltage range	Vs=5.5V	-0.1		5.6	V
Common mode rejection ratio	Vs=5.5V Vo=0.1~4.9V	56	68		dB
Output characteristics					
Output voltage Swing from Rail	$R_L=100k\Omega$		0.008		V
Output current	R_L =100 $k\Omega$	20	23		mA

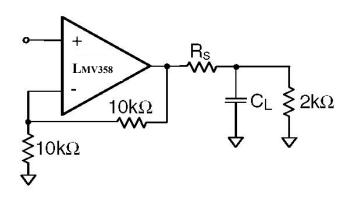

Application Summary

Data Sheet

The LMV358 family are single supply, general purpose, voltage-feedback amplifiers that are pin-for-pin compatible and drop in replacements with other industry standard

LMV358 amplifier. The LMV358 is fabricated on a CMOS process, features a rail-to-rail output, and is unity gain stable.

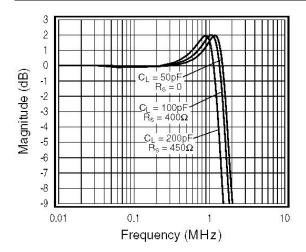
The typical non-inverting circuit schematic is shown in Figure below:


Typical Non-inverting configuration

Power Dissipation

The maximum internal power dissipation allowed is directly related to the maximum junction temperature. If the maximum junction temperature exceeds 150°C, some performance degradation will occur. If the maximum junction temperature exceeds 175°C for an extended time, device failure may occur.

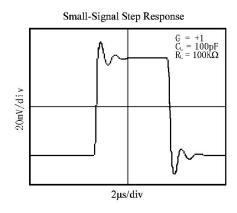
Driving Capacitive Loads

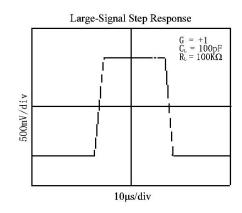

The Frequency Response vs CL plot illustrates the response of the LMV358 . A small series resistance (Rs) at the output of the amplifier, illustrated in Figure below, will improve stability and settling performance. Rs values in the Frequency Response vs CL plot were chosen to achieve maximum bandwidth

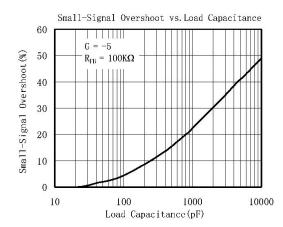
with less than 1dB of peaking. For maximum flatness, use a larger Rs. As the plot indicates, the LMV358 family can easily drive a 200pF capacitive load without a series resistance.

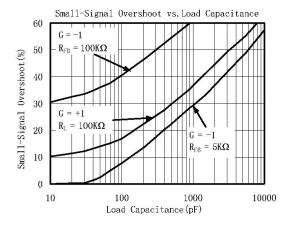
Driving a capacitive load introduces phase-lag into the output signal, which reduces phase margin in the amplifier. The unity gain follower is the most sensitive configuration.

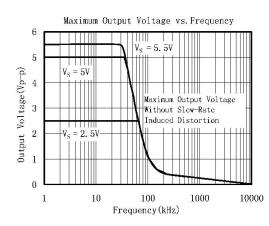
The response is illustrated in Figure below:

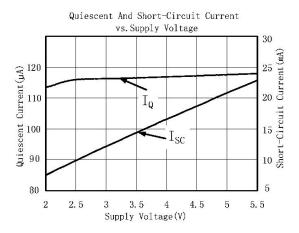

Frequency Response vs C_L for unity gain configuration

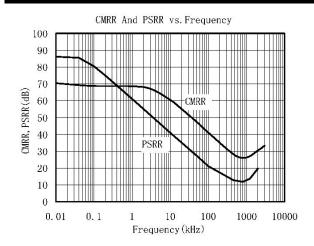

Layout Considerations

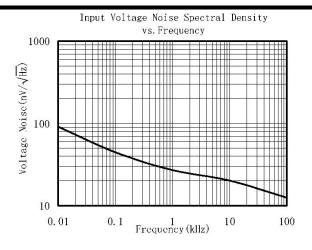

General layout and supply bypassing play major roles in high frequency performance. Follow the steps below as a basis for high frequency layout:

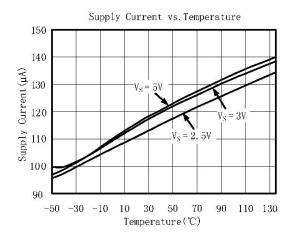

- Include 6.8μF and 0.01μF ceramic capacitors
- Place the 6.8μF capacitor within 0.75 inches of the power pin
- Place the 0.01μF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

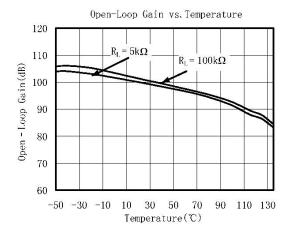

Characteristics Curve $(Ta=+25^{\circ}C, Vs=+5V, RL=100k\Omega \text{ connected to } Vs/2)$

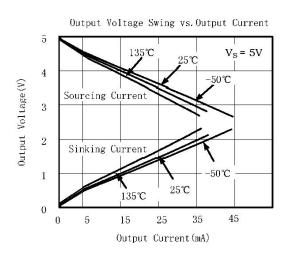


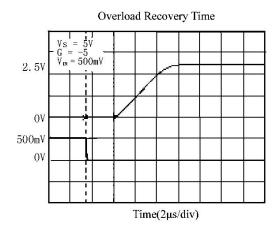


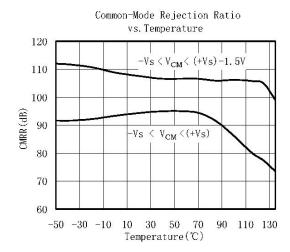


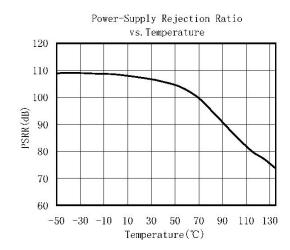


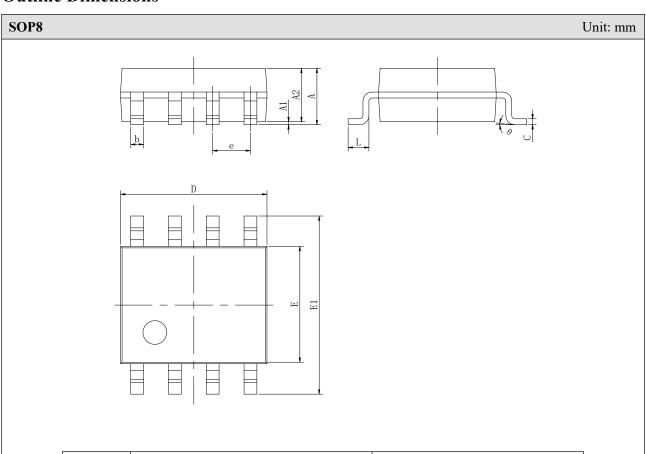


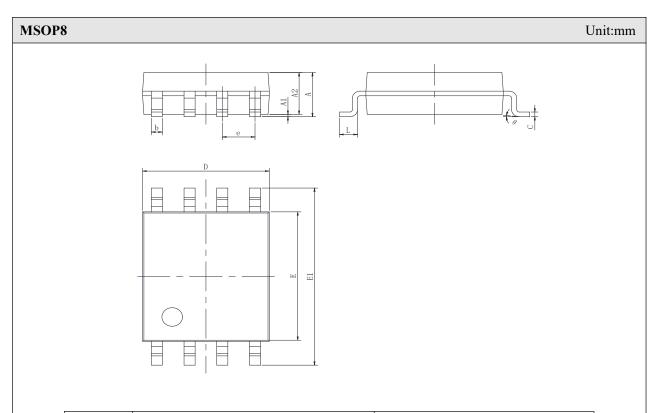

LMV358

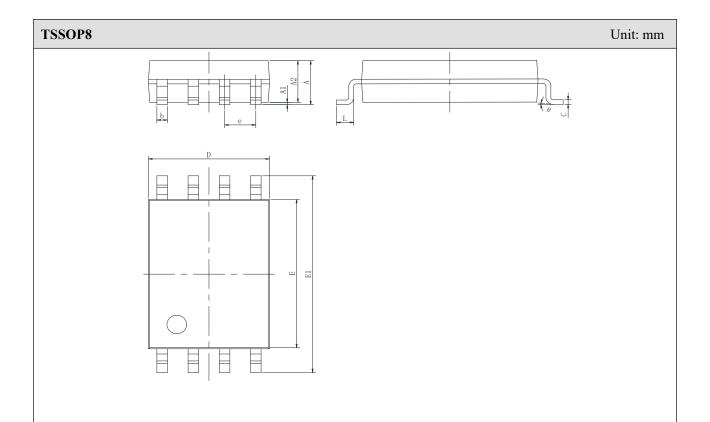











Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	1.350	1.800	0.053	0.071	
A1	0.000	0.250	0.000	0.010	
A2	1.250	1.550	0.053	0.061	
b	0.300	0.510	0.011	0.020	
c	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.201	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.244	
e	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Craush al	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
c	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650(BSC)		0.026(BSC)		
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A		1.100		0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
c	0.090	0.200	0.004	0.008	
D	2.900	3.100	0.114	0.122	
Е	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
e	0.650(BSC)		0.026(B	SC)	
L	0.500	0.700	0.020	0.028	
θ	0°	8°	0°	8°	

Statements

- Silicore Technology reserves the right to make changes without further notice to any products or specifications herein. Before customers place an order, customers need to confirm whether datasheet obtained is the latest version, and to verify the integrity of the relevant information.
- Failure or malfunction of any semiconductor products may occur under particular conditions, customers shall have obligation to comply with safety standards when customers use Silicore Technology products to do their system design and machine manufacturing, and take corresponding safety measures in order to avoid potential risk of failure that may cause personal injury or property damage.
- > The product upgrades without end, Silicore Technology will wholeheartedly provide customers integrated circuits that have better performance and better quality.