

2A 6-Channel Load Switch with Slew Rate Control

FEATURES

Integrated 6 P-channel MOSFETs

Supply voltage: 1.5V to 5.5V

Input voltage: 1.2V to 5.5V

Typical on-state resistance R_{ON} (V_{VSYS}=1.8V):

 R_{ON} =56m Ω at V_{INX} =5.0V R_{ON} =71m Ω at V_{INX} =3.3V

 $R_{ON}=122m\Omega$ at $V_{INX}=1.8V$

Ultra-low quiescent and shutdown current

I²C configuration (per channel):
 On/Off control & power sequence
 Programmable slew rate control (4 options)
 Selectable quick output discharge (QOD)
 Selectable reverse current blocking

- 2A maximum continuous current for V_{INX}>1.8V
- FOWLP 1.50mm x 1.50mm x 0.495mm 16B package

APPLICATIONS

- Smartphones and tablets
- Portable and wearable devices

GENERAL DESCRIPTION

The AW35206 is a 6-channel, low R_{ON} load switch with user programmable features. The device integrates six P-channel MOSFETs that operates over the input voltage from 1.2V to 5.5V. While the supply voltage range of the system is 1.5V ~5.5V. All load switches are controlled through I²C BUS which makes it realizable for usage with processors having limited GPIO available.

The rising time of output voltage is programmable to avoid inrush current. Each output integrates a quick output discharge (QOD) function block that can be disabled via I²C BUS. Also every load switch has the ability that cuts off current when the output voltage is higher than the input while it can be disabled for low quiescent current. Single switch supports the maximum current 2A for V_{INX}>1.8V.

The AW35206 is available in FOWLP package (0.35-mm pitch) and characterized for operation over the free-air temperature range of -40°C to 85°C.

TYPICAL APPLICATION CIRCUIT

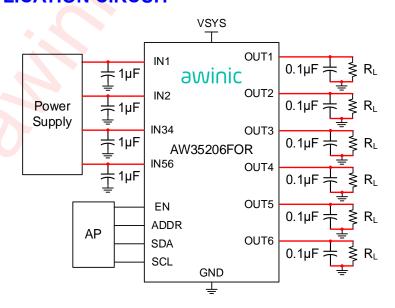
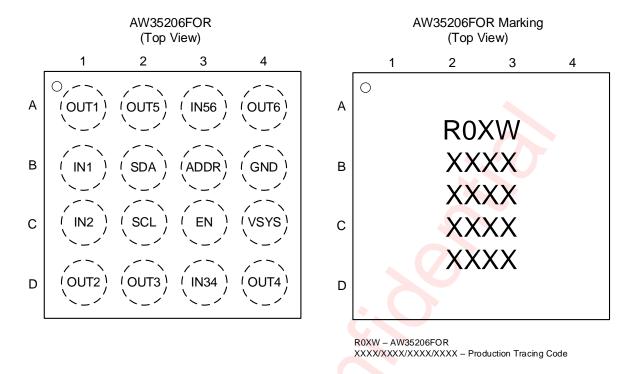
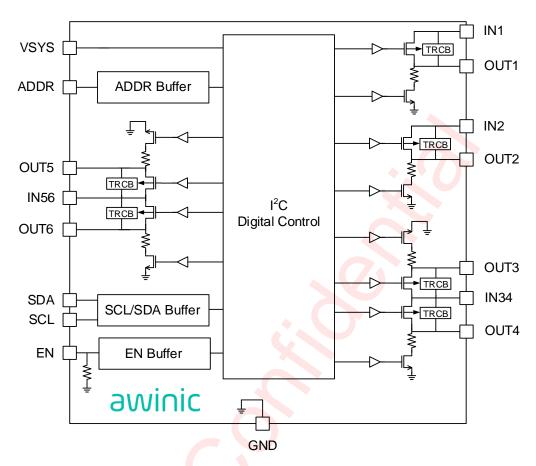


Figure 1 Typical application circuit of AW35206

1

PIN CONFIGURATION AND TOP MARK




Figure 2 Pin Configuration and Top Mark

PIN DEFINITION

No.	NAME	DESCRIPTION
A1	OUT1	Load switch 1 output
A2	OUT5	Load switch 5 output
А3	IN56	Load switch 5 and 6 input
A4	OUT6	Load switch 6 output
B1	IN1	Load switch 1 input
B2	SDA	Serial data input or output
В3	ADDR	Device address pin
B4	GND	Device ground
C1	IN2	Load switch 2 input
C2	SCL	Serial clock input
С3	EN	Load switch enable pin (actively high)
C4	VSYS	Power supply to the device
D1	OUT2	Load switch 2 output
D2	OUT3	Load switch 3 output
D3	IN34	Load switch 3 and 4 input
D4	OUT4	Load switch 4 output

FUNCTIONAL BLOCK DIAGRAM

NOTE: TRCB is "True Reverse Current Blocking", this block cuts off current when $V_{OUT} > V_{IN}$ if this function is enabled by I^2C .

Figure 3 Functional Block Diagram

TYPICAL APPLICATION CIRCUITS

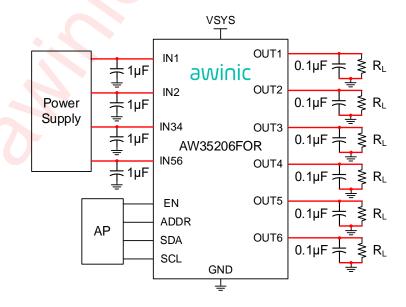


Figure 4 Typical Application circuit of AW35206

ORDERING INFORMATION

Par	t Number	Temperature	Package	Markin g	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW3	35206FOR	-40°C~85°C	FOWLP 1.50mm×1.50mm ×0.495mm-16B	R0XW	MSL1	RoHS+HF	4500 units/ Tape and Reel

ABSOLUTE MAXIMUM RATINGS(NOTE1)

PAI	RAMETERS	RANGE		
Power IN/OUT Pins and Supply Pin Voltage Range	IN1, IN2, IN34, IN56, OUT1, OUT2, OUT3, OUT4, OUT5, OUT6, VSYS	-0.3V to 6V		
Other Pins Voltage Range	EN, ADDR, SCL, SDA	-0.3V to V_{VSYS} +0.3V		
Each Load Switch Maximum C	continuous Current for V _{INX} >1.8V (NOTE 2)	2A		
Maximum Peak Swit	ch Current for V _{INX} >2V (NOTE 3)	2.5A		
Junction-to-ambient	Thermal Resistance θ _{JA} ^(NOTE 4)	122°C/W		
Operating Free	-40°C to 85°C			
Maximum Juno	ction Temperature T _{JMAX}	150°C		
Storage	Temperature T _{STG}	-65°C to 150°C		
Lead Temperatur	e (Soldering 10 Seconds)	260°C		
	ESD & Latch-Up			
HBM (Huma	n Body Model) (NOTE 5)	±2kV		
CDM(Charged	d Device Model) (NOTE 6)	±1.5kV		
Lat	Latch-Up ^(NOTE 7)			
Lau	ын-ор ^{ес}	-IT: -200mA		

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should be within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: Limited by thermal design.

NOTE3: Limited by thermal design, and tested in 10ms width pulse current.

NOTE4: Thermal resistance from junction to ambient is highly dependent on PCB layout.

NOTE5: The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Test method: ESDA/JEDEC JS-001-2017.

NOTE6: All pins. Test Condition: ESDA/JEDEC JS-002-2018.

NOTE7: Test Condition: JESD78E.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{VSYS}	VSYS voltage	1.5		5.5	V
V_{IN}	Input voltage	1.2		5.5	V
Vout	Output voltage	0		VIN	V
V _{EN}	EN voltage	0		5.5	V
V_{ADDR}	ADDR voltage	0		5.5	V
V _{SCL} /V _{SDA}	SCL/SDA voltage	0		5.5	V
Cin	Input capacitance	0.1	1		μF
C _{OUT}	Output load capacitance		0.1		μF

ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics

 V_{VSYS} =1.8V, V_{INX} =3.3V, R_L =150 Ω , C_{IN} =1 μ F, C_{OUT} =0.1 μ F, T_A =25°C for typical values (unless otherwise noted).

	PARAMETER	TEST CONDITION		MIN	TYP	MAX	UNIT
POWER	SUPPLY CURRENTS AN	ID LEAKAGES					
	Quiescent current for	V _{VSYS} =V _{EN} =5.0V, all switches on			0.3	0.5	
I _{Q_VSYS}	VSYS when reverse current blocking of all	V _{VSYS} =V _{EN} =3.3V, all switches on		0.2	0.5	μΑ	
	channels off	V _{VSYS} =V _{EN} =1.8V, all switches on			0.1	0.5	
	Quiescent current for	V _{VSYS} =V _{EN} =5.0V, all switches on			1.9	4	
I _{QB_VSYS}	VSYS when reverse current blocking of all	V _{VSYS} =V _{EN} =3.3V, all switches on			1.5	3	μΑ
	channels on	V _{VSYS} =V _{EN} =1.8V, all switches on			1.1	2	
		V _{VSYS} =V _{SDA} =V _{SCL} =5.0V, V _{EN} =0V			10	500	
I _{SD_VSYS}	Shutdown current for VSYS	V _{VSYS} =V _{SDA} =V _{SCL} =3.3V, V _{EN} =0V			3	200	nA
	1010	V _{VSYS} =V _{SDA} =V _{SCL} =1.8V, V _{EN} =0V			2	150	
	Quiescent current for	VINX=5.0V, VVSYS=VEN=1.8V, IOUT	<=0A		125	550	
I _{Q_INX}	the input of any channel when reverse				30	500	nA
	current blocking off	VINX=1.8V, VVSYS=VEN=1.8V, IOUT	<=0A		5	150	
	Quiescent current for	VINX=5.0V, VVSYS=VEN=1.8V, IOUT	<=0A		0.62	1.5	
I _{QB_INX}	the input of any channel when reverse	VINX=3.3V, VVSYS=VEN=1.8V, IOUT	<=0A		0.49	1.3	μA
	current blocking on	V _{INX} =1.8V, V _{VSYS} =V _{EN} =1.8V, I _{OUT}	<=0A		0.47	1.2	
	,	V_{INX} =5.0V, V_{VSYS} =1.8V, V_{EN} =0V \vdash	T _A =25°C		30	800	
			T _A =85°C		390		nA
	Shutdown current for	V -2.2V V -4.2V V -0V	T _A =25°C		6	500	
I _{SD_INX}	channel	ne input of any V _{INX} =3.3V, V _{VSYS} =1.8V, V _{EN} =0V hannel	T _A =85°C		143		
		V -4 0V V -4 0V V -0V	T _A =25°C		2	400	
		V_{INX} =1.8V, V_{VSYS} =1.8V, V_{EN} =0V	T _A =85°C		115		
I _{EN}	EN leakage current	V _{VSYS} =1.5V~5.5V, V _{EN} =0V~5.5V				0.3	μA
I _{ADDR}	ADDR leakage current	V _{VSYS} =1.5V~5.5V, V _{ADDR} =0V~5.5	V			0.3	μA
I _{SCL}	SCL leakage current	V _{VSYS} =1.5V~5.5V, V _{SCL} =5V				0.1	μA
I _{SDA}	SDA leakage current	V _{VSYS} =1.5V~5.5V, V _{SDA} =5V				0.1	μA
RESISTA	NCE CHARACTERISTIC	S					
		V _{INX} =5.0V, I _{OUTX} =200mA			56	80	
Ron	on-state resistance of any channel	V _{INX} =3.3V, I _{OUTX} =200mA			71	100	mΩ
	any onamor	V _{INX} =1.8V, I _{OUTX} =200mA			122	150	
R _{PD}	OUT port discharge resistance	V _{VSYS} =1.8V, V _{IN} =3.3V, V _{OUT} =1.0V	/	35	68	100	Ω

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
R _{EN}	EN pin pull-down resistance	V _{VSYS} =1.5V~5.5V	8			МΩ
Raddr	ADDR pin pull-down resistance	V _{VSYS} =1.5V~5.5V				МΩ
THERSH	OLD CHARACTERISTIC	S				
V _{IH}	High-level input voltage for EN/ADDR		1.0			V
VIL	Low-level input voltage for EN/ADDR	•			0.4	V
TRUE RE	VERSE CURRENT BLO	CKING CHARACTERISTICS				
V _{T_RCB}	RCB protection trip point	V _{IN} =3.3V, V _{T_RCB} =V _{OUT} -V _{INX}		70	125	mV
V _{R_RCB}	RCB protection release point	VIN=3.3V, VR_RCB=VINX-VOUT		70	105	mV
V _{H_RCB}	RCB hysteresis voltage	VIN=3.3V, VH_RCB= VT_RCB+VR_RCB		140		mV
I _{SD_OUT}	Shutdown current for OUT when RCB on	V _{IN} =0V, V _{OUT} =3.3V		280	800	nA
I ² C CHAF	RACTERISTICS					
V _{IH} _IIC	High-level input voltage for SCL/SDA		1.0			V
V _{IL_IIC}	Low-level input voltage for SCL/SDA				0.4	V
Vol_sda	Low output voltage for SDA	Isink_sda=3mA			0.3	V
f _{SCL}	Clock frequency			400		kHz

Switch Characteristics(1)

 $V_{VSYS}=1.8V$, $V_{INX}=3.3V$, $R_L=150\Omega$, $C_{OUT}=0.1\mu F$, $T_A=25^{\circ}C$

	PARAMETER	REG04h[7:0]	REG09h[7:0]	MIN	TYP	MAX	UNIT
		0x00	0x00	180	512	880	μs
ton Voutx turn-on ti	V ₂ - turn on time	0x3F	0x00	20	56	95	μs
	VOUTX turn-on time	0x00	0x3F	80	244	500	μs
		0x3F	0x3F	500	1571	3000	μs
		0x00	0x00	200	380	560	μs
	V riging time	0x3F	0x00	20	46	75	μs
t R	Voutx rising time	0x00	0x3F	105	175	265	μs
		0x3F	0x3F	550	1100	1700	μs

	PARAMETER	REG04h[7:0]	REG09h[7:0]	MIN	TYP	MAX	UNIT
		0x00	0x00		320		μs
4 (2)	V ON delevitime	0x3F	0x00		34		μs
t _{DON} ⁽²⁾	V _{OUTX} ON delay time	0x00	0x3F		150		μs
		0x3F	0x3F		900		μs
		0x00	0x00		4		μs
t _{OFF} (2)	Voutx turn-off time	0x3F	0x00		4		μs
lOFF(=)		0x00	0x3F		4		μs
		0x3F	0x3F		4		μs
		0x00	0x00		1		μs
+(2)	V OFF doloy time	0x3F	0x00		1		μs
t _{DOFF} (2)	V _{OUTX} OFF delay time	0x00	0x3F	7	1		μs
		0x3F	0x3F		1		μs
		0x00	0x00		14		μs
t _F (2)	V _{OUTX} falling time	0x3F	0x00		14		μs
\(\mathbb{l}\mathbb{F}\^{\sigma}\)		0x00	0x3F	_	14		μs
		0x3F	0x3F		14		μs

 $V_{VSYS}=1.8V$, $V_{INX}=3.3V$, $R_L=500\Omega$, $C_{OUT}=0.1\mu F$, $T_A=25^{\circ}C$

	PARAMETER	REG04h[7:0]	REG09h[7:0]	MIN	TYP	MAX	UNIT
		0x00	0x00		472		μs
t _{ON} (2)	Vturn on time	0x3F	0x00		54		μs
lON(=)	V _{OUTX} turn-on time	0x00	0x3F		223		μs
		0x3F	0x3F		1487		μs
		0x00	0x00		364		μs
t _R (2)	Voutx rising time	0x3F	0x00		39		μs
IR(=)		0x00	0x3F		165		μs
		0x3F	0x3F		1026		μs
		0x00	0x00		295		μs
+ (2)	V ON dolov timo	0x3F	0x00		34		μs
t _{DON} ⁽²⁾	V _{OUTX} ON delay time	0x00	0x3F		140		μs
		0x3F	0x3F		840		μs

	PARAMETER	REG04h[7:0]	REG09h[7:0]	MIN	TYP	MAX	UNIT
		0x00	0x00		5		μs
toff ⁽²⁾	V _{OUTX} turn-off time	0x3F	0x00		5		μs
(OFF(=)	Voorx turn-on time	0x00	0x3F		5		μs
		0x3F	0x3F		5		μs
	V _{OUTX} OFF delay time	0x00	0x00		1		μs
t _{DOFF} (2)		0x3F	0x00		1		μs
LDOFF(=)		0x00	0x3F		1		μs
		0x3F	0x3F		1		μs
		0x00	0x00		15		μs
t _F (2)	Voutx falling time	0x3F	0x00		15		μs
LF(=)		0x00	0x3F		15		μs
		0x3F	0x3F		15		μs

NOTE1: X=1,2,3,4,5,6

NOTE2:This parameter is guaranteed by design and characterization; not production tested.

TIMING DIAGRAM

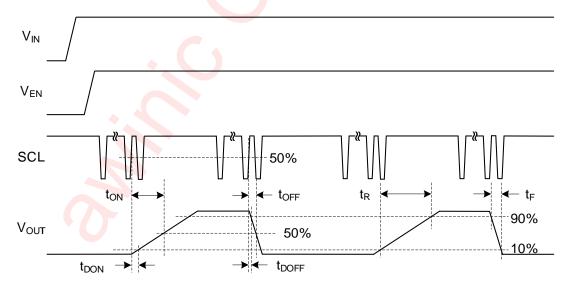


Figure 5 AW35206 Timing Diagram

12C INTERFACE TIMING

SYMBOL	DESCRIPTION		MIN	TYP	MAX	UNIT
FscL	Interface Clock Frequency				400	kHz
4	Decliteb Time	SCL		83		ns
t DEGLITCH	Deglitch Time	SDA	4	115		ns
t _{HD:STA}	(Repeat-Start) Start Condition Hold Ti	me	0.6		•	μs
t _{LOW}	Low Level Width of SCL			U		μs
tніgн	High Level Width of SCL			,		μs
tsu:sta	(Repeat-Start) Start Condition Setup Time					μs
thd:dat	Data Hold Time	. (7)	0			μs
SYMBOL	DESCRIPTION		MIN	TYP	MAX	UNIT
tsu:dat	Data Setup Time		0.1			μs
t _R	Rising Time of SDA and SCL				0.3	μs
t _F	Falling Time of SDA and SCL				0.3	μs
tsu:sто	Stop Condition Setup Time					μs
t _{BUF}	Time Between Start and Stop Condition	on	1.3			μs

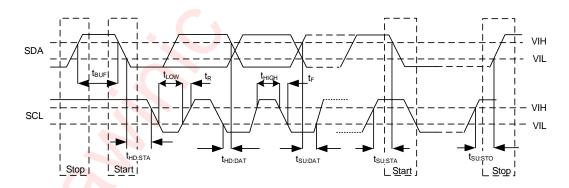
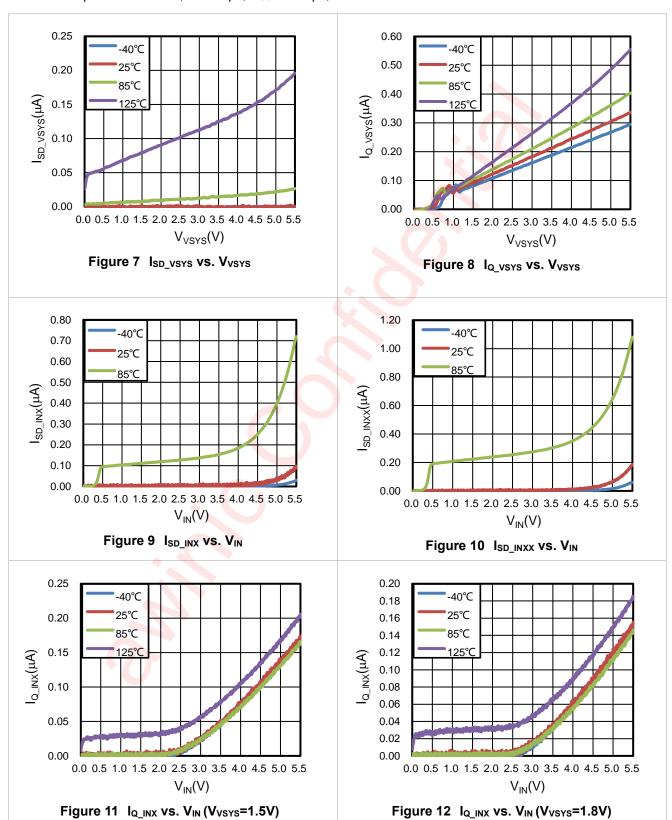
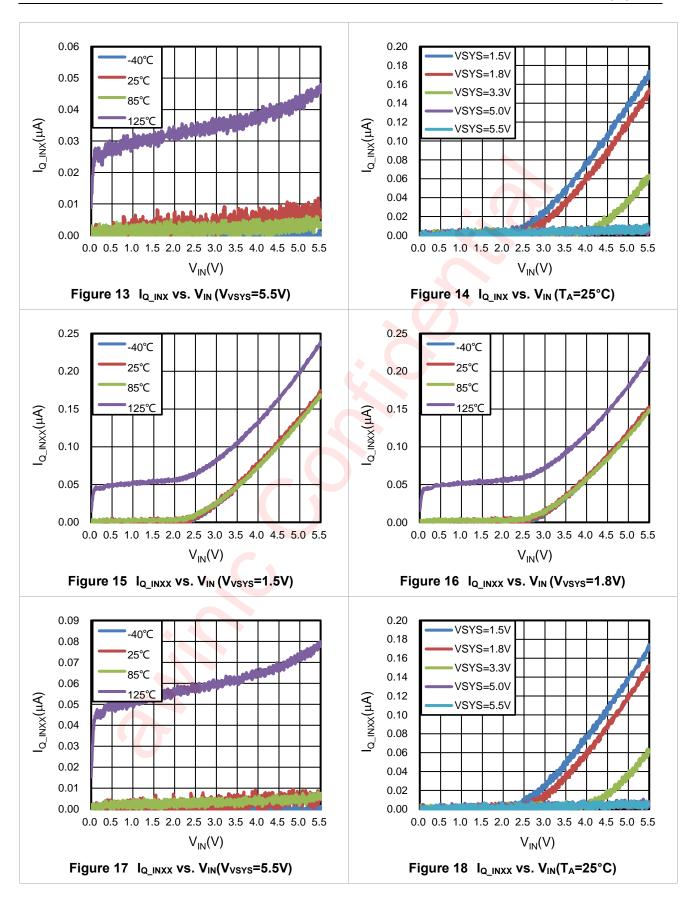
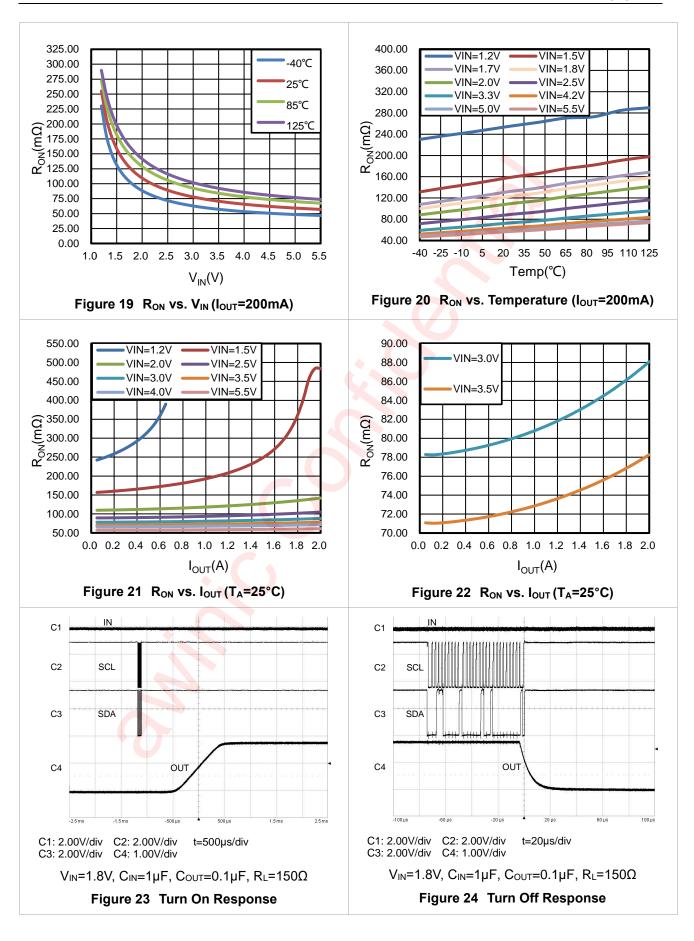
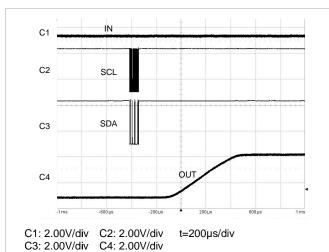



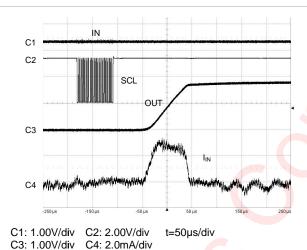
Figure 6 I²C Interface Timing



TYPICAL CHARACTERISTICS


Ambient temperature is 25°C, C_{IN} = 1 μ F, C_{OUT} = 0.1 μ F, unless otherwise noted.

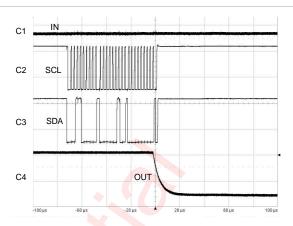




 V_{IN} =3.3V, C_{IN} =1 μ F, C_{OUT} =0.1 μ F, R_{L} =150 Ω

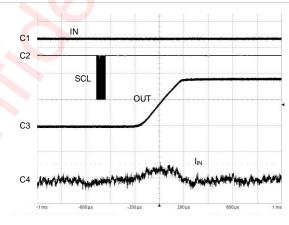
Figure 25 Turn On Response

V_{IN}=1.8V, C_{IN}=1μF, C_{OUT}=0.1μF, no R_L


Figure 27 Inrush Current (Idsw_tr1/0=01)

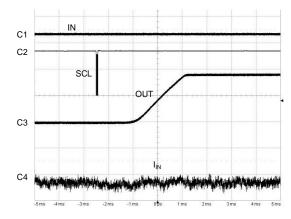
C1: 1.00V/div C2: 2.00V/div t=500µs/div C3: 1.00V/div C4: 2.0mA/div

 $V_{IN}=1.8V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, no R_L


Figure 29 Inrush Current (ldsw_tr1/0=00)

C1: 2.00V/div C2: 2.00V/div t=20µs/div C3: 2.00V/div C4: 2.00V/div

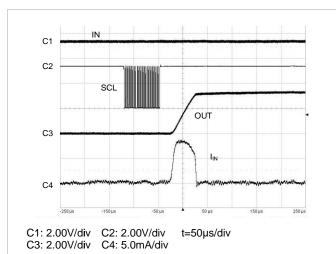
 V_{IN} =3.3V, C_{IN} =1 μ F, C_{OUT} =0.1 μ F, R_L =150 Ω


Figure 26 Turn Off Response

C1: 1.00V/div C2: 2.00V/div $t=200\mu s/div$ C3: 1.00V/div C4: 2.0mA/div

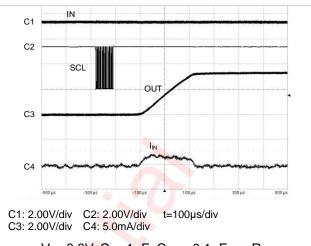
 V_{IN} =1.8V, C_{IN} =1 μ F, C_{OUT} =0.1 μ F, no R_L

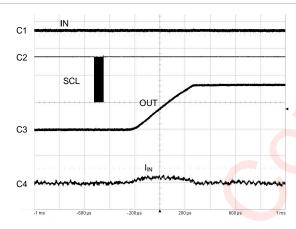
Figure 28 Inrush Current (Idsw_tr1/0=10)



C1: 1.00V/div C2: 2.00V/div t=1ms/div C3: 1.00V/div C4: 2.0mA/div

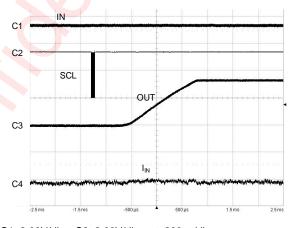
 V_{IN} =1.8V, C_{IN} =1 μ F, C_{OUT} =0.1 μ F, no R_L


Figure 30 Inrush Current (Idsw_tr1/0=11)



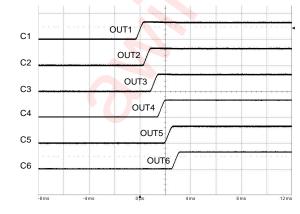
V_{IN}=3.3V, C_{IN}=1μF, C_{OUT}=0.1μF, no R_L

Figure 31 Inrush Current (Idsw_tr1/0=01)


V_{IN}=3.3V, C_{IN}=1μF, C_{OUT}=0.1μF, no R_L Figure 32 Inrush Current (Idsw_tr1/0=10)

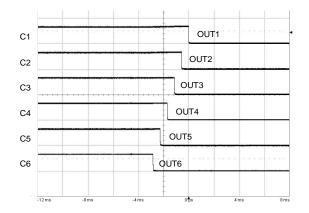
C1: 2.00V/div C2: 2.00V/div t=200µs/div C3: 2.00V/div C4: 5.0mA/div

 $V_{IN}=3.3V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, n_O R_L


Figure 33 Inrush Current (Idsw_tr1/0=00)

C1: 2.00V/div C2: 2.00V/div t=200µs/div C3: 2.00V/div C4: 5.0mA/div

 V_{IN} =3.3V, C_{IN} =1 μF , C_{OUT} =0.1 μF , no R_L


Figure 34 Inrush Current (Idsw_tr1/0=11)

C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=2.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

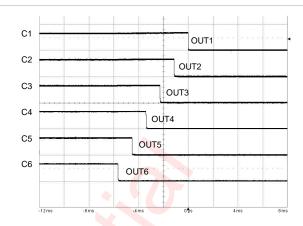
 V_{IN} =3.3V, C_{IN} =1 μ F, C_{OUT} =0.1 μ F, R_{L} =150 Ω

Figure 35 Power up with seq_speed<1:0>=00

C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=2.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

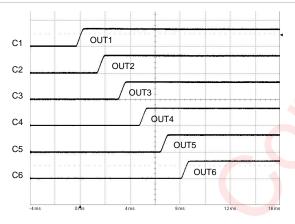
 $V_{IN}=3.3V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, $R_{L}=150\Omega$

Figure 36 Power down with seq_speed<1:0>=00



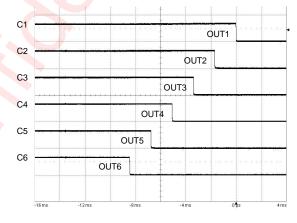
C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=2.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

 $V_{IN}=3.3V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, $R_{L}=150\Omega$


Figure 37 Power up with seq_speed<1:0>=01

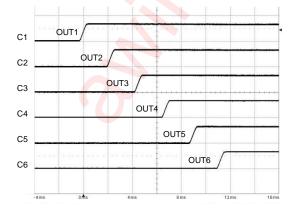
C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=2.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

 $V_{IN}=3.3V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, $R_{L}=150\Omega$


Figure 38 Power down with seq_speed<1:0>=01

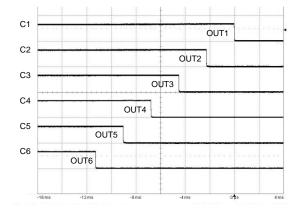
C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=4.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

 $V_{IN}=3.3V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, $R_{L}=150\Omega$


Figure 39 Power up with seq_speed<1:0>=10

C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=4.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

 $V_{IN}=3.3V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, $R_L=150\Omega$


Figure 40 Power down with seq_speed<1:0>=10

C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=4.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

 V_{IN} =3.3V, C_{IN} =1 μ F, C_{OUT} =0.1 μ F, R_{L} =150 Ω

Figure 41 Power up with seq_speed<1:0>=11

C1: 5.00V/div C2: 5.00V/div C3: 5.00V/div t=4.0ms/div C4: 5.00V/div C5: 5.00V/div C6: 5.00V/div

 $V_{IN}=3.3V$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$, $R_{L}=150\Omega$

Figure 42 Power down with seq_speed<1:0>=11

AW35206 Feb. 2023 V1.4

DETAILED FUNCTIONAL DESCRIPTION

The AW35206 integrates six PMOS load switches, and provides a low on-resistance for a low voltage drop across the device. The supply voltage of the device is from 1.5V to 5.5V and the input of the load switch is 1.2V~5.5V. All channels are controlled through I²C BUS for processors. Each output integrates a selectable quick discharge function block for necessity. A controlled slew rate is used in applications to limit the inrush current. Any load switch has the ability to block reverse current when the output voltage is higher than the input. Also this function can be disabled by I²C for low quiescent current.

TURN ON/OFF CONTROL

All channels of the device are opened when EN pin is tied low (disable) or pulled down by internal $12M\Omega$ resistor, forcing PMOS switch off. The IN/OUT path is activated under a minimum input voltage of 1.2V if the corresponding channel is closed. Each load switch of the AW35206 can be enabled in two ways using the I²C interface if the EN pin is pulled high.

1. Setting Idswx_seq<2:0>=000 in 0x05(LDSW12_SEQ) or 0x06(LDSW34_SEQ) or 0x07(LDSW56_SEQ), making Idswx_en=1 assigned to the load switch in register can enable the corresponding channel otherwise disable it.

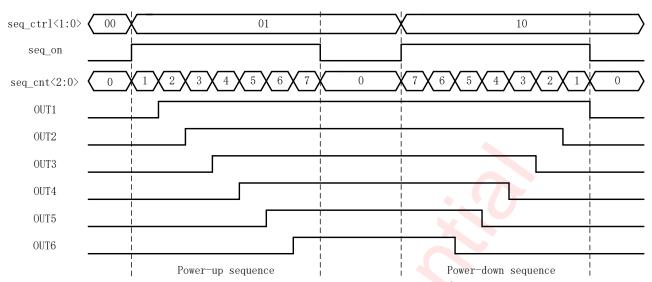
 EN
 Idswx_en
 INX to OUTX

 Low
 OFF

 High
 OFF
 ON

Table 1. Functional Table when LDSWXX SEQ Registers are 0x00

2. Setting Idswx_seq<2:0>≠000 in 0x05(LDSW12_SEQ) or 0x06(LDSW34_SEQ) or 0x07(LDSW56_SEQ), the corresponding load switch is controlled by power sequence in the register "SEQ_CTR".


Writing "01" in seq_ctrl<1:0> when seq_on="0" executes a power-up sequence and seq_cnt<2:0> will increase from "000" to "111", and the value of the seq_cnt<2:0> is defined as slot. The bit seq_on will be set "1" until the power-up sequence is finished, the load switch x turns on when the value of seq_cnt<2:0> equals that of ldswx_seq<2:0> after the time interval set by seq_speed<1:0>. Seq_on will be reset to "0" after seq_cnt<2:0> finishes an increasing counting and seq_cnt<2:0> is also reset to "000", which indicates the power-up sequence is over.

Similarly, a power-down sequence is triggered when the seq_ctrl<1:0> is wrote "10", and seq_cnt<2:0> will decrease from "111" to "000". The bit seq_on will be set "1" until the power-down sequence is finished, the load switch x turns off when the value of seq_cnt<2:0> equals that of ldswx_seq<2:0> after the time interval defined by seq_speed<1:0>. Seq_on will be reset to "0" after seq_cnt<2:0> finishes a decreasing counting and seq_cnt<2:0> is also reset to "000", which indicates the power-down sequence is over.

A typical power-up/down sequence is illustrated in the figure 43 below, provided voltages of all the input pins are good enough.

17

NOTE: The register bit $ldswx_seq<2:0>(x=1,2,...,6)$ is set "001" to "110" by l^2C interface.

Figure 43 A typical power-up/down sequence

SLEW RATE CONTROL

When the switch is enabled, the device regulates the gate voltage of MOSFET, and controls the V_{OUT} slew rate during t_R to avoid a large input inrush current. The rising time of the V_{OUT} can be set in four levels through I^2C BUS. The feature reduces the interference to the power supply.

QUICK OUTPUT DISCHARGE

The AW35206 includes the Quick Output Discharge (QOD) feature for the output of every load switch, in order to discharge the application capacitor connected on OUT pin. This function can be disabled by I^2C and is turned on by default. When EN pin or the control bit in register LDSW_EN is set to low level (disable state), a discharge resistance with a typical value of 68Ω connected between the output and ground, pulls down the output and prevents it from floating.

REVERSE CURRENT BLOCKING

The AW35206 integrates a function block that can block reverse current for each load switch, which can prevent the current from flowing through the P-FET or the body diode when the output voltage is higher than the input. This ability can be turned off for low current consumption in the register LDSW_RCB.

GENERAL I²C OPERATION

The AW35206 is compatible with I²C interface. The SCL line is an input and the SDA line is a bi-directional open-drain output. The I²C salve address of AW35206 is 0011000b (ADDR pin connected to GND) or 0011001b (ADDR pin connected to VSYS). The I²C interface is accessible as long as the supply voltage is above 1.5V.

Table 2. Device Address

A7	A6	A5	A4	A3	A2	A1	Α0
0	0	1	1	0	0	ADDR	R/W

ADDR=0: slave address=0x18H;

ADDR=1: slave address=0x19H.

DATA VALIDATION

When SCL is high level, SDA level must be constant. SDA can be changed only when SCL is low level.

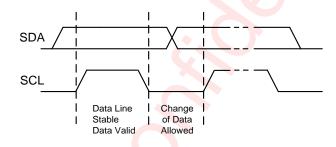


Figure 44 Data Validation Diagram

I²C START/STOP

I²C start: SDA changes from high level to low level when SCL is high level.

I²C stop: SDA changes from low level to high level when SCL is high level.

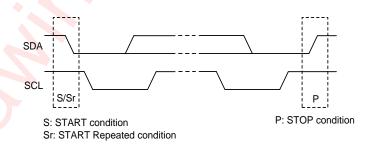


Figure 45 Start and Stop Conditions

ACK (ACKNOWLEDGEMENT)

ACK means the successful transfer of I²C bus data. After master sends 8bits data, SDA must be released; SDA is pulled to GND by slave device when slave acknowledges.

When master reads, slave device sends 8bit data, releases the SDA and waits for ACK from master. If ACK is send and I²C stop is not send by master, slave device sends the next data. If ACK is not send by master, slave device stops to send data and waits for I²C stop.

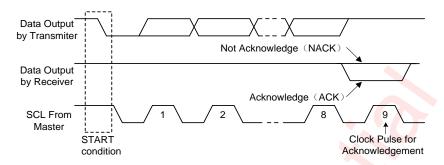


Figure 46 Acknowledgement Diagram

WRITE PROCESS

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol allows a single data line to transfer both command/control information and data using the synchronous serial clock.

Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow.

In a write process, the following steps should be followed:

- a) Master device generates START condition. The "START" signal is generated by lowering the SDA signal while the SCL signal is high.
- b) Master device sends slave address (7-bit) and the data direction bit (r/w = 0).
- c) Slave device sends acknowledge signal if the slave address is correct.
- d) Master sends control register address (8-bit)
- e) Slave sends acknowledge signal
- f) Master sends data byte to be written to the addressed register
- g) Slave sends acknowledge signal
- h) If master will send further data bytes the control register address will be incremented by one after acknowledge signal (repeat steps f and g)
- i) Master generates STOP condition to indicate write cycle end

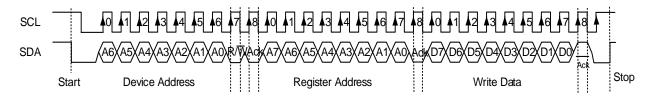


Figure 47 I²C Write Timing

READ PROCESS

In a read cycle, the following steps should be followed:

- a) Master device generates START condition
- b) Master device sends slave address (7-bit) and the data direction bit (R/W = 0).
- c) Slave device sends acknowledge signal if the slave address is correct.
- d) Master sends control register address (8-bit)
- e) Slave sends acknowledge signal
- f) Master generates STOP condition followed with START condition or REPEAT START condition
- g) Master device sends slave address (7-bit) and the data direction bit (R/W = 1).
- h) Slave device sends acknowledge signal if the slave address is correct.
- i) Slave sends data byte from addressed register.
- j) If the master device sends acknowledge signal, the slave device will increase the control register address by one, then send the next data from the new addressed register.
- k) If the master device generates STOP condition, the read cycle is ended.

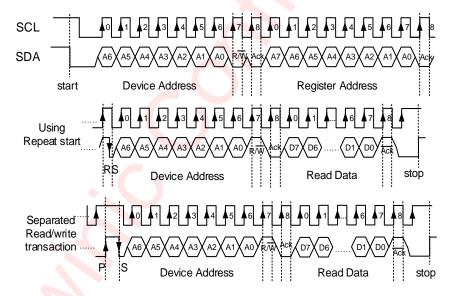


Figure 48 I²C Read Timing

APPLICATION INFORMATION

POWER SUPPLY RECOMMENDATIONS

The device is designed to operate with a Vvsys range of 1.5V to 5.5V while the input voltage of each load switch is 1.2V~5.5V. The supply must be well regulated and placed as close to the device VSYS terminal as possible. It must also be able to withstand all transient and load currents, using a recommended input capacitance of 1µF if necessary. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10µF may be sufficient.

MANAGING INRUSH CURRENT

When the switch is enabled, the output capacitors must be charged up from 0V to V_{IN}. An input inrush current will appear. The Inrush current can be calculated using Equation 1:

$$I_{inrush} = C_{OUT} \frac{dV_{OUT}}{dt}$$
 (1)

where:

- Cout = Output capacitance
- dV_{OUT} = Change of output voltage, equals to V_{IN}
- dt = Rise time t_R.

The AW35206 offers a controlled slew rate for minimizing inrush current.

POWER DISSIPATION

The power dissipation produced by the power MOSFET in on-state can be calculated with the following equation:

$$P_{\rm D} = R_{\rm ON} \times I_{\rm OUT}^2 \tag{2}$$

Where:

- P_D = Power dissipation (W)
- R_{ON} = Power MOSFET on-state resistance (Ω)
- I_{OUT} = Output current (A)

THERMAL CONSIDERATIONS

Main contributor in term of junction temperature T_J(max) is the power dissipation, and T_J(max) should be restricted to 125°C under on-state. Junction temperature is directly proportional to power dissipation in the device, it can be calculated by the following equation:

$$T_{I} = T_{A} + R_{HIA} \times P_{D} \tag{3}$$

Where: • T_J = Junction temperature of the device

- T_A = Ambient temperature
- PD = Power dissipation of the device
- ReJA = Junction to ambient thermal resistance. This parameter is highly dependent on board layout.

Register Configuration

Register List

ADDR	NAME	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
00h	CHIPID	0	0	1	1	0	0	chip_id<1:0>		0x33
01h	VERID	0	0	0	0	0	0	ver_id	l<1:0>	0x00
02h	LDSW_EN	0	0	ldsw6_en	ldsw5_en	ldsw4_en	ldsw3_en	ldsw2_en	ldsw1_en	0x00
03h	LDSW_DIS	0	0	ldsw6_dis	ldsw5_dis	ldsw4_dis	ldsw3_dis	ldsw2_dis	ldsw1_dis	0x3F
04h	LDSW_TR0	0	0	ldsw6_tr0	ldsw5_tr0	ldsw4_tr0	ldsw3_tr0	ldsw2_tr0	ldsw1_tr0	0x00
05h	LDSW12_SEQ	0	0	lo	ldsw2_seq<2:0>			ldsw1_seq<2:0>		
06h	LDSW34_SEQ	0	0	lo	dsw4_seq<2:0	>	lo	ldsw3_seq<2:0>		
07h	LDSW56_SEQ	0	0	lo	dsw6_seq<2:0	>	lo	dsw5_seq<2:0	0x00	
08h	SEQ_CTR	seq_spe	ed<1:0>	seq_ct	rl<1:0>	seq_on	seq_cnt<2:0>			0x00
09h	LDSW_TR1	0	0	ldsw6_tr1	ldsw5_tr1	ldsw4_tr1	ldsw3_tr1	ldsw2_tr1	ldsw1_tr1	0x00
0Ah	LDSW_RCB	0	0	ldsw6_rcb	ldsw5_rcb	ldsw4_rcb	ldsw3_rcb	ldsw2_rcb	ldsw1_rcb	0x00
0Bh	LDSW_ON	0	0	ldsw6_on	ldsw5_on	ldsw4_on	ldsw3_on	ldsw2_on	ldsw1_on	0x00
69h	RSTN	0	0	0	0	0	0	0	0	0x00

Register Detailed Description

• CHIPID: Chip ID register(Address 00h)

Bi	it	Symbol	R/W	Description	Default
7:2	2	Chip_id<7:2>	R	The product ID with revision	001100
1:0	0	Chip_id<1:0>	R	The product is with revision	11

VERID: Version ID register(Address 01h)

Bit	Symbol	R/W	Description	Default
7:2	Ver_id<7:2>	R	The device ID with revision	000000
1:0	Ver_id<1:0>	R	The device is with revision	00

LDSW_EN: Load switch enable register(Address 02h)

This is load switch enable control register by I²C while the EN pin is pulled high. This register can be written to enable or disable the corresponding load switch.

Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
5	Ldsw6_en	R/W	Load switch 6 control: 0: Disable 1: Enable	0
4	Ldsw5_en	R/W	Load switch 5 control: 0: Disable 1: Enable	0
3	Ldsw4_en	R/W	Load switch 4 control: 0: Disable 1: Enable	0

2	Ldsw3_en	R/W	Load switch 3 control:	0		
			0: Disable 1: Enable	0		
1	Ldsw2 en	R/W	Load switch 2 control:	0		
1	Luswz_en	FX/VV	0: Disable 1: Enable			
0	l dourt on	D/M	Load switch 1 control:	0		
0	Ldsw1_en	R/W	0: Disable 1: Enable	0		

LDSW_DIS: Load switch output discharge selecting register(Address 03h)

This register sets the discharge function of each load switch output.

Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
			Load switch 6 discharge function:	
5	Ldsw6_dis	R/W	0: Disable. OUT6 discharge will not be activated when load switch 6 is disabled by any event.	1
			1: Enable. OUT6 discharge will be activated when load switch 6 is disabled.	
			Load switch 5 discharge function:	
4	Ldsw5_dis	R/W	0: Disable. OUT5 discharge will not be activated when load switch 5 is disabled by any event.	1
			1: Enable. OUT5 discharge will be activated when load switch 5 is disabled.	
			Load switch 4 discharge function:	
3	Ldsw4_dis	R/W	0: Disable. OUT4 discharge will not be activated when load switch 4 is disabled by any event.	1
		C	1: Enable. OUT4 discharge will be activated when load switch 4 is disabled.	
			Load switch 3 discharge function:	
2	Ldsw3_dis	R/W	0: Disable. OUT3 discharge will not be activated when load switch 3 is disabled by any event.	1
			1: Enable. OUT3 discharge will be activated when load switch 3 is disabled.	
			Load switch 2 discharge function:	
1	Ldsw2_dis	R/W	0: Disable. OUT2 discharge will not be activated when load switch 2 is disabled by any event.	1
			1: Enable. OUT2 discharge will be activated when load switch 2 is disabled.	
			Load switch 1 discharge function:	
0	Ldsw1_dis	R/W	0: Disable. OUT1 discharge will not be activated when load switch 1 is disabled by any event.	1
			1: Enable. OUT1 discharge will be activated when load switch 1 is disabled.	

LDSW_TR0 & LDSW_TR1: Load switch output voltage rising time setting register(Address 04h & 09h)

Typically, V_{INX} =3.3V, R_L =150 Ω , C_{OUT} =0.1 μ F, T_A =25 $^{\circ}$ C.

Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
5	Ldsw6_tr1 Ldsw6_tr0	R/W	Load switch 6 output voltage (from 10% to 90%) rising time setting: 00: 380µs; 01: 46µs; 10: 175µs; 11: 1100µs	0/0
4	Ldsw5_tr1 Ldsw5_tr0	R/W	Load switch 5 output voltage (from 10% to 90%) rising time setting: 00: 380µs; 01: 46µs; 10: 175µs; 11: 1100µs	0/0
3	Ldsw4_tr1 Ldsw4_tr0	R/W	Load switch 4 output voltage (from 10% to 90%) rising time setting: 00: 380µs; 01: 46µs; 10: 175µs; 11: 1100µs	0/0
2	Ldsw3_tr1 Ldsw3_tr0	R/W	Load switch 3 output voltage (from 10% to 90%) rising time setting: 00: 380µs; 01: 46µs; 10: 175µs; 11: 1100µs	0/0
1	Ldsw2_tr1 Ldsw2_tr0	R/W	Load switch 2 output voltage (from 10% to 90%) rising time setting: 00: 380µs; 01: 46µs; 10: 175µs; 11: 1100µs	0/0
0	Ldsw1_tr1 Ldsw1_tr0	R/W	Load switch 1 output voltage (from 10% to 90%) rising time setting: 00: 380µs; 01: 46µs; 10: 175µs; 11: 1100µs	0/0

LDSW_SEQ12: Load switch power sequence setting register(Address 05h)

There are 7 time slots for every load switch to turn on/off. The power-up sequence starts from slot1 to slot7, and the power-down sequence is on the contrary. Turning on and off of each load switch can be set at any time slot as defined below.

Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
			000: Controlled by the bit ldsw2_en;	
5:3	Ldsw2_seq<2:0>	R/W	001: slot1; 010: slot2; 011: slot3;	000
			100: slot4; 101: slot5; 110: slot6; 111: slot7	
			000: Controlled by the bit ldsw1_en;	
2:0	Ldsw1_seq<2:0>	R/W	001: slot1; 010: slot2; 011: slot3;	000
			100: slot4; 101: slot5; 110: slot6; 111: slot7	

LDSW_SEQ34: Load switch power sequence setting register(Address 06h)

There are 7 time slots for every load switch to turn on/off. The power-up sequence starts from slot1 to slot7, and the power-down sequence is on the contrary. Turning on and off of each load switch can be set at any time slot as defined below.

Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
			000: Controlled by the bit ldsw4_en;	
5:3	Ldsw4_seq<2:0>	R/W	001: slot1; 010: slot2; 011: slot3;	000
			100: slot4; 101: slot5; 110: slot6; 111: slot7	
			000: Controlled by the bit ldsw3_en;	
2:0	Ldsw3_seq<2:0>	R/W	001: slot1; 010: slot2; 011: slot3;	000
			100: slot4; 101: slot5; 110: slot6; 111: slot7	

LDSW_SEQ56: Load switch power sequence setting register(Address 07h)

There are 7 time slots for every load switch to turn on/off. The power-up sequence starts from slot1 to slot7, and the power-down sequence is on the contrary. Turning on and off of each load switch can be set at any time slot as defined below.

Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
			000: Controlled by the bit ldsw6_en;	
5:3	Ldsw6_seq<2:0>	R/W	00 <mark>1: slot1; </mark>	000
			100: slot4; 101: slot5; 110: slot6; 111: slot7	
			000: Controlled by the bit ldsw5_en;	
2:0	Ldsw5_seq<2:0>	R/W	001: slot1; 010: slot2; 011: slot3;	000
	•		100: slot4; 101: slot5; 110: slot6; 111: slot7	

SEQ_CTR: Power sequence setting and status register(Address 08h)

This register enables the power sequence function and reveals the relevant information at present.

Bit	Symbol	R/W	Description	Default
7:6	Seq_speed<1:0>	R/W	Time interval between two adjacent slots: 00: 0.5ms; 01: 1.0ms; 10: 1.5ms; 11: 2.0ms	00
5:4	Seq_ctrl<1:0>	R/W	Power sequence controlling bits: 00: Suspend the current sequence event 01: Execute a power-up sequence 10: Execute a power-down sequence 11: No effect Note: the chip responds once after writing to these two bits, which are always read out "00".	00
3	Seq_on	R	Indicator of the power sequence: 0: Indicates that the sequence is not in progress	0

			1: Indicates that the chip is carrying out a power sequence and will return to "0" automatically after the sequence is finished.	
2:0	Seq_cnt<2:0>	R	Indicates the slot number at present: 000: Power Sequence is not in progress or has finished 001: slot 1 during the power sequence 010: slot 2 during the power sequence 011: slot 3 during the power sequence 100: slot 4 during the power sequence 101: slot 5 during the power sequence 111: slot 6 during the power sequence 111: slot 7 during the power sequence	000

LDSW_RCB: Load switch reserve current blocking function selecting register(Address 0Ah)

This register enables the function that blocks the current of load switch when the output voltage is higher than input.

Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
5	Ldsw6_rcb	R/W	Load switch 6 reverse current blocking function: 0: Disable; 1: Enable	0
4	Ldsw5_rcb	R/W	Load switch 5 reverse current blocking function: 0: Disable; 1: Enable	0
3	Ldsw4_rcb	R/W	Load switch 4 reverse current blocking function: 0: Disable; 1: Enable	0
2	Ldsw3_rcb	R/W	Load switch 3 reverse current blocking function: 0: Disable; 1: Enable	0
1	Ldsw2_rcb	R/W	Load switch 2 reverse current blocking function: 0: Disable; 1: Enable	0
0	Ldsw1_rcb	R/W	Load switch 1 reverse current blocking function: 0: Disable; 1: Enable	0

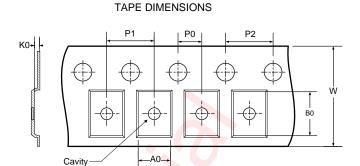
• LDSW_ON: Load switch status indicator register(Address 0Bh)

This register indicates the status (ON or OFF) of each load switch.

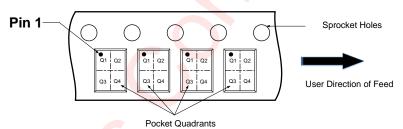
Bit	Symbol	R/W	Description	Default
7:6	Reserved	R	Reserved	00
5	Ldsw6_on	R	Load switch 6 status indicator: 0: Off; 1: On	0
4	Ldsw5_on	R	Load switch 5 status indicator: 0: Off; 1: On	0
3	Ldsw4_on	R	Load switch 4 status indicator:	0

			0: Off; 1: On		
2	Ldow2 on	D	Load switch 3 status indicator:	0	
2	Ldsw3_on	R	0: Off; 1: On	0	
1	I dow? on	В	Load switch 2 status indicator:	0	
'	Ldsw2_on	R	0: Off; 1: On	0	
0	l doud on	П	Load switch 1 status indicator:	0	
0	Ldsw1_on	R	0: Off; 1: On	0	

• RSTN: Reset register(Address 69h)


Writing "0xAE" to this register can reset all registers and disable all load switches when the chip works out of control or other unusual circumstances come out.

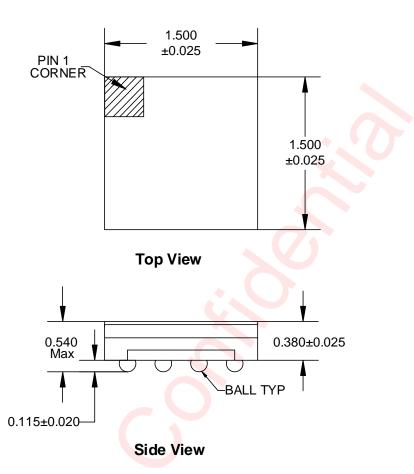
Bit	Symbol	R/W	Description	Default
7:0	Reserved	R/W	Read always 00 Write "0xAE" to reset all registers	00

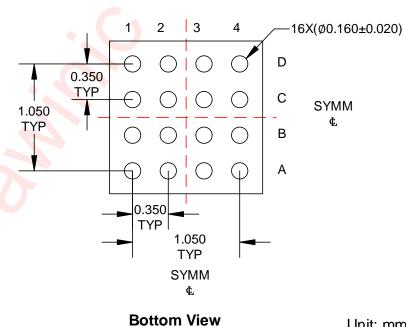

TAPE AND REEL INFORMATION

REEL DIMENSIONS 0 Ď1

- A0: Dimension designed to accommodate the component width B0: Dimension designed to accommodate the component length K0: Dimension designed to accommodate the component thickness W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

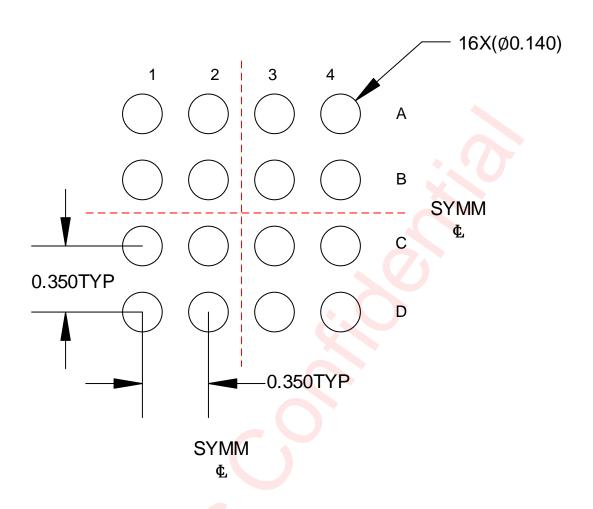
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

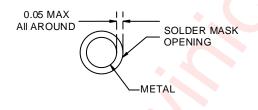

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size DIMENSIONS AND PIN1 ORIENTATION


D1	D0	A0	В0	K0	P0	P1	P2	W	Pin1 Quadrant
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Fiiii Quaurani
179.00	9.00	1.63	1.63	0.67	2.00	4.00	4.00	8.00	Q1

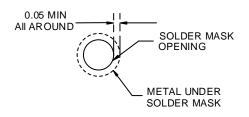
All dimensions are nominal

PACKAGE DESCRIPTION





Unit: mm



LAND PATTERN DATA

NON-SOLDER MASK DEFINED

SOLDER MASK DEFINED

Unit: mm

REVISION HISTORY

Version	Date	Change Record				
V1.0	Dec. 2020	Datasheet V1.0 Released				
V1.1	Oct.2021	 Modified the definition of Production Tracing Code (Page 2) Changed the upper limit ranges of I_{Q_INX}, I_{QB_INX} and I_{SD_VSYS} in Electrical Characteristics table (Page 6) Added the test condition of I_{SD_INX} in Electrical Characteristics table (Page 6) Added the upper limit ranges of V_{T_RCB} and V_{R_RCB} in Electrical Characteristics table (Page 7) Changed the lower limit of V_{IH_IIC} in Electrical Characteristics table (Page 7) Modified the description of Device Address (Page 17) Modified the description of CHIPID (Page 21) Modified the description of LDSW_SEQ (Page 23 and Page 24) Changed Side view (Page 27) 				
V1.2	Nov.2021	 Modified the Figure 5(Page 8) Added the SWITCHING CHARACTERISTICS in Electrical Characteristics table (Page 7 and Page 8) 				
V1.3	Jul.2022	 Changed the upper limit range of VolsDA from 0.2V to 0.3V (Page 7) Added I2C INTERFACE TIMING in Electrical Characteristics table (Page 9) Updated figure index number from Figure 6 to Figure 48 (Page 9 to Page 20) Added Ron vs. Temperature curves in Figure 20 with VIN=1.7V and 1.8V (Page 12) Added package thickness in ORDERING INFORMATION (Page 4) Added description table of reset register (Page 27) 				
V1.4	Feb.2023	 Added the upper limit range and lower range of R_{PD}, I_{SD_OUT}, to_N and t_R in Electrical Characteristics table (Page 6,7). Added t_{DON} and t_{DOFF} in Electrical Characteristics table (Page 8,9). Updated figure Timing diagram and added the definition of t_{DON} and t_{DOFF}.(Page 9). Updated pin1 in figure2 from a solid circle to a hollow circle. (Page 2). Updated the production tracing code in figure2 (Page 2). 				

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.