

General Description

The D3485 is high-speed transceiver for RS-485 communication, which contain one driver and one receiver. The D3485 feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance).

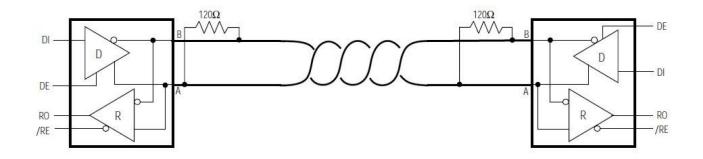
The D3485 driver slew rates are not limited, making transmit speeds up to 10Mbps possible.. And this device has a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus.

The D3485 is available in SOP8 package.

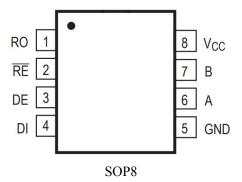
Features

- Fail-safe Circuitry
- Low Power Consumption
- Up to 256 Transceivers can be Attached to The Bus
- Maximum Transmission Rate: 10Mbps
- ESD: ≥±15kV
- SOP8 Package

Applications


- RS-485 Communications
- Level Translators
- Security Equipment
- Industrial Control Equipment
- Watt-hour meter

Package Information


Part NO.	Package	Package	Package
	Description	Marking	Option
D3485	SOP8	CHMC D3485 SXXXX	100/Tube 4000/Reel

CHMC:Trademark D3485:Part NO. SXXXX:Lot NO.

Typical application circuit

Pin Configuration

Pin Description

Pin Number	Pin Name	Function Description
1	RO	Receiver Output, When RE is low and if A - B≥-50mV, RO will be high; if A - B≤-200mV, RO will be low.
2	/RE	Receiver Output Enable. Drive RE low to enable RO; RO is high impedance when RE is high. Drive RE high and DE low to enter low-power shutdown mode.
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive RE high and DE low to enter low-power shutdown mode.
4	DI	Driver Input. With DE high, a low on DI forces non-inverting output low and inverting output high.
5	GND	Ground
6	A	Non-inverting Receiver Input and Non-inverting Driver Output
7	В	Inverting Receiver Input and Inverting Driver Output
8	Vcc	Positive Supply

Absolute Maximum Ratings (TA=25℃)

Parameter Name	Value	Unit
Supply Voltage (V _{CC})	7	V
Operating Voltage	+3~5.5	V
Control Input Voltage (/RE, DE)	-0.3~Vcc+0.3	V
Driver Input Voltage (DI)	-0.3~Vcc+0.3	V
Driver Output Voltage (A,B)	±13	V
Receiver Input Voltage (A,B)	±13	V
Receiver Output Voltage (RO)	-0.3~Vcc+0.3	V
Operating Temperature (T _{OPR})	-40~+125	°C
Storage Temperature (T _{STG})	-65~+150	°C
Operating voltage	+3~+5.5	V

Function Tables

• TRANSMITTING

INPUTS			OUTPUTS		
/RE	DE	DI	A	В	
X	1	1	1	0	
X	1	0	0	1	
0	0	X	High-Z	High-Z	
1	0	X	Shutdown		

BECEIVING

	OUTPUTS		
/RE	DE	A-B	RO
0	X	≥-0.05V	1
0	X	≤-0.2V	0
0	X	Open / Shorted	1
1	1	X	High-Z
1	0	X	Shutdown

DC Electrical Characteristics (VCC=5V, Ta=25°C) ¹

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	Vodi					VCC	V
Differential Driver Output	V _{OD2}			1.5			V
Change in Magnitude of Differential Output Voltage	$\Delta { m V}_{ m OD}$				0.2	V	
Driver Common-Mode Output Voltage	Voc	R=27	7Ω, Figure 1	1.0		3.0	V
Change in Magnitude of Common-Mode Voltage2	ΔVoc		, C			0.2	V
Input High Voltage	V _{IH}	DI	E, DI, /RE	2.0			V
Input Low Voltage	V _{IL}	DI	E, DI, /RE			0.8	V
DI Input Hysteresis	V _{HYS}				100		mV
Driver Input Current (A And		VIN=12V	DE=0V,			250	uA
B)	I _{IN1}	VIN=-7V	7. 7.7.	-150			uA
Driver Short-Circuit Output Current3	I _{OSD}	A and B Short-Circuit		-100		100	mA
Receiver Differential Threshold Voltage	V_{TH}	-7V≤	≤V _{CM} ≤12V	-200	-12 5	-50	mV
Receiver Input Hysteresis	$\triangle V_{TH}$				40		mV
Receiver Output High Voltage	Voh	I	0=-8mA	VCC-1			V
Receiver Output Low Voltage	Vol	I	io=8mA			0.4	V
Three-State Output Current at Receiver	Iozr	Vo=1V		-1		1	μА
Receiver Input Resistance	R _{IN}	-7V≤	\leq V _{CM} \leq 12V	96			ΚΩ
Receiver Output Short-Circuit Current	I _{OSR}	0V≤V _{RO} ≤VCC		±7		±10 0	mA
		DE=VC C	No Load		700	1200	μΑ
Supply Current	Icc	DE=GN D	/RE=DI=VCC/G ND		600	1200	μΑ
Supply Current in Shutdown Mode	Ishdn		ND, /RE=VCC, VCC/GND			3	μΑ

Page 4 of 10

DC Electrical Characteristics (VCC=3V, Ta=25°C) ¹

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	V _{OD1}					VCC	V
Differential Driver Output	V _{OD2}			0.9			V
Change in Magnitude of Differential Output Voltage	$\Delta { m V}_{ m OD}$					0.2	V
Driver Common-Mode Output Voltage	Voc	R=27 Ω , Figur	e 1	1.0		3.0	V
Change in Magnitude of Common-Mode Voltage2	ΔV_{OC}					0.2	V
Input High Voltage	V _{IH}	DE, DI, /RE		1.5			V
Input Low Voltage	V _{IL}	DE, DI, /RE				0.6	V
DI Input Hysteresis	V _{HYS}				100		mV
Daisson Innust Cumunt (A And D)		VIN=12V	DE=0V,			150	uA
Driver Input Current (A And B)	I _{IN1}	VIN=-7V	Vcc=3V	-150			uA
Driver Short-Circuit Output Current3	Iosd	A and B Shor	t-Circuit	-100		100	mA
Receiver Differential Threshold Voltage	V_{TH}	-7V≤V _{CM} ≤1	2V	-200		200	mV
Receiver Input Hysteresis	$\triangle V_{TH}$				40		mV
Receiver Output High Voltage	Voh	Io=-8mA		VCC-1			V
Receiver Output Low Voltage	V _{OL}	I _O =8mA				0.6	V
Three-State Output Current at Receiver	Iozr	Vo=1V		-1		1	μΑ
Receiver Input Resistance	R _{IN}	-7V≤V _{CM} ≤12V		96			ΚΩ
Receiver Output Short-Circuit Current	I _{OSR}	0V≤V _{RO} ≤VCC		±7		±10 0	mA
		DE=VCC	No Load			1000	μΑ
Supply Current	I _{CC}	DE=GND	/RE=DI=VC C/GND			1000	μΑ
Supply Current in Shutdown Mode	Ishdn	DE=GND, /RI DI=VCC/GNI				3	μΑ

Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

Note 2: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

Note 3: Maximum current level applies to peak current just prior to foldback current limiting; minimum current level Applies during current limiting.

SWITCHING CHARACTERISTICS (VCC=5V, TA=25°C)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Rise or Fall Time	t_R, t_F	Figure 3 and 5,		30		ns
Driver Input to Output	t _{PLH} , t _{PHL}	R_{DIFF} =54 Ω		30	60	ns
Driver Output Skew	$t_{ m SKEW}$				20	ns
T _{DPLH} – T _{DPHL}	- SALS W	C _{L1} =C _{L2} =100pF				
Driver Enable time	t_{LZ}, t_{HZ}	Figure 4 and 6, $C_L=100pF$			70	ns
		(Receiver enabled)				
Driver Enable time	$t_{LZ(SHDN)}$,	Figure 4 and 6, $C_L=100pF$		1400	3000	ns
	t _{HZ(SHDN)}	(Receiver disabled)				
Driver disable time	t_{LZ} , t_{ZL}	Figure 4 and 6, C _L =100pF			70	ns
Maximum Data Rate	F_{MAX}		10			Mbps
Receiver Rise or Fall Time	t_R , t_F			20		ns
Receiver propagation delay time	t _{PLH} , t _{PHL}	Figure 7		90	250	ns
T _{RPLH} -T _{RPHL} Differential Receiver Skew	$t_{ m SKD}$			30		ns
Receiver enable time	$t_{\rm ZL},t_{ m ZH}$	Figure 2 and 8, C _{RL} =15pF		30	70	ns
		(Driver enabled)				
Receiver enable time	$t_{ZL(SHDN)}$,	Figure 2 and 8, C _{RL} =15pF		1400	3000	ns
	t _{ZH(SHDN)}	(Driver disabled)				
Receiver disable time	t_{LZ},t_{HZ}	Figure 2 and 8, C _{RL} =15pF		30	70	ns
Time to Shutdown	$t_{ m SHDN}$			200	600	ns

SWITCHING CHARACTERISTICS (VCC=3V, TA=25°C)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Rise or Fall Time	t_R , t_F	Figure 3 and 5,		30		ns
Driver Input to Output	$t_{\scriptscriptstyle PLH}$, $t_{\scriptscriptstyle PHL}$	R_{DIFF} =54 Ω		30	60	ns
Driver Output Skew					20	ns
T _{DPLH} – T _{DPHL}	$t_{ m skew}$	$C_{L1} = C_{L2} = 100 pF$				
Driver Enable time	$t_{\rm LZ},~t_{ m HZ}$	Figure 4 and 6, C _L =100pF (Receiver enabled)			70	ns
Driver Enable time	$t_{\rm LZ(SHDN)}$,	Figure 4 and 6, C _L =100pF		1600	3000	ns
Driver Enable time	$t_{\scriptscriptstyle HZ(SHDN)}$	(Receiver disabled)		1000	3000	
Driver disable time	$t_{\scriptscriptstyle LZ}$, $t_{\scriptscriptstyle ZL}$	Figure 4 and 6, C _L =100pF			70	ns
Maximum Data Rate	F _{MAX}		10			Mbps
Receiver Rise or Fall Time	$t_{\scriptscriptstyle R},t_{\scriptscriptstyle F}$			20		ns
Receiver propagation delay time	$t_{\scriptscriptstyle{\mathrm{PLH}}},t_{\scriptscriptstyle{\mathrm{PHL}}}$	Figure 7		90	250	ns
T _{RPLH} -T _{RPHL} Differential Receiver Skew	$t_{ ext{skd}}$			30		ns
Receiver enable time	$t_{\scriptscriptstyle ZL}, t_{\scriptscriptstyle ZH}$	Figure 2 and 8, C _{RL} =15pF (Driver enabled)		25	70	ns
Receiver enable time	$t_{ZL(SHDN)}$,	Figure 2 and 8, C _{RL} =15pF		1600	3000	ns
Receiver disable time	$t_{ZH(SHDN)}$ $t_{LZ,} t_{HZ}$	(Driver disabled) Figure 2 and 8, C _{RL} =15pF		30	70	ns
Time to Shutdown	$t_{\scriptscriptstyle{\mathrm{SHDN}}}$			230	800	ns

Test Circuit

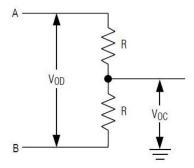


Figure 1. Driver DC Test Load

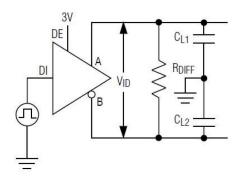


Figure 3. Driver Timing Test Circuit

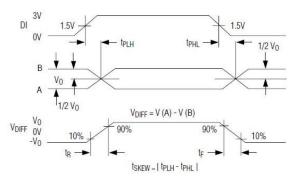


Figure 5. Driver Propagation Delays

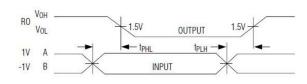


Figure 7. Receiver Propagation Delays

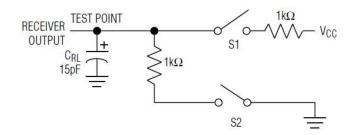


Figure 2. Receiver Enable/Disable Timing Test Load

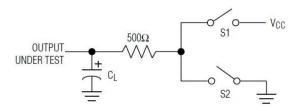


Figure 4. Driver Enable/Disable Timing Test Load

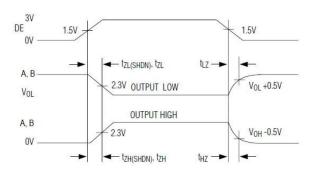


Figure 6. Driver Enable and Disable Times

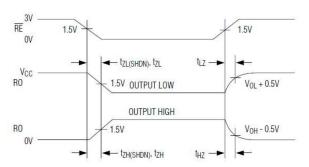



Figure 8. Receiver Enable and Disable Times

Outline Dimensions

Statements

- Silicore Technology reserves the right to make changes without further notice to any products or specifications herein. Before customers place an order, customers need to confirm whether datasheet obtained is the latest version, and to verify the integrity of the relevant information.
- Failure or malfunction of any semiconductor products may occur under particular conditions, customers shall have obligation to comply with safety standards when customers use Silicore Technology products to do their system design and machine manufacturing, and take corresponding safety measures in order to avoid potential risk of failure that may cause personal injury or property damage.
- > The product upgrades without end, Silicore Technology will wholeheartedly provide customers integrated circuits that have better performance and better quality.