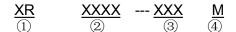


DONGGUAN XIANGRU ELECTRONICS CO., LTD

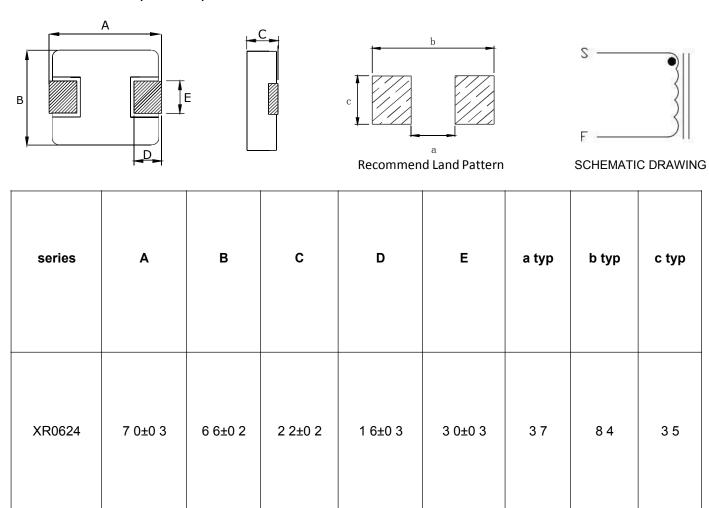
MOLDING POWER INDUCTORS


1. Features

- · High rated current
- Frequency up to 3 MHz
- 125 °C maximum total temperature operation
- · Low core loss
- Ultra low buzz noise due to molding construction
- Halogen Free & ROHS compliant

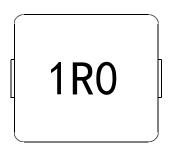
2. Applications

- · Laptops and PCs
- Switch and servers
- · Base stations
- DC/DC converters
- Battery powered devices
- SSD modules


- ① Series name
- ② Dimensions and shape (0412~1265)
- ③ Inductance Value
- 4 Inductance Tolerance (M= ± 20%)

DONGGUAN XIANGRU ELECTRONICS CO., LTD

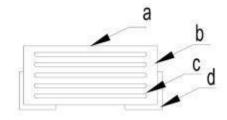
4. Dimensions (unit:mm)



DONGGUAN XIANGRU ELECTRONICS CO., LTD

5. Marking

The inductor is marked with a 3-digit code


Nominal Inductance						
Example	Nominal Value					
1R0	1.0 µH					
100	10 µH					
101	100 µH					

Note: Using Ink for marking

6. Structure and Components

Symbol	Components	Material
а	MARKING	Ink(black)
b	CORE	Alloy Sponge Powder
С	WIRE	Polyurethane copper wire
d	Terminal	Copper plated with Sn

DONGGUAN XIANGRU ELECTRONICS CO., LTD

7. Electrical characteristics

•XR0624 TYPE

	Inductance	DC Resistance	Saturation Current	Heating Rating Current	
Part No.	L0 (µH)	DCR (m)	Isat (A)	Irms (A)	
	±20 %, 100 kHz, 1V	MAX.	TYP.	TYP.	
XR0624-R22M	0.22	3	30	21	
XR0624-R33M	0.33	4.1	24.5	18	
XR0624-R47M	0.47	5.1	20	15	
XR0624-R56M	0.56	6.5	17	13	
XR0624-R68M	0.68	7	16	12	
XR0624-1R0M	1.0	13.5	15	9	
XR0624-1R5M	1.5	20	13.5	8.2	
XR0624-2R2M	2.2	28	10	7	
XR0624-3R3M	3.3	39	8	5.5	
XR0624-4R7M	4.7	50	6.5	5	
XR0624-6R8M	6.8	70	6	4	
XR0624-100M	10	101	4	3.1	
XR0624-150M	-150M 15 160		3.3	2.5	
XR0624-220M	22	230	2.5	2	

Notes

- 1. All test data is referenced to 25 °C ambient
- 2. Operating temperature range 55 °C to + 125 °C
- 3. Irms (A):DC current (A) that will cause an approximate ΔT of 40 °C(reference ambient temperature is 25°C)
- 4. Isat(A):DC current (A) that will cause L0 to drop approximately 30 %
- 5. The part temperature (ambient + temp rise) should not exceed 125 °C under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.
- 6. Absolute maximum voltage 30VDC

DONGGUAN XIANGRU ELECTRONICS CO., LTD

8. Reliability Test

Item	Specification and Requirement	Test Method				
Solderability	 No case deformation or change in apperarance New solder coverage More than 90% 	1.Preheat: $155^{\circ}C\pm5^{\circ}C$, $60S\pm2S$ 2.Tin: lead-free. 3.Temperature:245 $^{\circ}C\pm5^{\circ}C$, flux 3.0S \pm 0.5S.				
Mechanical shock	 1. No case deformation or change in apperarance 2. △L/Lo ≤ ±10% 	 Acceleration: 100G Pulse time:: 6ms 3 times in each positive and negative direction of 3 mutual perpendicular directions 				
Mechanical vibration	 1. No case deformation or change in apperarance 2. △L/Lo ≦ ± 10% 	1. The test samples shall be soldered to the board. Then it shall be submitted to below test conditions. Fre. Range				
Thermal Shock	Inductance change: Within ± 10% Without distinct damage in appearance	 First -55℃ for 30 minutes, last 125℃ for 30 minutes as 1 cycle. Go through 1000 cycles. Max transfer time is 2 minutes. Measured at room temperature after placing for 24±2 hours 				
Humidity Resistance	Inductance change: Within \pm 10% Without distinct damage in appearance	1.Reflow 2 times, 2.85℃,85%RH,1000 hours 3.Measured at room temperature after placing for 24±2 hours				
Low temperature storage	Inductance change: Within \pm 10% Without distinct damage in appearance	1. Temperature: -55 \pm 2°C 2. Time: 1000 hours 3. Measured at room temperature after placing for 24 \pm 2 hours				

High temperature storage	Inductance change: Within \pm 10% Without distinct damage in appearance	 Temperature: +125 ± 2°C Time: 1000 hours Measured at room temperature after placing for 24±2 hours
Board Flex	Inductance change: Within \pm 10% Without distinct damage in appearance	1. Run through IR reflow for 2 times; 2. Place the 100mm X 40mm board into a fixture similar to the one shown in below Figure with the component facing down 3. The apparatus shall consist of mechanical means to apply a force which will bend the board (D) x = 2 mm minimum. 4. The duration of the applied forces shall be 60±5 sec. The force is to be applied only once to the board. Support Solder Chip Printed circuit board before to the board. Probe to exert bending force Radius 340 Probe to exert bending force
Terminal Strength	No removal or split of the termination or other defects shall occur.	1. The test samples shall be soldered to the board 2. Push the product vertically from the side of the sample using the thrust tester. 3. Automotive electronics: 17.7N, 60S±1s, X, Ydirect. X direct Y direct

Recommended Soldering Technologies

(1) Re-flowing Profile

Preheat condition: 150 ~200°C/60~180sec.

Allowed time above 217°C: 80~120sec.

Max temp: 260°C

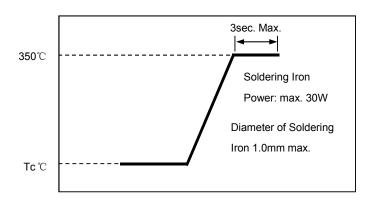
Max time at max temp: 10 sec.

Solder paste: Sn/3.0Ag/0.5Cu

Allowed Reflow time: 2x max

(2) Iron Soldering Profile

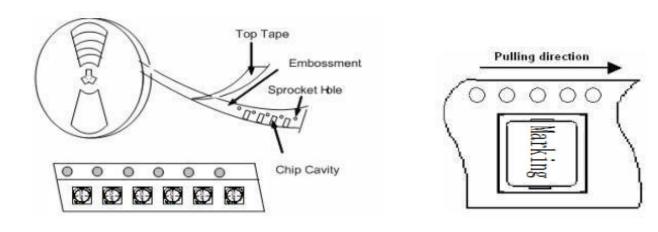
Iron soldering power: Max. 30W


Pre-heating: 150°C/60sec.

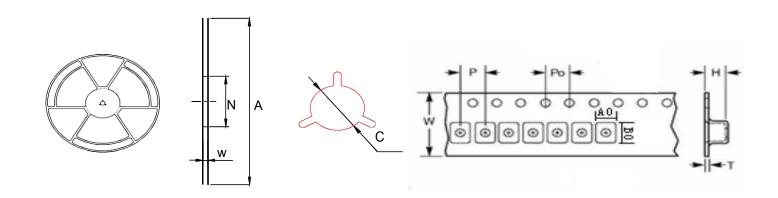
Soldering time: 3sec. Max.

Solder paste: Sn/3.0Ag/0.5Cu

Max.1 times for iron soldering



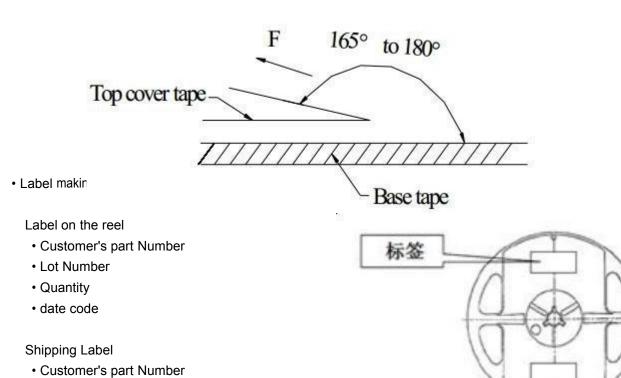
9. Packaging, Storage and Transportation


• Tape Carrier Packaging:

Туре	Standard Quantity (pcs/reel)	Туре	Standard Quantity (pcs/reel)
XR0412	2000/3000	XR0640	1000
XR0420	3000	XR0650	1000
XR0518	2000/2500	XR1040	500/1000
XR0520	2000/2500	XR1045	800
XR0530	1500/2000	XR1240	500
XR0620	1000/1500	XR1250	500
XR0624	1000/1500	XR1265	400/500
XR0630	1000		

• Taping Drawings (UNIT:mm)

• Reel and Taping Dimensions (UNIT:mm)



Туре	Reel Dimensions (mm)			Tape Dimensions (mm)							
	А	N	W	С	W	Р	P0	A0	В0	Н	Т
XR0412	330 +2/-0	100 +2/-0	12.4 +2/-0	13.2 ±0.2	12±0.3	8±0.1	4±0.1	4.4±0.1	4.9±0.1	1.5±0.05	0.3±0.05
XR0420	330 +2/-0	100 +2/-0	12.4 +2/-0	13.2 ±0.2	12±0.3	8±0.1	4±0.1	4.4±0.1	4.9±0.1	2.3±0.05	0.35±0.05
XR0518	330 +2/-0	100 +2/-0	12.4 +2/-0	13.2 ±0.2	12±0.3	8±0.1	4±0.1	5.4±0.1	5.9±0.1	2.1±0.05	0.35±0.05
XR0520	330 +2/-0	100 +2/-0	12.4 +2/-0	13.2 ±0.2	12±0.3	8±0.1	4±0.1	5.5±0.1	5.85±0.1	2.2±0.1	0.35±0.05
XR0530	330 +2/-0	100 +2/-0	12.4 +2/-0	13.2 ±0.2	12±0.3	8±0.1	4±0.1	5.4±0.1	5.9±0.1	3.3±0.05	0.35±0.05
XR0620	330 +2/-0	100 +2/-0	16.4 +2/-0	13.2 ±0.2	16±0.3	12±0.1	4±0.1	6.9±0.1	7.5±0.1	2.1±0.05	0.35±0.05
XR0624	330 +2/-0	100 +2/-0	16.4 +2/-0	13.2 ±0.2	16±0.3	12±0.1	4±0.1	6.9±0.1	7.5±0.1	2.7±0.05	0.35±0.05
XR0630	330 +2/-0	100 +2/-0	16.4 +2/-0	13.2 ±0.2	16±0.3	12±0.1	4±0.1	6.9±0.1	7.5±0.1	3.3±0.05	0.35±0.05
XR0640	330 +2/-0	100 +2/-0	16.4 +2/-0	13.2 ±0.2	16±0.3	12±0.1	4±0.1	6.9±0.1	7.5±0.1	4.2±0.1	0.35±0.05
XR0650	330 +2/-0	100 +2/-0	16.4 +2/-0	13.2 ±0.2	16±0.3	12±0.1	4±0.1	6.9±0.1	7.5±0.1	5.2±0.1	0.4±0.05
XR1040	330 +2/-0	100 +2/-0	24.4 +2/-0	13.2 ±0.2	24±0.3	16±0.1	4±0.1	10.4±0.1	11.5±0.1	4.3±0.1	0.35±0.05
XR1045	330 +2/-0	100 +2/-0	24.4 +2/-0	13.2 ±0.2	24±0.3	16±0.1	4±0.1	10.4±0.1	11.5±0.1	4.8±0.1	0.35±0.05
XR1240	330 +2/-0	100 +2/-0	24.4 +2/-0	13.2 ±0.2	24±0.3	16±0.1	4±0.1	13.4±0.1	14.4±0.1	4.3±0.1	0.5±0.05
XR1250	330 +2/-0	100 +2/-0	24.4 +2/-0	13.2 ±0.2	24±0.3	16±0.1	4±0.1	13.2±0.1	14.4±0.1	5.3±0.1	0.5±0.05
XR1265	330 +2/-0	100 +2/-0	24.4 +2/-0	13.2 ±0.2	24±0.3	16±0.1	4±0.1	13.2±0.1	14.4±0.1	6.3±0.1	0.5±0.05

Peel force of top cover tape
 The peel speed shall be about 300mm/minute
 The peel force of top cover tape shall be between 0.1 to 1.3 N

· Manufacturer's part Number

Quantitydate code

