8751H/8753H

Single-Chip 8-Bit Microcontroller

MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- Military Temperature Range
 -55 to +125°C (T_C)
- 4K x 8 EPROM (8751); 8K x 8 EPROM (8753)
- 128 x 8 RAM
- 64K bytes Program Memory space
- 64K bytes Data Memory space

- Pin-compatible with entire 8051 Family
- Full-duplex programmable serial ports
- 32 I/O lines (four 8-bit ports)
- Supports Adaptive EPROM Programming
- EPROM Security Feature
- Two 16-bit Timer/Event counters

GENERAL DESCRIPTION

The 8751H and 8753H are members of a family of advanced single-chip microcontrollers. Both the 8751H, which has 4K bytes of EPROM, and the 8753H, which has 8K bytes of EPROM, are pin-compatible EPROM versions of the 8051AH and 8053AH, respectively. Thus, the 8751H/8753H are full-speed prototyping tools which provide effective single-chip solutions for controller applications that require code modification flexibility. Refer to the block diagram of the 8051 family.

The 8751H/8753H devices feature: thirty-two I/O lines; two 16-bit timer/event counters; a Boolean processor, a 5source, bi-level interrupt structure; a full-duplex serial channel; and on-chip oscillator and clock circuitry.

Program and Data Memory are located in independent addresses. The AMD family of microcontrollers can access up to 64K bytes of external Program Memory and up to 64K bytes of external Data Memory. The 8751H and the 8753H contain the lower 4K and 8K bytes of Program Memory, respectively, on-chip. Both parts have 128 bytes of on-chip read/write data memory.

The AMD 8051 Microcontroller Family is specifically suited for control applications. A variety of fast addressing modes, which access the internal RAM, facilitates byte processing and numerical operations on small data structures. Included in the instruction set is a menu of 8-bit arithmetic instructions, including 4-cycle multiply and divide instructions.

Extensive on-chip support enables direct bit manipulation and testing of 1-bit variables as separate data types. Thus, the device is also suited for control and logic systems that require Boolean processing.

4-14

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of: a. Device Number

Valid Co	ombinations
8751H	
8751H-8	
8753H	/BQA, /BUA
8753H-8	

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C
Voltage on Any Other Pin to Vss
(Except Vpp)0.5 to +7.0 V
Voltage from Vpp to Vss0.5 to +21.5 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices	
Temperature (T _C)	55 to +125°C
Supply Voltage (V _{CC})	+4.5 to +5.5 V
Ground (VSS)	0 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for APL Products,	Group A, Subgroups 1, 2, 3 are tested
unless otherwise noted)	

Parameter Symbol	Test Operations		Min.	Max.	Unit
VIL †	Input LOW Voltage		- 0.5	0.7	v
VIL1 †	Input LOW Voltage to EA		0	0.7	V
VIH †	Input HIGH Voltage (Except XTAL ₂ , RST)		2.2	V _{CC} + 0.5	V
VIH1 †	Input HIGH Voltage to XTAL2, RST	XTAL1 = Vg	2.5	V _{CC} + 0.5	٧
Vol	Output LOW Voltage (Ports 1, 2, 3) (Note 1)	I _{OL} = 140mA		0.45	V
	Output LOW Voltage (Port 0, ALE, PSEN) (Note 1)	IOL B A		0.60	v
VOL1	Output LOW Voltage (Fort 0, ALL, I SLIV) (Note 1)	OL=2.4 A		0.45	
VOH	Output HIGH Voltage (Ports 1, 2, 3)	$D_{H} = -60 \ \mu A$	2.4		V
VOH1	Output HIGH Voltage (Port 0 in External Bus Mode, ALE, PSEN)	IOM = -300 μA	2.4		v
hL.	Logical 0 Input Current P1, P2, P3	VIN = 0.45 V		- 500	μA
н <u>ц</u>	Logical 0 Input Current to EA/Vpp	V _{IN} = 0.45 V		- 15	mA
11L2	Logical 0 Input Current to XTAL2	$XTAL_1 = V_{SS}, V_{IN} = 0.45 V$		-4.5	mA
<u> </u>	Input Leakage Current to Port	0.45 < VIN < VCC		± 100	μA
Чн	Logical Input Current to EA/Vpp	V _{IN} = 2.4 V		500	μA
<u></u>	Input Current to RST/Veptin Activate Reset	$V_{IN} < (V_{CC} - 1.5 V)$		500	μΑ
lcc	Power Supply Current (Nee 3)	All Outputs Disconnected, EA = V _{CC}		275	mA
CIO tt	Capacitance of the Buffers	$f_C = 1$ MHz, $T_A = 25^{\circ}C$		30*	pF
I _{PD}	Power-Down Current (Note 2)	$T_A = 25^{\circ}C, V_{PD} = 5.0 V, V_{CC} = 0 V$		10	mA

Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. The worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. 2. Power-Down I_{CC} is measured with all output pins disconnected; $EA = V_{CC} = 0$; $XTAL_2 = N.C.$; $RST = V_{PD} = 5.0 V.$ 3. I_{CC} is measured with all output pins disconnected; $XTAL_1$ driven with t_{CLCH} , $t_{CHCL} = 5 ns$, $V_{IL} = V_{SS} + 5 V$, $V_{IH} = V_{CC} - 5 V$; $XTAL_2 = N.C.$; $EA = RST = V_{CC}$.

† Group A, Subgroups 7 and 8 only are tested.

11 Not included in Group A tests.
 * Not tested; guaranteed by design.

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

(Load Capacitance for Port 0, ALE, and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF) External Program Memory Characteristics

Parameter Symbol	Parameter Description	12-MH	12-MHz Osc.		z Osc.	Variable Oscillator		
		Min.	Max.	Min.	Max.	Min.	Max.	Unit
1/tCLCL	Oscillator Frequency	3.5	12	3.5	8	3.5	12	MHz
tLHLL_	ALE Pulse Width	112	1	195		2t _{CLCL} -55	T	ns
tAVLL	Address Setup to ALE	28		70		t _{CLCL} -55	1	ns
tLLAX	Address Hold After ALE	33		75		t _{CLCL} -50		ns
tLLIV	ALE to Valid Instr In		168		335		4t _{CLCL} -165	ns
tLLPL	ALE to PSEN	43		85		t _{CLCL} -40		ns
tPLPH	PSEN Pulse Width	175		300		3t _{CLCL} -75		ns
^t PLIV	PSEN to Valid Instr In		85		210		3t _{CLCL} -165	ns
tPXIX	Input Instr Hold After PSEN	0	<u> </u>	0		0		ns
tPXIZ	Input Instr Float After PSEN		48		90		tCLCL-35	ns
t _{PXAV}	Address Valid After PSEN	58	1	100		t _{CLCL} -25		ns
taviv	Address to Valid Instr In		252		460		5tCLCL-165	ns
tPLAZ	Addr Float After PSEN		20		20		20	ns

External Data Memory Characteristics

Parameter	Parameter	12-MHz Osc		464. 792	Osc.		Oscillator	
Symbol	Description	Min.	Ma	tin.	Max.	Min.	Max.	Unit
^t RLRH	RD Pulse Width	400		650		6t _{CLCL} - 100		ns
twLWH	WR Pulse Width	400		650		6t _{CLCL} - 100		ns
^t LLAX	Address Hold After ALE	2		75		t _{CLCL} -50	· · · · · ·	ns
t _{RLDV}	RD to Valid Data In		232		440		5tCLCL-185	ns
^t RHDX	Data Hold After RD			0		0		ns
^t RHDZ	Data Float After RD	\$	82		165		2t _{CLCL} -85	ns
tLLDV	ALE to Valid Data In		496		830		8t _{CLCL} -170	ns
tAVDV	Address to Valid Data In		565		940		9t _{CLCL} -185	ns
tLLWL	ALE to RD or WR	185	315	310	440	3t _{CLCL} -65	3t _{CLCL} + 65	ns
tAVWL	Address to RD or WR	188		355		4t _{CLCL} -145		ns
tovwx	Data Valid to WR wasside	0		40		t _{CLCL} -85		ns
^t Q∨WH	Data Setup Berrow 15	508		800		7t _{CLCL} -75		ns
twhax	Data Hold After	18		60		tCLCL-65		ns
^t RLAZ	Address Float After RD		20		20		20	ns
twhlh	RD or WR HIGH to ALE HIGH	18	148	60	190	t _{CLCL} -65	t _{CLCL} +65	ns

External Clock Drive*

Parameter Symbol	Parameter Description	Min.	Max.	Unit
1/tCLCL	Oscillator Frequency	1.2	12	MHz
tCHCX	HIGH Time	20	· · · · · · · · · · · · · · · · · · ·	ns
tCLCX	LOW Time	20		ns
^t CLCH	Rise Time		20	ns
tCHCL	Fall Time		20	ns

*Not tested; these specs are controlled by the Teradyne J941, J983 tester.

SWITCHING CHARACTERISTICS (Cont'd.) Serial Port Timing — Shift Register Mode (C_L = 8 pF)

		12-MHz Osc.		8-MHz Osc.		Variable Oscillator		
Parameter Symbol	Parameter Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
txLXL	Serial Port Clock Cycle Time	1.0		1.0		12t _{CLCL}		μs
tovxh	Output Data Setup to Clock Rising Edge	700		1117		10t _{CLCL} -133		ns
txHQX	Output Data Hold After Clock Rising Edge	49		133		21 CL-117		ns
	Input Data Hold After Clock Rising Edge	0		0		0		ns
	Clock Rising Edge to Input Data Valid		700	•	11		10t _{CLCL} -133	ns

EPROM Programming and Verification Characteristic $(T_A = +21 \text{ to } +27^{\circ}\text{C}, V_{CC} = +5 \text{ V} \pm 10^{\circ}, V_{SS} = 0 \text{ V})$

Parameter Symbol	Parameter Description	Min.	Max.	Unit
Vpp	Programming Supply Voltage	20.5	21.5	V
IPP	Programming Supply Current		30	mA
1/tCLCL	Oscillator Frequency	4	6	MHz
tAVGL	Address Setup to PROG	48t _{CLCL}		
tGHAX	Address Hold After PROG	48t _{CLCL}		
tDVGL	Data Setup to Toole A	48tCLCL		
tGHDX	Data Hold And PROG	48tCLCL		
tehsh	P2.7 (ERVILENENT to Vpp	48tCLCL		
tSHGL	VPP Setup to MOG	10		μs
tGHSL	VPP Hold after PROG	10		μs
^t GLGH	PROG Width	45	55	ms
tavov	Address to Data Valid		48tCLCL	
tELQV	ENABLE to Data Valid		48t _{CLCL}	1
tehoz	Data Float After ENABLE	0	48t _{CLCL}	

*Not tested; guaranteed by design.