8088

8-Bit Microprocessor CPU

iAPX86 Family

FINAL

DISTINCTIVE CHARACTERISTICS

- 8-bit data bus, 16-bit internal architecture
- Directly addresses 1 Mbyte of memory
- Software compatible with 8086 CPU
- Byte, word, and block operations
- 24 operand addressing modes

- Powerful instruction set
- Efficient high level language implementation
- Three speed options: 5MHz 8088
 - 8MHz 8088-2
 - 10MHz 8088-1

GENERAL DESCRIPTION

The 8088 CPU is an 8-bit processor designed around the 8086 internal structure. Most functions of the 8088 are identical to the equivalent 8086 functions. The pinout is slightly different. The 8088 handles the external bus the same way the 8086 does, but it handles only 8 bits at a time. Sixteen-bit words are fetched or written in two

consecutive bus cycles. Both processors will appear identical to the software engineer, with the exception of execution time.

The 8088 is made with N-channel silicon gate technology and is packaged in a 40-pin Plastic dip, CERDIP or Plastic Leaded Chip Carrier.

8088

8088-2

/BQA

supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

> Group A Tests Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus buffers). Pin No.* Name 1/0 Description 9-16 AD7-AD0 1/0 Address Data Bus. These lines constitute the time multiplexed memory/IO address (T1) and data (T2, T3, Tw and (4) bus. These lines are active HIGH and float to three-state OFF during interrupt acknowledge and local bus hold acknowledge Address Bus. These lines provide address bits 8 through 15 for the entire bus cycle (T₁-T₄). These lines do not have to be latched by ALE to remain valid. A₁₅-A₈ are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold acknowledge." 39, 2-8 A15-A8 0 35-38 0 Address/Status. During T1, these are the four most significant address lines for memory operations. During 1/O A19/S6. operations, these lines are LOW. During memory and I/O operations, status information is evailable on these lines are compared by these lines are low and I/O operations, status information is evailable on these lines intermeter and I/O operations, the status of the interrupt enable flat bit (S₅) is updated at the beginning of each clock cycle. S₄ and S₃ are encoded as shown. A18/S5. A17/S4, A16/S3 This information indicates which segment register is presently being used for data accessing. These lines float to three-state OFF during local bus "hold acknowledge." S4 **S**₃ Characteristics 0 (LOW) 0 Alternate Data ٥ 1 Stack 1 (HIGH) 0 Code or None 1 Data S₆ is 0 (LOW) 32 B 0 Read. Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the IO/M pin or S2. This signal is used to read devices which reside on the 8088 local bus. RD is active LOW during T2, T3 and Tw of any read cycle and is guaranteed to remain HIGH in T2 until the 8088 local bus has finated This signal floats to 3-state OFF in "hold acknowledge." READY. The acknowledgment from the addressed memory or I/O device that it will complete the data transfer. The RDY signal from memory or I/O is synchronized by the 8284 clock generator to form READY. This signal is active HIGH. The 8088 READY input is not synchronized. Correct operation is not guaranteed if the set-up and 22 READY 1 hold times are not met. INTR 18 I. Interrupt Request. A level-triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH. TEST. Input is examined by the "wait for test" instruction. If the TEST input is LOW, execution continues; 23 TEST I. otherwise, the processor waits in an "Idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK. 17 NMI Non-Maskable Interrupt. An edge-triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition ł from a LOW to HIGH initiates the interrupt at the end of the current instruction. This Input is internally synchronized. 21 RESET T RESET. Causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the instruction set description, when RESET returns LOW. RESET is internally synchronized. Clock. Provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to 19 CIK T provide optimized internal timing. V_{CC}. The +5 V ±10% power supply pin. 40 Vcc GND. The ground pins. 1, 20 GND 33 MIN/MX ì Minimum/Maximum. Indicates what mode the processor is to operate in. The two modes are discussed in the following sections. 10/M 0 28 Status Line. An inverted maximum mode 52. It is used to distinguish a memory access from an I/O access. IO/M becomes valid in the T₄ preceding a bus cycle and remains valid until the final T₄ of the cycle (I/O \approx HIGH, M = LOW). IO/M floats to three-state OFF in local bus "hold acknowledge." WP Write. Strobe indicates that the processor is performing a write memory or write I/O cycle, depending on the state of the IO/ \overline{M} signal. WR is active for T₂, T₃ and T_W of any write cycle. It is active LOW and floats to 3-state OFF in 29 0 local bus "hold acknowledge." INTA 24 0 INTA. Used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3 and Tw of each interrupt acknowledge cycle. 25 ALE 0 Address Latch Enable. Provided by the processor to latch the address into 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of any bus cycle. Note that ALE is never floated. DT/R 27 0 Data Transmit/Receive. Needed in a minimum system that desires to use an 8286/8287 data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically DT/ \overline{H} is equivalent to \overline{S}_1 in the maximum mode, and its timing is the same as for IO/ \overline{M} (7 = HIGH, R = LOW.) This signal floats to three-state OFF in local bus "hold acknowledge." DEN Data Enable. Provided as an output enable for the 8286/8287 in a minimum system that uses the transceiver. DEN is active LOW during each memory and I/O access and for INTA cycles. For a read or INTA cycle, it is active from 26 0 the middle of T2 until the middle of T4; while for a write cycle, it is active from the beginning of T2 until the middle of T4. DEN floats to 3-state OFF during local bus "hold acknowledge.

*Pin numbers correspond to DIPs only.

Pin No.*	Name	1/0	Description							
31, 30	HOLD, HLDA	1/0	HOLD. Indicates that another master is requesting a local bus "hold." To be acknowledged, HOLD must be active HIGH. The processor receiving the "hold" request will issue HLDA (HIGH) as an acknowledgment in the middle of a T ₄ or T ₁ cock cycle. Simultaneous with the issuance of HLDA, the processor will float the local bus and control lines. After HOLD is detected as being LOW, the processor lowers HLDA, and when the processor needs to run another cycle, it will again drive the local bus and control lines. HOLD is not an asynchronous input. External synchronization should be provided if the system cannot otherwise							
			guarantee the se	t-up tin	1 8 .					
34	SSO	0	Status Line. Logic system to complete	ally equ ately de	ivalent 1 code ti	o SO in the maximum m ne current bus cycle s	iode. The combination of \overline{SSO} , IO/ \overline{M} and DT/ \overline{R} allows the tatus.			
			10/ M	DT/A	SSO	Characteristics				
			1 (HIGH)	0	0	Interrupt Acknowledge				
			1	0	1	Read I/O port				
			1	1	0	Write I/O port				
			1	1	1	Halt	-			
	ļ		0 (LOW)	0	0	Code Access	-			
			0	0	1	Read memory Write memory	-			
			0	1	1	Passive	-			
	<u>\$</u> 2, \$1, \$0	-	1 h		-		returned to the passive state (1, 1, 1) during T ₃ or durin			
			control signals. A return to the pas	ny char ssive st sat to ti	nge by 3 ate in " nree-sta	S ₂ , S ₁ or S ₀ during T ₄ F ₃ or T _W is used to ir ite OFF during ''hold a	88 bus controller to generate all memory and I/O acce is used to indicate the beginning of a bus cycle, and t idicate the end of a bus cycle. ckhowledge." During the first clock cycle after RESI this first clock, they float to three-state OFF.			
			S2	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	So So	Characteristics	7			
			0 (LOW)	0	0	Interrupt Acknowledge	7			
			0	0	1	Read I/O Port				
			0	1	0	Write I/O Port]			
			0	1	1	Halt				
			1 (HIGH)	0	0	Code Access				
			1	0	1	Read Memory	-			
			1	1	0	Write Memory	-			
				1	1	Passive				
31, 30	RO/GT ₀ . RO/GT ₁	1/0	of the processor RO/GT has an in 1. A pulse of one (pulse 1). 2. During a T ₄ or that the 8088 CLK. The CPU same rules as 3. A pulse one C	s curre nternal E CLK n T ₁ cloc has allo 's bus i s for He t K wid	nt bus o pull-up i wide fro k cycle, wed the nterface DLD/HL e from 1	ycle. Each pin is bidire resistor, so may be left m another local bus m a pulse one clock wide is local bus to float and i unit is disconnected lo. DA apply as for when the requesting master is	ndicates to the 8088 (pulse 3) that the "hold" request			
			about to end	and the	at the E	3088 can reclaim the 1	ocal bus at the next CLK. The CPU then enters T_4 . suence of three pulses. There must be one idle CLK cyc			
			after each bus	exchanç	je. Puls	es are active LOW.	nemory cycle, it will release the local bus during T_4 of t			
			cycle when all t 1. Request occu	he folic	wing c	onditions are met:				
			2. Current cycle 3. Current cycle	is not is not	the low the firs	v bit of a word.	interrupt acknowledge sequence.			
							wo possible events will follow:			
			1. Local bus wil 2. A memory cyc	l be re de will	leased start wil	during the next clock. thin 3 clocks. Now the	four rules for a currently active memory cycle apply w			
			condition num				ot to gain control of the system bus while LOCK is act			

Pin No.*	Name	1/0	Description			
24, 25	QS ₁ , QS ₀	0	Queue Status. F valid during the	Provides sta CLK cycl	tus to allow external tracking of the intern e after which the queue operation is p	al 8088 instruction queue. The queue status i erformed.
		1	QS1	QS ₀	Characteristics	
			0 (LOW)	0	No Operation	
			0	1	First Byte of Opcode from Queue	
			1 (HIGH)	0	Empty the Queue	
		1	i (indity	•	Linky the dubub	

*Pin numbers correspond to DIPs only.

DETAILED DESCRIPTION

The 8088 Compared to the 8086

- The queue length is 4 bytes in the 8088; whereas, the 8086 queue contains 6 bytes, or three words. The queue was shortened to prevent overuse of the bus by the BIU when prefetching instructions. This was required because of the additional time necessary to fetch instructions 8 bits at a time.
- To further optimize the queue, the prefetching algorithm was changed. The 8088 BIU will fetch a new instruction to load into the queue each time there is a 1 byte hole (space available) in the queue. The 8086 waits until a 2-byte space is available.
- The internal execution time of the instruction set is affected by the 8-bit interface. All 16-bit fetches and writes from/to memory take an additional four clock cycles. The CPU is also limited by the speed of instruction fetches. This latter problem only occurs when a series of simple operations occurs. When the more sophisticated instructions of the 8088 are being used, the queue has time to fill and the execution proceeds as fast as the execution unit will allow.

The 8088 and 8086 are completely software compatible by virtue of their identical execution units. Software that is system dependent may not be completely transferable, but software that is not system dependent will operate equally as well on an 8088 or an 8086.

The hardware interface of the 8088 contains the major differences between the two CPUs. The pin assignments are nearly identical, however, with the following functional changes:

- A₈ A₁₅ These pins are only address outputs on the 8088. These address lines are latched internally and remain valid throughout a bus cycle in a manner similar to the 8085 upper address lines.
- BHE has no meaning on the 8088 and has been eliminated.
- SSO provides the SO status information in the minimum mode. This output occurs on pin 34 in minimum mode only. DT/R, IO/M, and SSO provide the complete bus status in minimum mode.
- IO/M has been inverted to be compatible with the MCS-85 bus structure.
- ALE is delayed by one clock cycle in the minimum mode when entering HALT, to allow the status to be latched with ALE.

I/O Addressing

In the 8088, I/O operations can address up to a maximum of 64K I/O registers. The I/O address appears in the same format as the memory address on bus lines $A_{15} - A_0$. The

address lines $A_{19} - A_{16}$ are zero in I/O operations. The variable I/O instructions, which use register DX as a pointer, have full address capability, while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the I/O address space. I/O ports are addressed in the same manner as memory locations.

Designers familiar with the 8085 or upgrading an 8085 design should note that the 8085 addresses I/O with an 8-bit address on both halves of the 16-bit address bus. The 8088 uses a full 16-bit address of its lower 16 address lines.

Bus Operation

The 8088 address/data bus is broken into three parts — the lower eight address/data bus is broken into three parts — the address bits ($A_0 - A_D$), the middle eight address bits ($A_8 - A_{15}$) and the upper four address bits ($A_{16} - A_{19}$). The address/data bits and the highest four address bits are time multiplexed. This technique provides the most efficient use of pins on the processor, permitting the use of a standard 40 lead package. The middle eight address bits are not multiplexed; i.e., they remain valid throughout each bus cycle. In addition, the bus can be demultiplexed at the processor with a single address latch if a standard, non-multiplexed bus is desired for the system.

Each processor bus cycle consists of at least four CLK cycles. These are referred to as T1, T2, T3 and T4. The address is emitted from the processor during T1 and data transfer occurs on the bus during T3 and T4. T2 is used primarily for changing the direction of the bus during read operations. In the event that a ''NOT READY'' indication is given by the addressed device, ''wait'' states (Tw) are inserted between T3 and T4. Each inserted ''wait'' state is of the same duration as a CLK cycle. Periods can occur between 8088 driven bus cycles. These are referred to as ''idle'' states (Ti) or inactive CLK cycles. The processor uses these cycles for internal housekeeping.

During T1 of any bus cycle, the ALE (address latch enable), signal is emitted (by either the processor or the 8288 bus controller, depending on the MN/\overline{MX} strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{S0}$, $\overline{S1}$, and $\overline{S2}$ are used by the bus controller, in maximum mode, to identify the type of bus transaction according to the following table:

Š2	₹1	₹₀	Characteristics
0 (LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
1 (HIGH)	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

Status bits S3 through S6 are multiplexed with high order address bits and are therefore valid during T2 through T4. S3 and S4 indicate which segment register was used for this bus cycle in forming the address according to the following table:

S4	S ₃	Characteristics				
0 (LOW)	0	Alternate Data (extra segment)				
ֹ וֹ	1	Stack				
1 (HIGH)	0	Code or None				
1	1	Data				

S5 is a reflection of the PSW interrupt enable bit. S6 is always equal to 0.

External Interface

Processor Reset and Initialization

Processor initialization or start up is accomplished with activation (HIGH) of the RESET pin. The 8088 RESET is required to be HIGH for greater than four clock cycles. The 8088 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 7 clock cycles. After this interval the 8088 operates normally, beginning with the instruction in absolute location FFFF0H (see Figure 3). The RESET input is internally synchronized to the processor clock. At initialization, the HIGH to LOW transition of RESET must occur no sooner than 50 µs after power up, to allow complete initialization of the 8088.

If INTR is asserted sooner than nine clock cycles after the end of RESET, the processor may execute one instruction before responding to the interrupt.

All three-state outputs float to three-state OFF during RESET. Status is active in the idle state for the first clock after RESET becomes active and then floats to three-state OFF.

Interrupt Operations

Interrupt operations fall into two classes: software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are specified in the instruction set description in the iAPX 88 book or the iAPX 86, 88 User's Manual. Hardware interrupts can be classified as nonmaskable.

Interrupts result in a transfer of control to a new program location. A 256 element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (see Figure 3), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type." An interrupting device supplies an 8-bit type number, during the interrupt acknowledge sequence, which is used to vector through the appropriate element to the new interrupt service program location.

Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt (NMI) pin which has higher priority than the maskable interrupt request (INTR) pin. A typical use would be to activate a power failure routine. The NMI is edge-triggered on a LOW to HIGH transition. The activation of this pin causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state of greater than two clock cycles but is not required to be synchronized to the clock. Any higher going transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves (2 bytes in the case of word moves) of a block type instruction. Worst case response to NMI would be for multiply, divide and variable shift instructions. There is no specification on the occurrence of the low-going edge; it may occur before, during or after the servicing of NMI. Another high-going edge triggers another response if it occurs after the start of the NMI procedure. The signal must be free of logical spikes in general and be free of bounces on the low-going edge to avoid triggering extraneous responses.

Maskable Interrupt (INTR)

The 8088 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable (IF) flag bit. The interrupt request signal is level triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK. To be responded to, INTR must be present (HIGH) during the clock period preceding the end of the current instruction. During interrupt response sequence, further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, NMI, software interrupt, or single step), although the FLAGS register which is automatically pushed onto the stack reflects the state of the processor prior to the interrupt. Until the old FLAGS register is restored, the enable bit will be zero unless specifically set by an instruction.

During the response sequence (see Figure 1), the processor executes two successive (back to back) interrupt acknowledge cycles. The 8088 emits the LOCK signal (maximum mode only) from T2 of the first bus cycle until T2 of the second. A local bus ''hold'' request will not be honored until the end of the second bus cycle. In the second bus cycle, a byte is fetched from the external interrupt system (e.g., 8259A PIC) which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector lookup table. An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. The interrupt return instruction includes a flags pop which returns the status of the original interrupt enable bit when it restores the flags.

HALT

When a software HALT instruction is executed, the processor indicates that it is entering the HALT state in one of two ways, depending upon which mode is strapped. In minimum mode, the processor issues ALE, delayed by one clock cycle, to allow the system to latch the halt status. Halt status is available on IO/M, DT/R and SSO. In maximum mode, the processor issues appropriate HALT status on SZ, ST and SO, and the 8288 bus controller issues one ALE. The 8088 will not leave the HALT state when a local bus hold is entered while in HALT. In this case, the processor reissues the HALT indicator at the end of the local bus hold. An interrupt request or RESET will force the 8088 bus of the HALT state.

Read/Modify/Write (Semaphore) Operations via LOCK

The LOCK status information is provided by the processor when consecutive bus cycles are required during the execution of an instruction. This allows the processor to perform read/modify/write operations on memory (via the "exchange register with memory" instruction), without another system bus master receiving intervening memory cycles. This is useful in multiprocessor system configurations to accomplish "test and set lock" operations. The LOCK signal is activated (LOW) in the clock cycle following decoding of the LOCK prefix instruction. It is deactivated at the end of the last bus cycle of the instruction of allowing the LOCK prefix. While LOCK is active, a request on a RO/GT pin will be recorded, and then honored at the end of the LOCK.

External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a single software-testable input pin (TEST). This input is utilized by executing a WAIT instruction. The single WAIT instruction is repeatedly executed until the TEST input goes active (LOW). The execution of WAIT does not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the 8088 three-states all output drivers. If interrupts are enabled, the 8088 will recognize interrupts and process them. The WAIT instruction is then refetched, and reexecuted.

Basic System Timing

In minimum mode, the MN/ $\overline{\text{MX}}$ pin is strapped to V_{CC} and the processor emits bus control signals compatible with the 8085 bus structure. In maximum mode, the MN/ $\overline{\text{MX}}$ pin is strapped to GND, and the processor emits coded status information, which the 8288 bus controller uses to generate MULTIBUS compatible bus control signals.

System Timing - Minimum System

The read cycle begins in T1 with the assertion of the address latch enable (ALE) signal. The trailing (low going) edge of this signal is used to latch the address information, which is valid on the address/data bus (AD0 - AD7) at this time, into the 8282/8283 latch. Address lines A8 through A15 do not need to be latched because they remain valid throughout the bus cycle. From T1 to T4 the IO/M signal indicates a memory or I/O operation. At T2 the address is removed from the address/data bus, and the bus goes to a high impedance state. The read control signal is also asserted at T2. The read (RD) signal causes the addressed device to enable its data bus drivers to the local bus. Some time later, valid data will be available on the bus and the addressed device will drive the READY line HIGH. When the processor returns the read signal to a HIGH level, the addressed device will again three-state its bus drivers. If a transceiver (8286/8287) is required to buffer the 8088 local bus, signals DT/R and DEN are provided by the 8088.

A write cycle also begins with the assertion of ALE and the emission of the address. The IO/ \overline{M} signal is again asserted to indicate a memory or I/O write operation. In T2, immediately following the address emission, the processor emits the data to be written into the addressed location. This data remains valid until at least the middle of T4. During T2, T3 and T_W, the processor asserts the write control signal. The write (\overline{WR}) signal becomes active at the beginning of T2, as opposed to the read, which is delayed somewhat into T2 to provide time for the bus to float.

The basic difference between the interrupt acknowledge cycle and a read cycle is that the interrupt acknowledge (iNTA) signal is asserted in place of the read (RD) signal and the address bus is floated (see Figure 1). In the second of two successive iNTA cycles, a byte of information is read from the data bus, as supplied by the interrupt system logic (i.e., 8259A priority interrupt controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into the interrupt vector lookup table, as described earlier.

Bus Timing — Medium Complexity Systems

For medium complexity systems, the MN/MX pin is connected to GND and the 8288 bus controller is added to the system, as well as an 8282/8283 latch for latching the system address, and an 8286/8287 transceiver to allow for bus loading greater than the 8088 is capable of handling. Signals ALE, DEN and DT/R are generated by the 8288 instead of the processor in this configuration, although their timing remains relatively the same. The 8088 status outputs (S2, S1 and S0) provide type of cycle information and become 8288 inputs. This bus cycle information specifies read (code, data or I/O), write (data or I/O), interrupt acknowledge, or software halt. The 8288 thus issues control signals specifying memory read or write, I/O read or write or interrupt acknowledge. The 8288 provides two types of write strobes, normal and advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The advanced write strobes have the same timing as read strobes, and hence, data is not valid at the leading edge of write. The 8286/8287 transceiver receives

the usual T and $\overline{\text{OE}}$ inputs from the 8288's DT/R and $\overline{\text{DEN}}$ outputs.

The pointer into the interrupt vector table, which is passed during the second INTA cycle, can derive from an 8259A located on either the local bus or the system bus. If the master 8289A priority interrupt controller is positioned on the local bus, a TTL gate is required to disable the 8286/8287 transceiver when reading from the master 8259A during the interrupt acknowledge sequence and software "poll."

Memory Organization

The processor provides a 20-bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million bytes, addressed as 00000(H) to FFFF(H). The memory is logically divided into code, data, extra data and stack segments of up to 64K bytes each, with each segment falling on 16-byte boundaries (see Figure 2).

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the addressing needs of programs. The segment register to be selected is automatically chosen according to the rules of the following table. All information in one segment type share the same logical attributes (e.g., code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster and more structured.

Figure 2. Memory Organization

Word (16-bit) operands can be located on even or odd address boundaries. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU will automatically execute two fetch or write cycles for 16-bit operands.

Certain locations in memory are reserved for specific CPU operations (see Figure 3). Locations from addresses FFFF0H through FFFFFH are reserved for operations including a jump to the initial system initialization routine. Following RESET, the CPU will always begin execution at location FFFF0H where the jump must be located. Locations 0000H through 003FFH are reserved for interrupt operations. Four-byte pointers consisting of a 16-bit segment address and a 16-bit offset address direct program flow to one of the 256 possible interrupt service routines. The pointer elements are assumed to have been stored at their respective places in reserved memory prior to the occurrence of interrupts.

Minimum and Maximum Modes

The requirements for supporting minimum and maximum 8088 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the 8088 is equipped with a strap pin (MN/MX) which defines the system configuration. The definition of a certain subset of the pins changes, dependent on the condition of the strap pin. When the MN/MX pin is strapped to GND, the 8088 defines pins 24 through 31 and 34 in maximum mode. When the MN/MX pin is strapped to V_{CC}, the 8088 generates bus control signals itself on pins 24 through 31 and 34.

Figure 3. Reserved Memory Locations

Memory Reference Need	Segment Register Used	Segment Selection Rule
Instructions	CODE (CS)	Automatic with all instruction prefetch.
Stack	STACK (SS)	All stack pushes and pops. Memory references relative to BP base reg- ister except data references.
Local Data	DATA (DS)	Data references when: relative to stack, destination of string operation, or explicitly overridden.
External (Global) Data	EXTRA (ES)	Destination of string operations: Explicitly selected using a segment override.

The minimum mode 8088 can be used with either a multiplexed or demultiplexed bus. The multiplexed bus configuration is compatible with the MCS-85TM multiplexed bus peripherals (8155, 8156, 8355, 8755A, and 8185). This configuration (see Figure 4) provides the user with a minimum chip count system. This architecture provides the 8088 processing power in a highly integrated form.

The demultiplexed mode requires one latch (for 64K addressability) or two latches (for a full megabyte of addressing). A third latch can be used for buffering if the address bus loading requires it. An 8286 or 8287 transceiver can also be used if data bus buffering is required (see Figure 5). The 8088 provides DEN and DT/R to control the transceiver, and ALE to latch the addresses. This configuration of the minimum mode provides the standard demultiplexed bus structure with heavy bus buffering and relaxed bus timing requirements.

The maximum mode employs the 8288 bus controller (see Figure 6). The 8288 decodes status lines $\overline{50}$, $\overline{51}$ and $\overline{52}$ and provides the system with all bus control signals. Moving the bus control to the 8288 provides better source and sink current capability to the control lines and frees the 8088 pins for extended large system features. Hardware lock, queue status and two request/grant interfaces are provided by the 8088 in maximum mode. These features allow co-processors in local bus and remote bus configurations.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to -	⊦150°C
Voltage on any Pin	
with Respect to Ground 1.0 to	+7.0 V
Power Dissipation	2.5 W

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Temperature (T _A)	
8088-1, 8088-25 V ±	5%
Industrial (I) Devices Temperature (T _A)40 to + 6 Supply Voltage (V _{CC}) 8088	10%
$\begin{array}{llllllllllllllllllllllllllllllllllll$	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for APL, Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Units	
		COML: see M	Note 1	0.51	100	v	
Vilt	Input Low Voltage	MIL: V _{CC} = Min. & Max.		-0.5*	+ 0.8	l v	
		COML: see M	COML: see Notes 1 & 2			v	
ViHt	Input High Voltage	MIL: VCC = N	lin. & Max.	2.0	V _{CC} + 0.5*	ľ	
		COML: IOL =	2.0 mA				
VOL	Output Low Voltage	MIL: I _{OL} = 2.0 V _{CC} = N			0.45	V V	
		COML: IOH =	– 400 µA				
VOH	Output High Voltage	MIL: $I_{OH} = -400 \ \mu A$ V _{CC} = Min.		2.4		V V	
lcc	Power Supply Current (Note 6)	MIL: $T_C = 25^{\circ}C$, $V_{CC} = Max$.			340	mA	
	COML: 0 V < V		≤ VIN ≤ V _{CC}		± 10		
iLi	Input Leakage Current	MIL: V _{CC} = Max. V _{IN} = 5.5 V & 0 V		- 10	10	μA	
		COML: 0.45	V ≤ V _{OUT} ≤ V _{CC}	COML ±10			
Lott	Output Leakage Current	MIL: V _{CC} = N V _{OUT} =	Max. 5.5 V & 0.45 V	MIL - 10	MIL 10	μA	
VCL	Clock Input Low Voltage			-0.5	+ 0.6	V 1	
Vcн	Clock Input High Voltage			3.9	V _{CC} + 1.0	V V	
CIN	Capacitance of Input Buffer (All input except AD0-AD7, RQ/GT)	fc = 1 MHz			15	ρF	
CIO	Capacitance of I/O Buffer (AD0-AD7, RQ/GT)	fc = 1 MHz			15	pF	
			8088		340		
ICC	Power Supply Current	T _A = 25°C	8088-1, -2		350	mA	
			P8088		250	!	

Notes: 1. V_{IL} tested with MN/ \overline{MX} pin = 0 V; V_{IH} tested with MN/ \overline{MX} pin = 5 V; MN/ \overline{MX} is a strap pin.

2. Not applicable to RQ/GT0 and RQ/GT1 pins (pins 30 and 31).

3. Signal at 8284 or 8288 shown for reference only.

4. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

5. Applies only to T₃ and Wait states.

6. I_{CC} is measured while running a functional pattern with spec value I_{OL}/I_{OH} loads applied. * Guaranteed by design; not tested.

† Group A, Subgroups 7 and 8 only are tested.

tt Group A, Subgroups 1 and 2 only are tested.

SWITCHING CHARACTERISTICS over COMMERCIAL operating range MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

D	D	Tast	8088		8088-2		8088-1		1
Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Min	Max	Min	Max	Units
TCLCL	CLK Cycle Period		200	500	125	500	100	500	ns
TCLCH	CLK Low Time		118		68		53		ns
TCHCL	CLK High Time		69		44		39		ns
TCH1CH2	CLK Rise Time	From 1.0 to 3.5 V		10		10		10	ns
TCL2CL1	CLK Fall Time	From 3.5 to 1.0 V		10		10		10	ns
TDVCL	Data in Set-up Time		30		20		5		ns
TCLDX	Data in Hold Time		10		10		10		ns
TRIVCL	RDY Set-up Time into 8284 (See Notes 3, 4)		35		35		35		ns
TCLR1X	RDY Hold Time into 8284 (See Notes 3, 4)		0		0		0		ns
TRYHCH	READY Set-up Time into 8088		118		68		53	[ns
TCHRYX	READY Hold Time into 8088		30		20		20		ns
TRYLCL	READY inactive to CLK (See Note 5)		-8		-8		- 10		ns
THVCH	HOLD Set-up Time		35		20		20		ns
TINVCH	INTR, NMI, TEST Set-up Time (See Note 4)		30		15		15		ns
TILIH	Input Rise Time (Except CLK)	From 0.8 to 2.0 V		20		20		20	ns
TIHIL	Input Fall Time (Except CLK)	From 2.0 to 0.8 V		12		12		12	ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued) TIMING RESPONSES

_ .			8088	1	8088-	2	8088-	1	
Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Min	Max	Min	Max	Units
TCLAV	Address Valid Delay		10	110	10	60	10	50	ns
TCLAX	Address Hold Time		10		10		10		ns
TCLAZ	Address Float Delay		TCLAX	80	TCLAX	50	10	40	ns
TLHLL	ALE Width		TCLCH - 20		TCLCH -10		TCLCH - 10		ns
TCLLH	ALE Active Delay			80		50		40	ns
TCHLL	ALE Inactive Delay	1		85		55		45	ns
TLLAX	Address Hold Time to ALE Inactive		TCHCL -10		TCHCL - 10		TCHCL - 10		ns
TCLDV	Data Valid Delay		10	110	10	60	10	50	ns
TCHDX	Data Hold Time		10		10		10		ns
TWHDX	Data Hold Time After WR		TCLCH -30		TCLCH - 30		TCLCH - 25		ns
TCVCTV	Control Active Delay 1		10	110	10	70	10	50	กร
TCHCTV	Control Active Delay 2	C _L = 20-100 pF	10	110	10	60	10	45	ns
тсустх	Control Inactive Delay	for all 8088 Outputs (in addition	10	110	10	70	10	50	ns
TAZRL	Address Float to READ Active	to internal loads)	0		0		0		ns
TCLRL	RD Active Delay	1	10	165	10	100	10	70	ns
TCLRH	RD Inactive Delay	1	10	150	10	80	10	60	ns
TRHAV	RD Inactive to Next Address Active		TCLCL - 45		TCLCL - 40		TCLCL - 35		ns
TCLHAV	HLDA Valid Delay	1	10	160	10	100	10	60	ns
TRLRH	RD Width		2TCLCL - 75		2TCLCL -50		2TCLCL -40		ns
TWLWH	WR Width]	2TCLCL -60		2TCLCL -40		2TCLCL - 35		ns
TAVAL	Address Valid to ALE Low		TCLCH -60		TCLCH -40		TCLCH - 35		ns
TOLOH	Output Rise Time	From 0.8 to 2.0 V		20		20		20	ns
TOHOL	Output Fall Time	From 2.0 to 0.8 V		12		12		12	ns

Notes: 1. Signal at 8284 or 8288 shown for reference only.

2. Set-up requirement for asynchronous signal only to guarantee recognition at next CLK.

From 2.0 to 0.8 V

3. Applies only to T3 and Wait states.

(Except CLK)

TIHIL

12

12

12

ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued) TIMING RESPONSES

			808	8	808	3-2	808	F1	
Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Min	Max	Min	Max	Units
TCLML	Command Active Delay (See Note 1)		10	35	10	35	10	35	ns
TCLMH	Command Inactive Delay (See Note 1)		10	35	10	35	10	35	ns
TRYHSH	READY Active to Status Passive (See Note 3)			110		65		45	ns
TCHSV	Status Active Delay		10	110	10	60	10	45	ns
TCLSH	Status Inactive Delay		10	130	10	70	10	55	ns
TCLAV	Address Valid Delay		10	110	10	60	10	50	ns
TCLAX	Address Hold Time		10		10		10		កទ
TCLAZ	Address Float Delay		TCLAX	80	TCLAX	50	10	40	ns
TSVLH	Status Valid to ALE High (See Note 1)			15		15		15	ns
TSVMCH	Status Valid to MCE High (See Note 1)			15		15		15	ns
TCLLH	CLK Low to ALE Valid (See Note 1)			15		15		15	ns
TCLMCH	CLK Low to MCE High (See Note 1)	CL = 20-100 pF for all 8086 outputs (in addition		15		15		15	ns
TCHLL	ALE Inactive Delay (See Note 1)			15		15		15	ns
TCLMCL	MCE Inactive Delay (See Note 1)	to internal loads)		15		15		15	ns
TCLDV	Data Valid Delay	1	10	110	10	60	10	50	ns
TCHDX	Data Hold Time		10		10		10		ns
TCVNV	Control Active Delay (See Note 1)		5	45	5	45	5	45	ns
TCVNX	Control Inactive Delay (See Note 1)		10	45	10	45	10	45	пş
TAZRL	Address Float to Read Active]	0		0		0		ns
TCLAL	RD Active Delay		10	165	10	100	10	70	ns
TCLRH	RD inactive Delay		10	150	10	80	10	60	ns
TRHAV	RD Inactive to Next Address Active		TCLCL -45		TCLCL -40		TCLCL -35		ns
TCHDTL	Direction Control Active Delay (See Note 1)			50		50		50	ns
тснотн	Direction Control Inactive Delay (See Note 1)			30		30		30	ns
TCLGL	GT Active Delay			85		50	0	45	ns
TCLGH	GT Inactive Delay	}		85		50	0	45	ns
TRLRH	RD Width		2TCLCL -75		2TCLCL -50		2TCLCL -40		ns
TOLOH	Output Rise Time	From 0.8 to 2.0 V		20		20	L	20	กร
TOHOL	Output Fall Time	From 2.0 to 0.8 V		12		12	1	12	ns

Notes: 1. Signal at 8284 or 8288 shown for reference only.

2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

3. Applies only to T2 state (8 ns into T3 state).

			8088		8088-2		
Parameter Symbol	Parameter Description	Test Conditions (Note 6)	Min.	Max.	Min.	Max.	Unit
TCLCL	CLK Cycle Period (Note 11)		200	500	125	500	ns
TCLCH	CLK LOW Time		118		68		ns
TCHCL	CLK HIGH Time		69		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V		10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V		10		10	ns
TDVCL	Data in Setup Time		30		20		ns
TCLDX	Data in Hold Time		10		10		ns
TRIVCL	RDY Setup Time into 8284A (Notes 1 & 2)		35		35		ns
TCLR1X	RDY Hold Time into 8284A (Notes 1 & 2)		0		0		ns
TRYHCH	READY Setup Time into 8088		118		68		ns
TCHRYX	READY Hold Time into 8088		30		20		ns
TRYLCL	READY Inactive to CLK (Note 3)		-8		-8		ns
THVCH	HOLD Setup Time		35		20		ns
TINVCH	INTR, NMI, TEST Setup Time (Note 2)		30		15		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns

Notes: 1. Signal at 8284A and 8288 shown for reference only. 2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK. 3. Applies only to T3 and wait states. 4. Applies only to T2 state (8 ns into T3). 5. Not tested; these specs are controlled by the Teradyne J941 tester. 6. V_{CC} = 4.5 V, 5.5 V V_H = 2.4 V V_{IL} = 4.5 V V_H = 2.4 V V_{IL} = 4.5 V V_H = 1.6 V V_{IL} = 2.5 V V_H = 1.6 V V_{IL} = 4.1 V V_{IL} = 4.3 V V_{IL} = 4.5 V V_H = 1.6 V V_{IL} = 4.1 V_{CC} Max. (5.5 V) only. 8. Maximum spec tested at V_{CC} Max. (5.5 V) only. 10. Tested at V_{CC} Min. (4.5 V) only. 11. Test conditions for TCLCL Max are:

11.	Iest	conditions	TOL	TULUL	Max.	are:			
	Vcc	= 4.5 V			VOL	=	1	۷	
	VIL	= 0 V			VIH	=	4	۷	
	VILC	= 0 V			VIHC	=	5	۷	

Parameter			8088		8088-2			
Symbol	Parameter Description	Test Conditions (Note 6)	Min. Max.		Min. Max.		Unit	
TCLAV	Address Valid Delay		10	110	10	60	ns	
TCLAX	Address Hold Time (Notes 7 & 8)	1 [10		10		ns	
TCLAZ	Address Float Delay (Note 8)	1 [10	80	10	50	ns	
TLHLL	ALE Width (Note 10)] [98		58		ns	
TCLLH	ALE Active Delay (Note 8)	-		80		50	ns	
TCHLL	ALE Inactive Delay (Note 8)] [85		55	ns	
TLLAX	Address Hold Time to ALE Inactive (Note 7)		59		34		ns	
TCLDV	Data Valid Delay (Note 8)		10	110	10	60	ns	
TCHDX	Data Hold Time (Note 10)] [10	ļ	10	ļ	ns	
TWHDX	Data Hold Time After WR (Note 9)	C _L = 100 pF for all 8088 Outputs (in addition	88		38		ns	
TCVCTV	Control Active Delay 1 (Note 8)		10	110	10	70	ns	
TCHCTV	Control Active Delay 2 (Note 8)		10	110	10	60	ns	
TCVCTX	Control Inactive Delay (Note 8)		10	110	10	70	ns	
TAZRL	Address Float to READ Active (Note 9)	to internal loads).	0		0		ns	
TCLRL	RD Active Delay (Note 8)	1	10	165	10	100	ns	
TCLRH	RD Inactive Delay (Note 8)		10	150	10	80	ns	
TRHAV	RD Inactive to Next Address Active (Note 10)	-	155		85		ns	
TCLHAV	HLDA Valid Delay (Note 8)		10	160	10	100	ns	
TRLRH	RD Width (Note 10)		325		200		ns	
TWLWH	WR Width (Note 10)		340		210		ns	
TAVAL	Address Valid to ALE Low (Note 9)	to internal loads). From 0.8 to 2.0 V	58		28		ns	
TOLOH	Output Rise Time (Note 9)	From 0.8 to 2.0 V		20		20	ns	
TOHOL	Output Fall Time (Note 9)	From 2.0 to 0.8 V		12		12	ns	

Parameter	Deservator	Test Conditions	80	88	808	38-2	
Symbol TCLCL TCLCH	Parameter Description	(Note 6)	Min.	Max.	Min.	Max.	Unit
TCLCL	CLK Cycle Period (Note 11)		200	500	125	500	ns
TCLCH	CLK LOW Time		118		68		ns
TCHCL	CLK HIGH Time		69		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V		10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V		10		10	ns
TDVCL	Data in Setup Time		30		20		ns
TCLDX	Data in Hold Time		10	L	10		ns
TRIVCL	RDY Setup Time into 8284A (Notes 1 & 2)		35		35		ns
TCLR1X	RDY Hold Time into 8284A (Notes 1 & 2)		0		0		ns
TRYHCH	READY Setup Time into 8088		118		68		ns
TCHRYX	READY Hold Time into 8088		30		20		ns
TRYLCL	READY Inactive to CLK (Note 3)		-8		-8		ns
TINVCH	Setup Time for Recognition (INTR, NMI, TEST (Note 2)		30		15		пз
TGVCH	RQ/GT Setup Time	· · · · · · · · · · · · · · · · · · ·	30		15		ns
TCHGX	RQ Hold Time into 8086		40	· · · ·	30		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns
4. Appli 5. Not 6. V _{CC} VIL VLC VOL 7. Mini 8. Maxi 9. Testi 10. Testi	es only to T3 and wait states. es only to T3 and wait states. es only to T2 state (8 ns into T3). tested; these specs are controlled by the = 4.5 V VIH = 2.4 V = 2.5 V VIHC = 4.3 V = 2.5 V VOH = 1.6 V = 1.4 V VOH = 1.6 V = 1.4 V VOH = 1.6 V of at V_{CC} Max. (5.5 V) on dat V_{CC} Min. (4.5 V) only. dat V_{CC} Min. (4.5 V) only. dat V_{CC} Min. (4.5 V) only. conditions for TCLCL Max. are: = 4.5 V VOL = 1 V = 0 V VIH = 4 V = 0 V VIH = 5 V	ly.					

SWITCHING CHARACTERISTICS over MILITARY operating range (continued) TIMING RESPONSES

Deve	Parameter Description	Test Conditions	8088		8088-2			
Parameter Symbol		(Note 6)	Min.	Max.	Min.	Max.	Unit	
TCLML	Command Active Delay (Note 1)		10	35	10	35	ns	
TCLMH	Command Inactive Delay (Note 1)		10	35	10	35	ns	
TRYHSH	READY Active to Status Passive (Note 4)			110		65	ns	
TCHSV	Status Active Delay (Notes 7 & 8)		10	110	10	60	ns	
TCLSH	Status Inactive Delay	1	10	130	10	70	ns	
TCLAV	Address Valid Delay	1	10	110	10	60	ns	
TCLAX	Address Hold Time	1	10	1	10		ns	
TCLAZ	Address Float Delay	1	10	80	10	50	ns	
TSVLH	Status Valid to ALE HIGH (Note 1)	CL = 100 pF for all 8088 Outputs (in addition to internal loads)		15		15	ns	
TSVMCH	Status Valid to MCE HIGH (Note 1)			15		15	ns	
TCLLH	CLK LOW to ALE Valid (Note 1)			15		15	ns	
TCLMCH	CLK LOW to MCE HIGH (Note 1)			15		15	ns	
TCHLL	ALE Inactive Delay (Note 1)			15		15	ns	
TCLMCL	MCE inactive Delay (Note 1)			15		15	ns	
TCLDV	Data Valid Delay		10	110	10	60	ns	
TCHDX	Data Hold Time		10		10		ns	
TCVNV	Control Active Delay (Note 1)		5	45	5	45	ns	
TCVNX	Control Inactive Delay (Note 1)		10	45	10	45	ns	
TAZRL	Address Float to Read Active		0		0		ns	
TCLRL	RD Active Delay		10	165	10	100	ns	
TCLRH	RD Inactive Delay		10	150	10	80	ns	
TRHAV	RD Inactive to Next Address Active		155		85		ns	
TCHDTL	Direction Control Active Delay (Note 1)			50		50	ns	
TCHDTH	Direction Control Inactive Delay (Note 1)			30		30	ns	
TCLGL	GT Active Delay (Note 8)			110		50	ns	
TCLGH	GT Inactive Delay (Note 8)			85		50	ns	
TRLRH	RD Width		325		200		ns	
TOLOH	Output Rise Time Output Fall Time	From 0.8 to 2.0 V From 2.0 to 0.8 V		20	 	20		
2. Seit 3. App 4. App 5. Not 6. Voc Vill Vill VOL 7. Min 8. Maa 9. Tes	Tail at 8284A and 8286 shown for reference up requirement for asynchronous signal of tiles only to T3 and wait states. T3 and wait states. T2 state (8 ns into T3). tested; these specs are controlled by t1 $(2 + 4.5 \times 5.5 \times 10^{11} + 2.4 \times 10^{11} + 2.5 $	only to guarantee recognition ne Teradyne J941 tester. only.	at next CLK.					

	8086/808 INSTRUCTION SET	88 F SUMMARY		
DATA TRANSFER				
NOV = Move	76543210	76543210	76543210	76543210
Register/memory to/from register	100010dw	mod reg r/m		
mmediate to register/memory	1100011w	mod 0 0 0 r/m	data	data if w = 1
mmediate to register	1011w reg	data	data if w = 1]
Memory to accumulator	101000w	addr-low	addr-high]
Accumulator to memory	101001w	addr-low	addr-high]
Register/memory to segment register	10001110	mod 0 reg r/m]	
Segment register to register/memory	10001100	mod 0 reg r/m]	
PUSH = Push:				
Register/memory	1111111	mod 1 1 0 r/m)	
Register	0 1 0 1 0 reg]		
Segment register	0 0 0 reg 1 1 0]		
POP = Pop:			-	
Register/memory	10001111	mod 0 0 0 r/m]	
Register	0 1 0 1 1 reg			
Segment register	0 0 0 reg 1 1 1]		
XCHG = Exchange:		······	7	
Register/memory with register	1000011w	mod reg r/m]	
Register with accumulator	1 0 0 1 0 reg]		
IN = Input from:		· · · · · · · · · ·	7	
Fixed port	1110010w	port		
Variable port	1110110w			
OUT = Output to:			г	
Fixed port	1110011w	port		
Variable port	<u>1110111w</u>			
XLAT = Transtate byte to AL	11010111		7	
LEA = Load EA to register	10001101	mod reg r/m		
LDS = Load pointer to DS	11000101	mod reg r/m		
LES = Load pointer to ES	11000100	mod reg r/m	_	
LANF = Load AH with flags	10011111	1		
SANF = Store AH into flags	10011110	Ţ		
PUSHF - Push flags	10011100	1		
POPF = Pop flags	10011101			

INSTRUCTION SET SUMMARY (continued)

76543210

mod reg r/m

mod 0 0 0 r/m

data

mod reg r/m

mod 0 1 0 r/m

data

mod 0 0 0 r/m

76543210 76543210

data if s:w = 01

data if s:w = 01

data

data if w = 1

data

data if w = 1

76543210

w b 0 0 0 0 0 0 w

100000sw

0000010w

000100dw

100000sw

0001010w

111111w

01000 reg

00110111

00100111

ARITHMETIC

ADD = Add

Reg/memory with register to either

Immediate to register / memory

Immediate to accumulator

ADC = Add with carry:

Reg/memory with register to either Immediate to register/memory

Immediate to accumulator

INC = increment:

Register/memory

Register

- AAA = ASCII adjust for add
- DAA = Decimal adjust for add

SBB = Subtract with borrow: Reg/memory and register to either Immediate from register/memory Immediate from accumulator

SUB = Subtract:

Reg/memory and register to either	001010dw	mod reg r/m)	
Immediate from register/memory	10000sw	mod 1 0 1 r/m	data	data if s:w = 01
Immediate from accumulator	0010110w	data	data if w = 1	

000110dw	mod reg r/m]	
10000sw	mod 0 1 1 r/m	data	data if s:w = 01
0001110w	data	data if w = 1	

1111111W	mod 0 0 1 r/m
01001 reg	
1111011w	mod 0 1 1 r/m

0011101w	mod reg r/m		
0011100w	mod reg r/m		
10000sw	mod 1 1 1 r/m	data	data if s:w = 0
0011110w	data	data if w = 1]
00111111]		
00101111]		
1111011w	mod 1 0 0 r/m		
1111011w	mod 1 0 1 r/m		
11010100	00001010		
1111011w	mod 1 1 0 r/m		
1111011w	mod 1 1 1 r/m		
11010101	00001010		
10011000			
10011001			

CMP = Compare:

DEC = Decrement: Register/memory Register **NEG** Change sign

Register/memory with register Register with register/memory Immediate with register/memory Immediate with accumulator AAS ASCII adjust for subtract DAS Decimal adjust for subtract **MUL** Mulitiply (unsigned) IMUL Integer multiply (signed): AAM ASCII adjust for multiply **DIV** Divide (unsigned): IDIV Integer divide (signed) AAD ASCH adjust for divide CBW Convert byte to word CWD Convert word to double word

INSTRUCTION SET SUMMARY (continued)

LOGIC

76543210 76543210

NOT Invert	
SHL/SAL Shift	logical/arithmetic left

SHR Shift logical right

SAR Shift arithmetic right

ROL Rotate left

ROR Rotate right RCL Rotate through carry flag left

RCR Rotate through carry right

AND = And:

Reg/memory and register to either	
immediate to register/memory	
Immediate to accumulator	

TEST = And function to flags, no result:

Register/memory and register					
Immediate data and register/memory					
Immediate data and accumulator					

OR = Or:

Reg/memory and register to either	
Immediate to register/memory	
Immediate to accumulator	

XOR = Exclusive or:

Reg/memory and register to either
Immediate to register/memory
Immediate to accumulator

STRING MANIPULATION:

REP - Repeat	1111001z
MOVS - Move byte/word	1010010w
CMPS - Compare byte/word	1010011w
SCAS = Scan byte/word	1010111w
LODS - Load byte/wd to AL/AX	1010110w
STOS = Store byte/wd from AL/A	1010101w

7	6	5	4	3	2	1	0	76543210
1	1	1	1	0	1	1	w	mod 0 1 0 r/m
1	1	0	1	0	0	۷	w	mod 1 0 0 r/m
1	1	0	1	0	0	۷	w	mod 1 0 1 r/m
1	1	0	1	0	0	۷	w	mod 1 1 1 r/m
1	1	0	1	0	0	۷	w	mod 0 0 0 r/m
1	1	0	1	0	0	۷	w	mod 0 0 1 r/m
1	1	0	1	0	0	۷	w	mod 0 1 0 r/m
1	1	0	1	0	0	v	w	mod 0 1 1 r/m

001000dw	mod reg r/m		
1000000w	mod 1 0 0 r/m	data	data if w = 1
0010010w	data	data if w = 1]

1000010w	mod reg r/m		
1111011w	mod 0 0 0 r/m	data	data if w = 1
1010100w	data	data if w = 1]

000010dw	mod reg r/m		
100000w	mod 0 0 1 r/m	data	data if w = 1
0000110w	data	data if w = 1	

001100dw	mod reg r/m		
100000w	mod 1 1 0 r/m	data	data if w = 1
0011010w	data	data if w = 1	

INSTRUCTION SET SUMMARY (continued)

CONTROL TRANSFER

CALL = Call Direct within segment

indirect within segment

Direct intersegment

Indirect intersegment

JMP = Unconditional jump:

Direct within segment

Direct within segment-short

Indirect within segment

Direct intersegment

Indirect intersegment

RET = Return from CALL:

Within segment

Within segment adding immediate to SP Intersegment

Intersegment adding immediate to SP

JE/JZ = Jump on equal/zero

JL/JNGE = Jump on less/not greater or equal

JLE/JNG = Jump on less or equal/not greater JB/JNAE = Jump on below/not above or equal

JBE/JNA = Jump on below or equal/not above

JP/JPE = Jump on parity/parity even

JO = Jump on overflow

JS = Jump on sign

JNE/JNZ = Jump on not equal/not zero JNL/JGE = Jump on not less/greater or equal JNLE/JG = Jump on not less or equal/greater JNB/JAE = Jump on not below/above or equal JNBE/JA = Jump on not below or equal/above JNP/JPO = Jump on not par/par odd

JNO - Jump on not overflow

JNS = Jump on not sign

LOOP = Loop CX times

LOOPZ/LOOPE = Loop while zero/equal LOOPNZ/LOOPNE = Loop while not zero/equal

JCXZ = Jump on CX zero

76543210 76543210 76543210 76543210

11101000 disp-low disp-high 11111111 mod 0 1 0 r/m

				'	'		<u> </u>		
1	0	0	1	1	0	1	0	offset-low	offset-high
								seg-low	seg-high
1	1	1	1	1	1	1	1	mod 0 1 1 r/m	

1	1	1	0	1	0	0	1	disp-low	disp-high
1	1	1	0	1	0	1	1	disp	
1	1	1	1	1	1	1	1	mod 1 0 0 r/m	
1	1	1	0	1	0	1	0	offset-low	offset-high
								seg-low	seg-high
1	1	1	1	1	1	1	1	mod 1 0 1 r/m	

11000011		
11000010	data-low	data-high
11001011		
11001010	data-low	data-high
01110100	disp	
01111100	disp	
01111110	disp	
01110010	disp	
01110110	disp	
01111010	disp	
01110000	disp	
01111000	disp	
01110101	disp	
01111101	disp	
01111111	disp	
01110011	disp	
01110111	disp	
01111011	d isp	
01110001	disp	
01111001	disp	
11100010	disp	
11100001	disp	
11100000	disp	
11100011	disp	

INSTRUCTION SET SUMMARY (continued)									
CONTROL TRANSFER (continued)									
INT = Interrupt	76543210	76543210	76543210	76543210					
Type specified	11001101	type							
Туре 3	11001100								
INTO = Interrupt on overflow	11001110								
IRET = Interrupt return	11001111								
PROCESSOR CONTROL									
CLC = Clear carry	11111000)							
CMC - Complement carry	11110101]							
STC = Set carry	11111001]							
CLD = Clear direction	11111100]							
STD = Set direction	1111101]							
CLI = Clear interrupt	11111010]							
STI - Set interrupt	1111011]							
HLT = Halt	11110100]							
WAIT = Wait	10011011]	_						
ESC = Processor Extension Escape	1 1 0 1 1 x x x	mod x x x r/m]						
LOCK = Bus lock prefix	11110000]							

Footnotes:

AL = 8-bit accumulator AL = 8-bit accumulator AX = 16-bit accumulator CX = Count register DS = Data segment ES = Extra segment Above/below refers to unsigned value. Creater = more positive. Less = less positive (more negative) signed values if d = 1 then "to" reg; if d = 0 then "from" reg w = 1 then word instruction; if w = 0 then byte instruction if mod = 11 then r/m is treated as a REG field if mod = 00 then DISP = 0 , disp-low and disp-high are absent if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is

absent if mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP

if r/m = 000 then EA = (BX) + (SI) + DISP if r/m = 001 then EA = (BX) + (D) + DISP if r/m = 010 then EA = (BP) + (SI) + DISP if r/m = 011 then EA = (BP) + (DI) + DISP if r/m = 100 then EA = (SI) + DISP if r/m = 101 then EA = (BP) + DISP if r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if required)

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

if s:w = 01 then 16 bits of immediate data form the operand. if s:w = 11 then an immediate data byte is sign extended to form the 16-bit operand.

if v = 0 then "count" = 1; if v = 1 then "count" in (CL) x = don't care

z is used for string primitives for comparison with Z.F Flag.

SEGMENT	OVERRIDE	PREFIX

0	0	1	reg	1	1	0

REG is assigned according to the following table:

<u>16-Bit (w = 1)</u>	8-Bit (w = 0)	Segment
000 AX	000 AL	00 ES
001 CX	001 CL	01 CS
010 DX	010 DL	10 SS
011 BX	011 BL	11 DS
100 SP	100 AH	
101 BP	101 CH	
110 SI	110 DH	
111 DI	111 BH	

Instructions which reference the flag register files as a 16-bit object use the symbol FLAGS to represent the file:

FLAGS = X:X:X:(OF):(DF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)