

N-Channel Enhancement Mode Field Effect Transistor

General Description

The CMSA75N04 combines advanced trench MOSFET technology with a low resistance package to provide extremely low RDS(ON).

This device is ideal for load switch and battery protection applications.

Features

- Fast switching
- Lower On-resistance
- 100% avalanche tested
- RoHS Compliant

Product Summary

BVDSS	RDSON	ID
40V	8mΩ	75A

Applications

- Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

DFN-8 5x6 Pin Configuration

Туре	Package	Marking
CMSA75N04	DFN- 8 5*6	CMSA75N04

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	40	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current	75	Α	
I _D @T _C =100°C	Continuous Diam Current	53	Α	
I _{DM}	Pulsed Drain Current 225		Α	
EAS	Single Pulse Avalanche Energy ¹	352	mJ	
P _D @T _C =25℃	Total Power Dissipation	60	W	
T _{STG}	Storage Temperature Range -55 to 150		$^{\circ}$	
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	

Thermal Data

Symbol	Parameter		Max.	Unit
R _{eJA}	Thermal Resistance, Junction-to-Ambient		50	°C/W
R _{eJC}	Thermal Resistance Junction -Case		2.1	°C/W

N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics ($T_J=25^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250μA	40			V
Dagger	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =10A			8	mΩ
RDS(ON)		V _{GS} =4.5V, I _D =15A			11	mΩ
V _{GS(th)}	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250 μ A	1		3	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =38V , V _{GS} =0V			1	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		28		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		7		Ω
Qg	Total Gate Charge	V -20V I -20A		20		
Q _{gs}	Gate-Source Charge	V_{DS} =20V , I_{D} =20A V_{GS} =4.5V		5		nC
Q_{gd}	Gate-Drain Charge	VGS-4.5V		10		
T _{d(on)}	Turn-On Delay Time			10		
Tr	Rise Time	V_{DS} =20V , V_{GS} =10V , R_{G} =3.3 Ω		7		20
T _{d(off)}	Turn-Off Delay Time			26		ns
T _f	Fall Time			30		
Ciss	Input Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		2000		
Coss	Output Capacitance			340		pF
C _{rss}	Reverse Transfer Capacitance			180		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Diode continuous forward current	V _G =V _D =0V , Force Current			75	Α
I _{S,pulse}	Diode pulse current				225	Α
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A , T _J =25℃			1.2	V

Notes

1. The test condition is $V_{DS}=25V$, $V_{GS}=10V$, L=0.5mH , $I_{D}=38A$.

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.