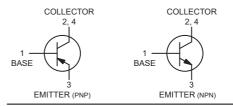


Complementary Power Transistors

Features

- Lead Formed for Surface Mount Applications
 in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves
 ("-1" Suffix)
- power package in tape & reel (*T4" Suffx)
- Electrically Similar to Popular TIP41 and TIP42 Series
- Epoxy Meets UL 94 V-0 @ 0.125 in
- RoHS Compliant


Product Summary

VCBO	VCEO	IC
100V	100V	6A

Applications

 Designed for general purpose amplifier and low speed switching applications.

TO-252/251 Pin Configuration

TO-252

TO-251

MAXIMUM RATINGS

Symbol	Parameter	Rating	Units
V _{CEO}	Collector-Emitter Voltage	100	Vdc
V _{CB}	Collector-Base Voltage	100	Vdc
VEB	Emitter-Base Voltage	5	Vdc
Ic	Collector Current-Continuous	6	Adc
I _{CM}	Collector Current-Peak	10	Adc
I _B	Base Current	2	А
P _D	Total Power Dissipation @ Tc = 25 C Derate above 25°C	20 0.16	W W/℃
P _D	Total Power Dissipation (Note 1)@ TA = 25°C Derate above 25°C	1.75 0.014	W W/℃
T _J , T _{stg}	Operating and Storage Junction, Temperature Range	-65 to +150	°C
НВМ	ESD - Human Body Model	3B	V
MM	ESD - Machine Model	С	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

^{1.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

MJD41C(NPN)/MJD42C(PNP)

Complementary Power Transistors

Thermal Characteristics

Symbol	Characteristic	Тур.	Max.	Unit
$R_{ hetaJA}$	Thermal Resistance Junction-ambient (Note 2)		71.4	°C/W
$R_{ heta JC}$	Thermal Resistance Junction -Case		6.25	°C/W

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

Electrical Characteristics (Tc=25 C, unless otherwise noted)

Symbol	Characteristic	wiin.	iviax.	Unit	
OFF CHARACTERISTICS					
VCEO (sus)	Collector–Emitter Sustaining Voltage (Note 3) (Ic = 30 mAdc, IB = 0)	100		Vdc	
ICEO	Collector Cutoff Current (VcE = 60 Vdc, IB = 0)		50	μAdc	
ICES	Collector Cutoff Current (Vce =100 Vdc, Veb = 0)		10	μAdc	
lebo	Emitter Cutoff Current (VBE = 5Vdc, Ic = 0)		0.5	mAdc	

ON CHARACTERISTICS (Note 3)

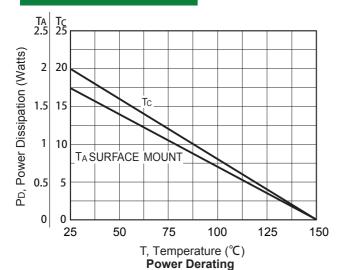
hFE	DC Current Gain (Ic=0.3 Adc, VcE= 4 Vdc) (Ic=3 Adc, VcE= 4 Vdc)	30 15	 75	
VCE(sat)	Collector-Emitter Saturation Voltage (Ic=6 Adc, Iв=600 mAdc)		1.5	Vdc
VBE(on)	Base-Emitter On Voltage (Ic =6 Adc, VcE=4 Vdc)		2	Vdc

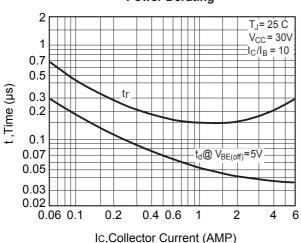
DYNAMIC CHARACTERISTICS

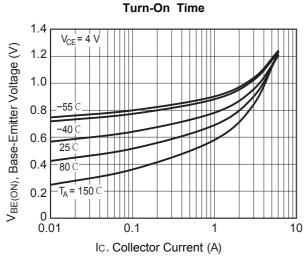
f _T	Current-Gain - Bandwidth Product (Note 4) (Ic = 500 mAdc, VcE = 10 Vdc, f = 500 kHz)	3	 MHz
h _{fe}	Small-Signal Current Gain (Ic = 0.5 Adc, VcE = 10 Vdc, f = 1kHz)	20	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

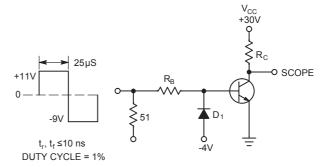
This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability without notice.

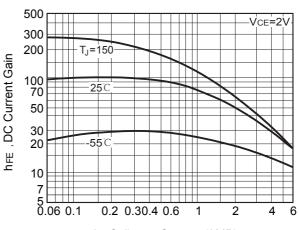

^{3.} Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.


^{4.} fT = /hfe/• ftest.

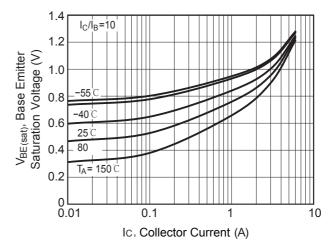


Complementary Power Transistors


Typical Characteristics



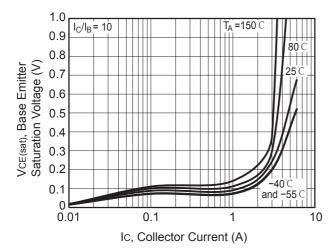
Base Emitter Voltage vs. Collector Current


R_Band R_C VARIED TO OBTAIN DESIRED CURRENT LEVELS D1 MUST BE FAST RECOVERY TYPE, e.g.: MSB5300 USED ABOVE IB ≈100mA MSD6100 USED BELOW IB ≈100mA REVERSE ALL POLARITIES FOR PNP.

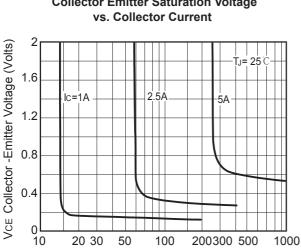
Switching Time Test Circuit

Ic, Collector Current (AMP)

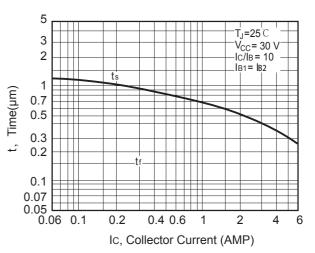
DC Current Gain

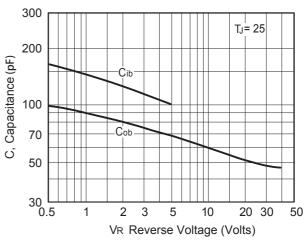


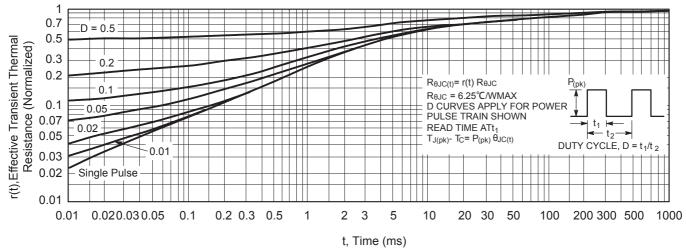
Base Emitter Saturation Voltage vs.
Collector Current



Complementary Power Transistors

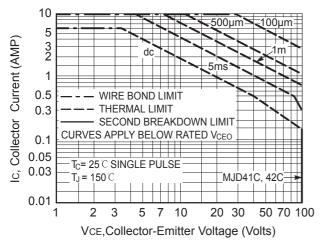

Typical Characteristics


Collector Emitter Saturation Voltage


I_B, Base Current (mA) **Collector Saturation Region**

Turn-Off Time

Capacitance


Thermal Response

MJD41C(NPN)/MJD42C(PNP)

Complementary Power Transistors

Typical Characteristics

Maximum Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 12 is based on $T_{J(pk)}$ =150 °C, T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150$ °C. $T_{J(pk)}$ may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.