Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

8-BIT 8CH I²C-BUS D-A CONVERTER WITH BUFFER AMPLIFIERS

PIN CONFIGURATION (TOP VIEW)

DESCRIPTION

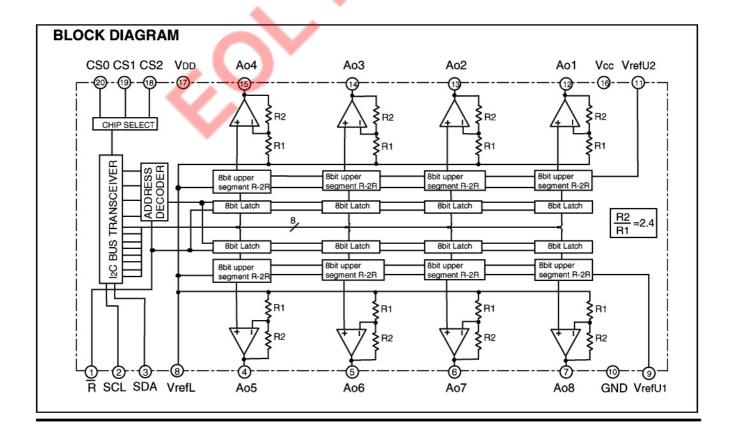
The M62399P,FP is an integrated circuit semiconductor of high voltage type CMOS structure with 8 channels of built-in D-A converters with output buffer operational amplifiers.

The input is 2-wires serial method is used for the transfer formal of digital data to allow connection with a microcomputer with minimum wiring

The output buffer operational amplifier employs AB class output circuit with sync and source drive capacity of 2.5mA or more, and it operates in the whole voltage range from VrefU to

And because of connects maximum 8 pieces, it is possible to 64 channels control.

FEATURES


- Digital data transfer format
- I2C-bus serial data method
- Output buffer operational amplifier it operates in the whole voltage range from VrefU(0~12V)to
- ground.
 •High output current drive capacity ±2.5mA over
- Preparation two high level reference voltage terminal because there are two high level reference voltage terminal, it can set up two kinds differ voltage range.

APPLICATION

Conversion from digital control data to analog control data for home-use and industrial equipment.

Signal gain control or automatic adjustment of DISPLAY-MONITOR or CTV.

 $\overline{\mathsf{R}}$ 20 CS₀ 2 SCL 19 CS₁ SDA 3 18 CS₂ Ao₅ 4 17 VDD Ao6 5 16 Vcc Ao4 6 15 Ao7 Ao₃ Ao8 14 VrefL 8 13 Ao2 Ao1 VrefU1 9 12 GND 11 VrefU2 Outline 20P4(P) 20P2N-A(FP)

8-BIT 8CH I²C-BUS D-A CONVERTER WITH BUFFER AMPLIFIERS

EXPLANATION OF TERMINALS

Pin No.	Symbol	Function					
3	SDA	Serial data input terminal					
1	R	Reset signal input terminal					
① ② ⑫	SCL	Serial clock input terminal					
12	Ao1						
13	Ao2						
14	Ao3	8-bit D-A converter output terminal					
15	Ao4	6-bit b-A converter output terminal					
(4)	Ao5						
<u>5</u>	Ao6						
6	Ao7						
7	Ao8						
16	Vcc	Analog power supply terminal					
7 16 17	VDD	Digital power supply terminal					
10	GND	Analog and digital common GND					
8	VrefL	D-A converter low level reference voltage input terminal					
9	VrefU1	D-A converter high level reference voltage input terminal 1					
9 11	VrefU2	D-A converter high level reference voltage input terminal 2					
18	CS2	Chip select data input terminal 2					
19	CS1	Chip select data input terminal 1					
20	CS0	Chip select data input terminal 0					

8-BIT 8CH I²C-BUS D-A CONVERTER WITH BUFFER AMPLIFIERS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~+13.5	٧
VDD	Supply voltage		-0.3~+7.0	٧
VrefU1,2	D-A converter upper reference voltage		VDD	٧
VIND	Digital input voltage		-0.3~VDD+0.3	٧
Topr	Operating temperature		-20~+85	°C
Tstg	Storage temperature		-40~+125	°C

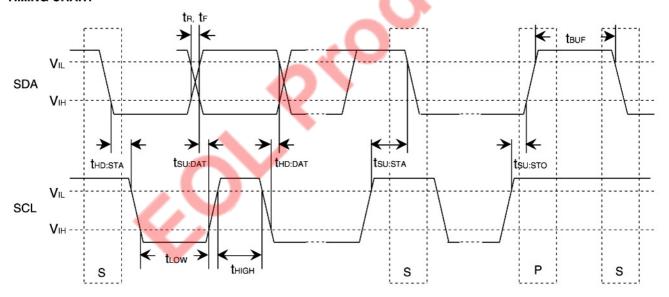
ELECTRICAL CHARACTERISTICS

Digital part(Vcc=13V,VDD=VrefU1,2=+5V±10%,GND=VrefL=0V,Ta=-20 ~ +85°C,unless otherwise noted)

Symbol	Devermeter	Test conditions	Test conditions					Limits				
Cymbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit						
VDD	Supply voltage				1	4.5	5.0	5.5	V			
IDD	Supply current	CLK=1MHz operation IAO=0µA	<u> </u>					1	mA			
lilk	Input leak current	VIN=0~VDD			ŗ	-10		10	μΑ			
VIL	Input low voltage	4						0.2Vcc	٧			
VIH	Input high voltage			Y		0.8Vcc			٧			

Analog part(Vcc=13V,VDD=VrefU1,2=+5V±10%,GND=VrefL=0V,Ta=-20~+85°C,unless otherwise noted)

Symbol	Downwoodow	Toot conditions		Linit		
Оуппоот	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage		VDD		13	٧
Icc	Circuit current	CLK=1MHz operation IAO=0µA		2.0	4.0	mA
IrefU	D-A converter upper reference voltage input current	VrefU=5V VrefL=0V Data condition:at maximum current		1.2	2.5	mA
VrefU	D-A converter upper reference voltage range	The output does not necessarily be the values within the reference voltage setting	3.5		VDD	٧
VrefL	D-A converter lower reference voltage range	range.	GND		1.5	٧
VAO	Buffer amplifier output voltage range	IAO=±500μA	0.1		Vcc-0.1	V
VAO	buller amplifier output voltage range	IAO=±1.0mA	0.2		Vcc-0.2	V
IAO	Buffer amplifier output drive range	Upper side saturation voltage=0.3V Lower side saturation voltage=0.2V	-2.5		2.5	mA
SDL	Differential nonlinearity error	VrefU=4.79V	-1.0		1.0	LSE
SL	Nonlinearity error	VrefL=0.95V	-1.5		1.5	LSE
SZERO	Zero code error	Vcc=5.5V(15mV/LSB)	-2.0		2.0	LSE
SFULL	Full scale error	without load(IAO=0)	-2.0		2.0	LSE
Eo	Gain error		-3.0		3.0	%
SR	Output slew rate			0.2		V/µs

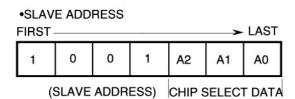

8-BIT 8CH I²C-BUS D-A CONVERTER WITH BUFFER AMPLIFIERS

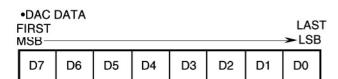
I²C-BUS LINE CHARACTERISTICS

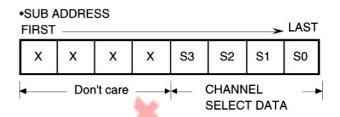
0 1 1	Barrarra da r	Norma	l mode	High speed mode		
Symbol	Parameter	Min	Max	Min	Max	Unit
fscL	SCL clock frequency	0	100	0	400	KHz
t BUF	Time the bus must be free before a new transmission can start	4.7	_	1.3	_	μs
thd:STA	Hold time start condition. After this period. The first clock pulse is generated	4.0		0.6	_	μs
tLOW	The low period of the clock	4.7	_	1.3	_	μs
thigh	The high period of the clock	4.0	_	0.6	· ·	μs
tsu:sta	Set up time for start condition(only relevant for a repeated start condition)	4.7	_	4.7	1-	μs
thd:dat	Hold time data	0	===	0	0.9	μs
tsu:DAT	Set up time data	250		100		ns
tr	Rise time of both SDA and SCL lines	_	1000	20	300	ns
tF	Fall time of both SDA and SCL lines	_	300	20	300	ns
tsu:sto	Set up time for stop condition	4.0	_	0.6	===	μs

^{*}Note that transmitter must internally at reset a hold time to bridge the undefined region(max.300ns)of the falling edge of SCL.

TIMING CHART




8-BIT 8CH I²C-BUS D-A CONVERTER WITH BUFFER AMPLIFIERS


12C BUS FORMAT

STA	SLAVE ADDRESS	w	Α	SUB ADDRESS	Α	DAC DATA	А	STP	I
-----	---------------	---	---	-------------	---	----------	---	-----	---

DIGITAL DATA FORMAT

(1)CHIP SELECT DATA

MOR		LSB				
A2	A1	A 0	CS2	CS1	CS0	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
:					7	
1	1	1	1	1	1	

(2) CHANNEL SELECT DATA

MSB			LSB	
S3	S2	S1	S0	Channel selection
0	0	0	0	Don't care.
0	0	0	1	ch1 selection
0	0	1	0	ch2 selection
0	1	1	1	ch7 selection
1	0	0	0	ch8 selection
1	0	0	1	Don't care.
	1 .	:	1	
1	1	1	1	Don't care.

(3)DAC DATA

FIRST MSB						-	LAS LSB	
D7	D6	D5	D4	D3	D2	D1	D0	

D7	D6	D5	D4	D3	D2	D1	D0	DAC output
0	0	0	0	0	0	0	0	(VrefU-VrefL)/256 x 1 x 2.4 + VrefL
0	0	0	0	0	0	0	1	(VrefU-VrefL)/256 x 2 x 2.4 +VrefL
0	0	0	0	0	0	1	0	(VrefU-VrefL)/256 x 3 x 2.4 +VrefL
0	0	0	0	0	0	1	1	(VrefU-VrefL)/256 x 4 x 2.4 +VrefL
1	1	!	-:		1 .	- !	!	!
1	1	1	1	1	1	1	0	(VrefU-VrefL)/256 x 255 x 2.4 +VrefL
1	1	1	1	1	1	1	1	VrefU x 2.4 + VrefL