

Test Procedure for the NCV47411PAAJGEVB Evaluation Board

The NCV47411 is dual channel adjustable Low Dropout Regulator with:

- Two adjustable output voltages from 3.3 V to 20 V
- Two adjustable current limits up to 150 mA
- Enable inputs with 3.3 V Logic compatible thresholds

Power supplying of the chip is possible from one or two independent sources. **INPUT1** must be always supplied and **INPUT2** as optional for V_{in2} supply.

1. Power supplying

a. Power supplying from one source

Connect the test setup as is shown in Figure 1 (See Table 1 with required equipment). Connect power supply to INPUT1 connector J_1 (Power supplying of INPUT2 is not needed).

- **Hi_F** Positive Force line
- **Hi_S** Positive Sense line
- **Lo_F** Negative Force line
- **Lo_S** Negative Sense line

Connect V_{in2} pin to INPUT1 via appropriate position of jumper "V_{in2} to IN1 or IN2 connection".

b. Power supplying from two sources

Connect the test setup as is shown in Figure 1 (See Table 1 with required equipment). Connect two power supplies to INPUT1 connector J_1 and to INPUT2 connector J_2 , respectively.

- **Hi_F** Positive Force line
- **Hi_S** Positive Sense line
- **Lo_F** Negative Force line
- Lo_S Negative Sense line

Values of input voltages V_{in1} and V_{in2} can be different. This option is suitable for reducing of power dissipation on chip.

Connect V_{in2} pin to INPUT2 via appropriate position of jumper " V_{in2} to IN1 or IN2 connection".

- 2. Connect jumpers $J_{10} J_{13}$ for output current limitation from V_{out1} pin and $J_{20} J_{23}$ for output current limitation from V_{out2} pin.
 - $J_{n0} I_{LIMn0} \sim 10 \text{ mA}$
 - $\mathbf{J_{n1}} \mathbf{I_{LIMn1}} \sim 50 \text{ mA}$
 - $J_{n2} I_{LIMn2} \sim 100 \text{ mA}$
 - $J_{n3} I_{LIMn3} R_{CSOn3}$ positions available for individual current limit setting by resistor from range 850 Ω to 12.75 k Ω
- 3. Set Input Voltage and turn on Power Supply/Supplies.
- 4. Enable output of the channel to power the regulated output voltage by connecting the **ENABLE** pin to corresponding V_{in} via jumper. Enabling can be performed by external voltage source as well.
- 5. Load the outputs by resistive loads connected via jumpers:
 - $J_5, J_7 51 \Omega$
 - $J_6, J_8 1 k\Omega$

External loads can be used instead build-in resistive loads as well.

10/18/2012

www.onsemi.com

6. Monitor Output Voltages, given according to Equation 1.

$$V_{out_nom_n} = 1.275 \left(1 + \frac{R_{n1}}{R_{n2}}\right)$$
 (eq. 1)

7. Monitor Current Sense Output voltages on appropriate connector. They should be max 2.55 V in steady state. The CSO voltages are proportional to output currents according to Equation 2.

$$V_{CSO_n} = I_{out_n} \left(R_{CSO_n} \times \frac{1}{50} \right)$$
(eq. 2)

8. Compare your results with measured results in Table 2.

Figure 1. General Test Setup

Table 1: Required Equipment	
Equipment	Ranges
Power Supply	0 V – 45 V / 1 A
Load	0 mA – 500 mA
V - meter	0 V - 20 V
A - meter	0 mA – 500 mA

Table 1: Required Equipment

10/18/2012

www.onsemi.com

ON Semiconductor®

Figure 2. Top side PCB Layout (3 x 3 inch)

ON Semiconductor®

Table 2: Measured Results

			Value		
Parameter	Test Conditions	Symbol	Nominal	Measured	Unit
Output Voltage	V_{in} = 13.5 V, $V_{out_nom_n}$ = 5.02 V, I_{out_n} = 5 mA, R_{CSO_n} = Short to ground	V _{out1}	5.02	5.006	v
		V _{out2}		5.005	
	V_{in} = 13.5 V, $V_{out_nom_n}$ = 5.02 V, I_{out_n} = 100 mA, R_{CSO_n} = Short to ground	V _{out1}		5.005	
		V _{out2}		5.005	
Output Current	$V_{in} = 13.5 \text{ V}, V_{out_nom_n} = 5.02 \text{ V}, V_{out_n} = 90 \% \text{ of } V_{out_nom_n}, R_{CSO_n} = 12.7 \text{ k}\Omega$	I _{out1}	10.04	10.06	mA
		I _{out2}		10	
	$V_{in} = 13.5 \text{ V}, V_{out_nom_n} = 5.02 \text{ V}, V_{out_n} = 90 \% \text{ of } V_{out_nom_n}, R_{CSO_n} = 2.49 \text{ k}\Omega$	I _{out1}	51.2	52.47	
		I _{out2}		52.19	
	V_{in} = 13.5 V, $V_{out_nom_n}$ = 5.02 V, V_{out_n} = 90 % of $V_{out_nom_n},$ R_{CSO_n} = 1.2 $k\Omega$	I _{out1}	106.25	110.28	
		I _{out2}		109.95	
Output Current	$V_{in} = 13.5 \text{ V}, V_{out_nom_n} = 5.02 \text{ V}, V_{out_n} = 0 \text{ V}, R_{CSO_n} = 12.7 \text{ k}\Omega$	I _{out1}	10.04	10.55	mA
		I _{out2}		10.49	
	$V_{in} = 13.5 \text{ V}, V_{out_nom_n} = 5.02 \text{ V}, V_{out_n} = 0 \text{ V}, R_{CSO_n} = 2.49 \text{ k}\Omega$	I _{out1}	51.2	54.44	
		I _{out2}		54.17	
	$V_{in} = 13.5 \text{ V}, V_{out_nom_n} = 5.02 \text{ V}, V_{out_n} = 0 \text{ V}, R_{CSO_n} = 1.2 \text{ k}\Omega$	I _{out1}	106.25	115.32	
		I _{out2}		114.37	