
Applications Note: SY59119A1/B1

HV TRIAC Linear Dimming Controller, High Efficiency, PF>0.7

General Description

SY59119A1/B1 is a linear LED driver for HV TRIAC with integrated 500V power MOSFET and 700V bleeding MOSFET. It uses special technology to achieve high PF and efficiency performance. Special logic functions are added to achieve good compatibility with TRIAC dimmer.

Ordering Information

Ordering Number	Package type	Note
SY59119A1FCC	SO8E	
SY59119B1FCC	SO8E	

Features

- Compatible with HV TRIAC Dimmer
- Integrated: 500V Main MOS and 700V Bleeder MOS
- Latching Current is Adjustable
- Special Low Power Loss Control
- High PF: PF>0.7
- No Magnetic Components and Support All Components Surface Mounted
- Compatible with Brazil 60Hz
- RoHS Compliant and Halogen Free
- Compact Package: SO8E

Applications

• LED Lighting

a V	A 7
Part Number	Minimum output current
SY59119A1	>16mA
SY59119B1	>12mA

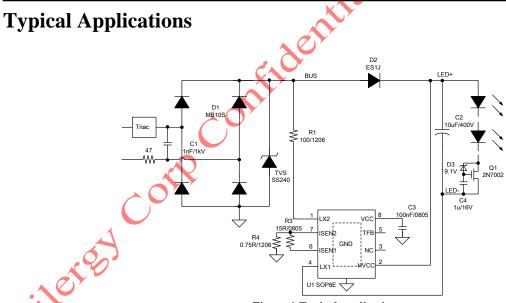
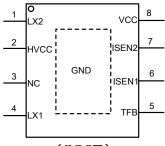
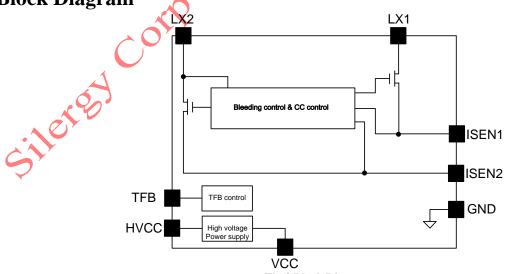



Figure.1 Typical application

Pinout (top view)


1	C	Λ	Q.	r	١
•		w	O.	Ľ	,

Part Number	Package type	Top Mark [©]
SY59119A1FCC	SO8E	DBGxyz
SY59119B1FCC	SO8E	DMNxyz (

Note ①: $x=year\ code$, $y=week\ code$, $z=lot\ number\ code$

Pin Name	Pin number	Pin Description
LX2	1	Drain of Bleeding MOS pin.
HVCC	2	HV power supply pin.
NC	3	No connect.
LX1	4	Drain of Main MOS pin.
TFB	5	Thermal fold back setting pin.
ISEN1	6	Main MOS Current Sense Pin.
		The output current is decided by
		$I_{OUT} = \frac{V_{REF}}{R_{ISEN2} + R_{ISEN2}}$
ISEN2	7	BLD MOS Current Sense Pin.
		Latching current is adjusted by R _{ISEN2} .
		Recommended value: R _{ISEN2} > 0.7 ohm.
VCC	8	Power supply pin.
GND	9	Ground.

AN_SY59119A1/B1

Absolute Maximum Ratings (Note 1)	
LX2, HVCC	
LX1	
TFB, ISEN1, ISEN2	
VCC	
Power Dissipation, @ TA = 25 °C SO8E	3.3V
Package Thermal Resistance (Note 2)	a
SO8E, θ JA	
SO8E, θ _{JC}	
Junction Temperature RangeLead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	
Storage semperature stange	A 0 10 10 0
Recommended Operating Conditions (Note 3)	ξO ^γ
Junction Temperature Range	
Ambient Temperature Range	-40 °C to 120 °C
Κ'	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
$\mathbf{A}^{\mathcal{O}^{\mathbf{v}}}$	
confidential. Pretain	
\sim \circ	
\nearrow \bigcirc '	
1	
Silered	

Electrical Characteristics

 $(V_{IN} = 15V \text{ (Note 3)}, T_A = 25 \text{ } \text{C} \text{ unless otherwise specified)}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Power Supply Section								
VIN Turn-on Threshold	V _{VIN_ON}		11	12.1	13.2	V		
VIN Turn-off Threshold	V_{VIN_OFF}		7.8	8.8	9.8	V		
Quiescent Current	I_Q		210	280	350	μA		
Error Amplifier Section	Error Amplifier Section							
Internal Reference Voltage	V_{REF}		0.291	0.3	0.309	V		
MOS Section				ı				
Clamped Current of LX1 MOS	I_{CLP}			32		mA		
BV of LX1 MOS	V_{BV_LX1}		500	CO		V		
BV of LX2 MOS	V_{BV_LX2}		700			V		
Thermal Section								
Minimum Thermal Foldback Temperature	T_{FB1}		~	115		\mathcal{C}		
Maximum Thermal Foldback Temperature	T_{FB2}			155		$\mathcal C$		

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, on higher continues on higher 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.

Note 3: Increase VIN pin voltage gradually higher than V_{VIN_ON} voltage then turn down to 12V.

© 2020 Silergy Corp.

Operation

SY59119A1/B1 is a HV TRIAC Linear Controller. It recognizes ac mode, leading edge mode, trailing edge mode automatically in first sixteen ac cycles.

For improving the efficiency, the current of LX1 is compensated by VBUS. In the peak voltage of VBUS, the current of LX1 is the smallest, and then the loss is decreased.

In leading edge mode, SY59119A1/B1 controls the fire current automatically which is the Silergy exclusive patent.

For trailing edge dimmer, SY59119A1/B1 has a good performance by Reliable reset control.

TFB is available to be set for different application.

PF is higher than 0.7 suitable for European market.

Applications Information

AC Mode

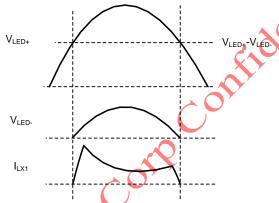


Fig.4 state in ac mode

In ac mode, the wave is showed above. The current of LX1 is compensated by VBUS for good efficiency performance.

In any kinds of mode, the output current is regulated by ISEN1 and ISEN2.

$$I_{OUT} = \frac{V_{REF}}{R_{ISEN1} + R_{ISEN2}}$$

Trailing Edge Mode

In trailing edge mode, SY59119A1/B1 tries to reset the dimmer when the current of LX1 MOS is off. As showed below.

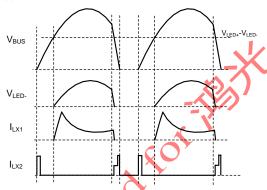


Fig.5 state in trailing edge mode

Trailing Edge Mode

In trailing edge mode, the fire current is decided by the resistor of ISEN2.

With smaller $R_{\rm ISEN2}$, the latching current of LX2 is larger. For improving the efficiency, recommend to choose larger value of $R_{\rm ISEN2}$, and satisfy appropriate compatibility.

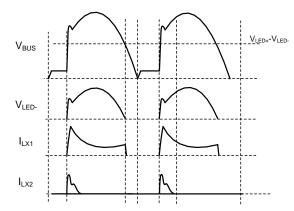


Fig.6 state in leading edge mode

The current of LX1 and LX2 flow through $R_{\rm ISEN2}$ simultaneously. So the actual fire current contains both two currents which help to decrease the fire loss.

Recommend value: R_{ISEN1}>0.7 ohm.

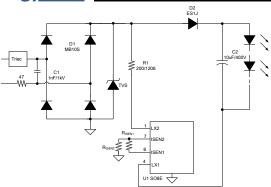
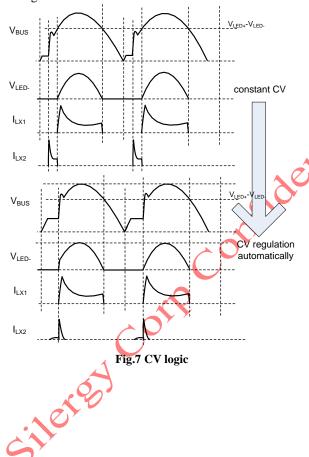


Fig.6 fire current sample resistor

CV Logic

For further improve efficiency, SY59119A1/B1 integrate automatic CV regulation logic. So the loss caused by holding current is reduced.


TFB is set by TFB pin and controlled by digital logic. So please do not select the value out of list.

RTFB(k ohm)	TFB(°)
NC	155
120	150
56	145
30	140
15	135
7.5	130
3.6	125
1.8	120
0	115

TFB curve is showed as below.

Fig.8 TFB curve

Design Example

A design example of typical application is shown below step by step.

Example A

#1. Identify design specification

Target parameter			
I _{OUT}	22mA	T_{TFB}	150°

#1. Set R_{ISEN1} and R_{ISEN2}

Set R_{ISEN2}=0.75 ohm

$$R_{ISEN1} = \frac{V_{REF}}{I_{OUT}} - R_{ISEN2} = \frac{0.3}{0.022} - 0.75 \approx 13 \text{ ohm}$$

#2 set TFB pin

R_{TFB}=NC.

#3 final result

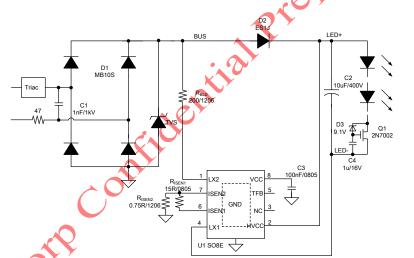
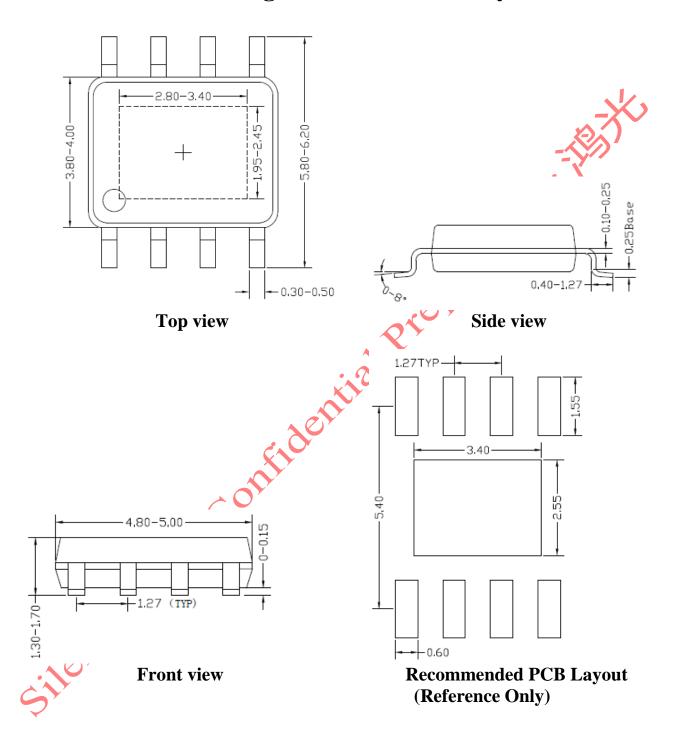
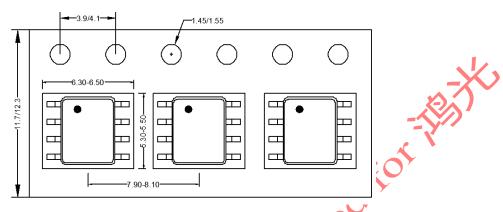
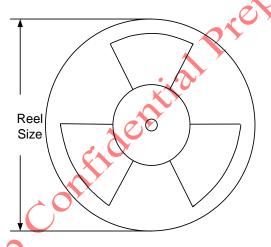



Fig.9 Final Design Result

SO8E Package Outline & PCB layout


Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification


1. Taping orientation

SO8E

Feeding direction ———

2. Carrier Tape & Reel specification for packages

Package types	Tape width	Pocket	Reel size	Trailer *	Leader *	Qty per reel
	(mm)	pitch(mm)	(Inch)	length(mm)	length (mm)	(pcs)
SO8E	12	8	13"	400	400	2500

Others: NA