Amplifier Transistors ### **PNP Silicon** #### **Features** • Pb-Free Packages are Available* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------------|-------------| | Collector - Emitter Voltage BC556 BC557 BC558 | V _{CEO} | -65
-45
-30 | Vdc | | Collector - Base Voltage BC556 BC557 BC558 | V _{CBO} | -80
-50
-30 | Vdc | | Emitter - Base Voltage | V _{EBO} | -5.0 | Vdc | | Collector Current – Continuous
– Peak | I _C
I _{CM} | -100
-200 | mAdc | | Base Current – Peak | I _{BM} | -200 | mAdc | | Total Device Dissipation @ T _A = 25°C Derate above 25°C | P _D | 625
5.0 | mW
mW/°C | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 1.5
12 | W
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 200 | °C/W | | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 83.3 | °C/W | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. #### ON Semiconductor® http://onsemi.com #### **MARKING DIAGRAM** xx = 6B, 7A, 7B, 7C, or 8B A = Assembly Location Y = Year WW = Work Week = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--|--|-----------------------|-----------------------------|-------------------------------------|------------------------------|----------| | OFF CHARACTERISTICS | | | | | | | | Collector – Emitter Breakdown Voltage (I _C = -2.0 mAdc, I _B = 0) | BC556
BC557
BC558 | V _{(BR)CEO} | -65
-45
-30 | -
-
- | -
-
- | V | | Collector – Base Breakdown Voltage
(I _C = –100 μAdc) | BC556
BC557
BC558 | V _(BR) CBO | -80
-50
-30 | -
-
- | -
-
- | V | | Emitter – Base Breakdown Voltage ($I_E = -100 \mu Adc, I_C = 0$) | BC556
BC557
BC558 | $V_{(BR)EBO}$ | -5.0
-5.0
-5.0 | -
-
- | -
-
- | V | | Collector–Emitter Leakage Current (V _{CES} = -40 V) (V _{CES} = -20 V) (V _{CES} = -20 V, T _A = 125°C) | BC556
BC557
BC558
BC556 | I _{CES} | -
-
- | -2.0
-2.0
-2.0 | -100
-100
-100
-4.0 | nA
μA | | | BC557
BC558 | | _ | _ | -4.0
-4.0 | | | ON CHARACTERISTICS | <u>.</u> | | • | | | | | DC Current Gain $(I_C = -10 \ \mu Adc, \ V_{CE} = -5.0 \ V)$ $(I_C = -2.0 \ mAdc, \ V_{CE} = -5.0 \ V)$ | A Series Device B Series Devices C Series Devices BC557 A Series Device B Series Devices | h _{FE} | -
-
120
120
180 | 90
150
270
-
170
290 | -
-
800
220
460 | _ | | $(I_C = -100 \text{ mAdc}, V_{CE} = -5.0 \text{ V})$ | C Series Devices A Series Device B Series Devices C Series Devices | | 420
-
-
- | 500
120
180
300 | 800
-
-
- | | | Collector – Emitter Saturation Voltage (I _C = -10 mAdc, I _B = -0.5 mAdc) (I _C = -10 mAdc, I _B = see Note 1) (I _C = -100 mAdc, I _B = -5.0 mAdc) | | V _{CE(sat)} | -
-
- | -0.075
-0.3
-0.25 | -0.3
-0.6
-0.65 | V | | Base – Emitter Saturation Voltage
($I_C = -10$ mAdc, $I_B = -0.5$ mAdc)
($I_C = -100$ mAdc, $I_B = -5.0$ mAdc) | | V _{BE(sat)} | -
- | -0.7
-1.0 | <u>-</u> | V | | Base–Emitter On Voltage
($I_C = -2.0$ mAdc, $V_{CE} = -5.0$ Vdc)
($I_C = -10$ mAdc, $V_{CE} = -5.0$ Vdc) | | V _{BE(on)} | -0.55
- | -0.62
-0.7 | -0.7
-0.82 | V | | SMALL-SIGNAL CHARACTERISTICS | | | | | | | | Current – Gain – Bandwidth Product
(I _C = –10 mA, V _{CE} = –5.0 V, f = 100 MHz) | BC556
BC557
BC558 | f _T | -
-
- | 280
320
360 | -
-
- | MHz | | Output Capacitance
$(V_{CB} = -10 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz})$ | | C_{ob} | _ | 3.0 | 6.0 | pF | | Noise Figure (I _C = -0.2 mAdc, V _{CE} = -5.0 V, R _S = 2.0 k Ω , f = 1.0 kHz, Δ f = 200 Hz) | BC556
BC557
BC558 | NF | -
-
- | 2.0
2.0
2.0 | 10
10
10 | dB | | Small–Signal Current Gain ($I_C = -2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz}$) | BC557
A Series Device
B Series Devices
C Series Devices | h _{fe} | 125
125
240
450 | -
-
-
- | 900
260
500
900 | - | ^{1.} $I_C = -10$ mAdc on the constant base current characteristics, which yields the point $I_C = -11$ mAdc, $V_{CE} = -1.0$ V. #### BC557/BC558 Figure 1. Normalized DC Current Gain Figure 2. "Saturation" and "On" Voltages Figure 3. Collector Saturation Region Figure 4. Base-Emitter Temperature Coefficient Figure 5. Capacitances Figure 6. Current-Gain - Bandwidth Product #### **BC556** Figure 7. DC Current Gain Figure 8. "On" Voltage Figure 9. Collector Saturation Region Figure 10. Base-Emitter Temperature Coefficient Figure 11. Capacitance Figure 12. Current-Gain - Bandwidth Product Figure 13. Thermal Response Figure 14. Active Region - Safe Operating Area The safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------|--------------------|-----------------------| | BC556BG | TO-92
(Pb-Free) | 5000 Units / Bulk | | BC556BZL1G | TO-92
(Pb-Free) | 2000 / Ammo Box | | BC557AZL1G | TO-92
(Pb-Free) | 2000 / Ammo Box | | BC557BG | TO-92
(Pb-Free) | 5000 Units / Bulk | | BC557BRL1 | TO-92 | 2000 / Tape & Reel | | BC557BRL1G | TO-92
(Pb-Free) | 2000 / Tape & Reel | | BC557BZL1G | TO-92
(Pb-Free) | 2000 / Ammo Box | | BC557CG | TO-92
(Pb-Free) | 5000 Units / Bulk | | BC557CZL1G | TO-92
(Pb-Free) | 2000 / Ammo Box | | BC558BRLG | TO-92
(Pb-Free) | 2000 / Tape & Reel | | BC558BRL1G | TO-92
(Pb-Free) | 2000 / Tape & Reel | | BC558BZL1G | TO-92
(Pb-Free) | 2000 / Ammo Box | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **TO-92 (TO-226)** CASE 29-11 **ISSUE AM** **DATE 09 MAR 2007** STRAIGHT LEAD **BULK PACK** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | INCHES | | MILLIN | IETERS | |-----|--------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.45 | 5.20 | | В | 0.170 | 0.210 | 4.32 | 5.33 | | С | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.016 | 0.021 | 0.407 | 0.533 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.015 | 0.020 | 0.39 | 0.50 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | Р | | 0.100 | | 2.54 | | R | 0.115 | | 2.93 | | | ٧ | 0.135 | | 3.43 | | **BENT LEAD** TAPE & REEL AMMO PACK - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | 4.45 | 5.20 | | | | | В | 4.32 | 5.33 | | | | | С | 3.18 | 4.19 | | | | | D | 0.40 | 0.54 | | | | | G | 2.40 | 2.80 | | | | | J | 0.39 | 0.50 | | | | | K | 12.70 | | | | | | N | 2.04 | 2.66 | | | | | P | 1.50 | 4.00 | | | | | R | 2.93 | | | | | | V | 3.43 | | | | | #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42022B | Electronic versions are uncontrolle | ' | | |------------------|---------------------------|--|-------------|--| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document versions are uncontrolled except | | | | NEW STANDARD: | | "CONTROLLED COPY" in red. | | | | DESCRIPTION: | TO-92 (TO-226) | | PAGE 1 OF 3 | | # **TO-92 (TO-226)** CASE 29-11 ## ISSUE AM #### DATE 09 MAR 2007 | STYLE 1:
PIN 1.
2.
3. | EMITTER
BASE
COLLECTOR | STYLE 2:
PIN 1.
2.
3. | BASE
EMITTER
COLLECTOR | STYLE 3:
PIN 1.
2.
3. | ANODE
ANODE
CATHODE | STYLE 4:
PIN 1.
2.
3. | CATHODE
CATHODE
ANODE | STYLE 5:
PIN 1.
2.
3. | DRAIN | |--------------------------------|-------------------------------------|---------------------------------|--|---------------------------------|-------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------| | 2. | GATE
SOURCE & SUBSTRATE
DRAIN | STYLE 7:
PIN 1.
2.
3. | SOURCE
DRAIN
GATE | STYLE 8:
PIN 1.
2.
3. | DRAIN
GATE
SOURCE & SUBSTRATE | PIN 1. | BASE 1 | | CATHODE | | 2. | ANODE
CATHODE & ANODE
CATHODE | STYLE 12:
PIN 1.
2.
3. | MAIN TERMINAL 1
GATE
MAIN TERMINAL 2 | PIN 1. | ANODE 1 | PIN 1. | EMITTER
COLLECTOR
BASE | PIN 1.
2. | | | 2. | ANODE
GATE | PIN 1.
2. | COLLECTOR
BASE | PIN 1.
2. | ANODE
CATHODE | PIN 1.
2. | GATE | 2. | NOT CONNECTED | | 2. | COLLECTOR | PIN 1.
2. | SOURCE
GATE
DRAIN | STYLE 23:
PIN 1.
2.
3. | GATE
SOURCE
DRAIN | STYLE 24:
PIN 1.
2.
3. | EMITTER
COLLECTOR/ANODE
CATHODE | STYLE 25:
PIN 1.
2.
3. | MT 1
GATE | | | V _{CC} | PIN 1.
2. | MT | STYLE 28:
PIN 1.
2. | CATHODE
ANODE
GATE | STYLE 29:
PIN 1.
2. | | PIN 1.
2. | DRAIN | | | GATE | PIN 1.
2. | | STYLE 33:
PIN 1.
2.
3. | RETURN | 2. | | | | | DOCUMENT NUMBER: | 98ASB42022B | Electronic versions are uncontrolle | ' | |------------------|---------------------------|--|-------------| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document versions are uncontrolled except | ' ' | | NEW STANDARD: | | "CONTROLLED COPY" in red. | | | DESCRIPTION: | TO-92 (TO-226) | | PAGE 2 OF 3 | | DOCUMENT | NUMBER: | |-----------------|---------| | 08 V S B 42022 | R | PAGE 3 OF 3 | ISSUE | REVISION | DATE | |-------|---|-------------| | AM | ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA. | 09 MAR 2007 | ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application of use of any product or circuit, and specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death. associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales