FH10N60K

N-channel 600 V, 0.55 Ω typ., 7.5 A MDmesh™ M2 Power MOSFET in a TO-220FP wide creepage package

Datasheet - custom data

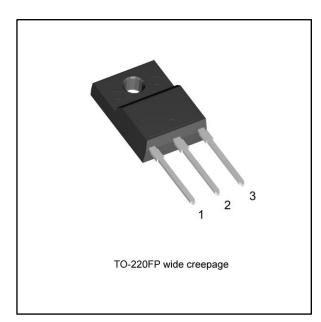
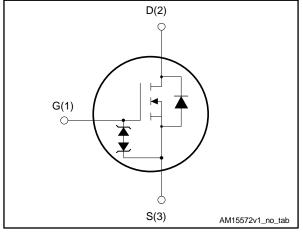



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	ID
FH10N60K	650 V	0.60 Ω	7.5 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected
- Wide distance of 4.25 mm between the pins

Applications

- Switching applications
- LLC converters, resonant converters

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

The TO-220FP wide creepage package provides increased surface insulation for Power MOSFETs to prevent failure due to arcing, which can occur in polluted environments.

Table 1: Device summary

Order code	Marking	Package	Packing
FH10N60K	FH10N60K	TO-220FP wide creepage	Tube

May 2017 DocID029634 Rev 2 1/12

Contents FH10N60K

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP wide creepage package information	9
5	Revisio	n history	11

FH10N60K Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	7.5	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	4.9	Α
I _{DM} (1)(2)	Drain current (pulsed)	30	Α
P _{TOT}	Total dissipation at $T_C = 25$ °C	25	W
dv/dt (3)	Peak diode recovery voltage slope 15		V/ns
dv/dt (4)	MOSFET dv/dt ruggedness 50		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 °C)		V
T _{stg}	Storage temperature range -55 to 150		°C
Tj	Operating junction temperature range	-55 10 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T _{jmax})	1.5	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)		mJ

⁽¹⁾Limited by package

⁽²⁾Pulse width limited by safe operating area

 $^{^{(3)}}I_{SD} \leq 7.5$ A, di/dt ≤ 400 A/ μ s, VDS(peak) < V(BR)DSS, VDD = 400 V

 $^{^{(4)}}V_{DS} \le 480 \text{ V}$

Electrical characteristics FH10N60K

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zoro goto voltago	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	μΑ
I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V},$ $V_{DS} = 600 \text{ V}, T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ	
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3 A		0.55	0.60	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1	400	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	22	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V	-	0.84	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	1	83	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	ı	6.4	-	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 7.5 \text{ A},$		13.5	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	2.1	-	nC
Q_gd	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	7.2	-	nC

Notes:

Table 7: Switching times

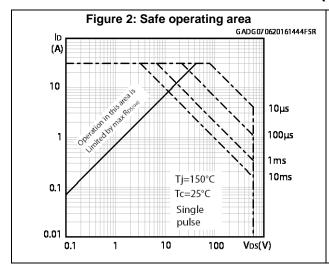
Table 1. Owiterining times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 3.75 \text{ A},$	ı	8.8	-	ns
tr	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	ı	8	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching	ı	32.5	-	ns
tf	Fall time	times" and Figure 19: "Switching time waveform")	-	13.2	-	ns

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		7.5	Α
I _{SDM} ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		-		30	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 7.5 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 7.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	270		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	2		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	14.4		А
t _{rr}	Reverse recovery time	$I_{SD} = 7.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	376		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	2.8		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	15		Α


Notes:

⁽¹⁾Limited by package

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

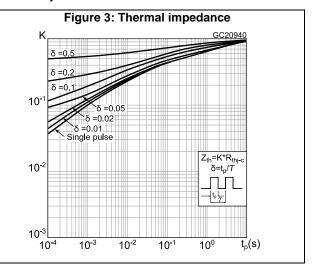
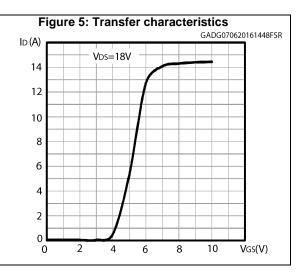
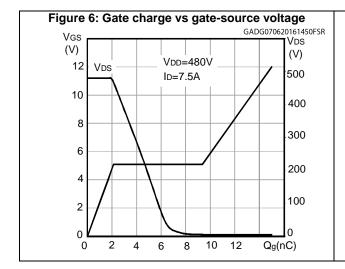
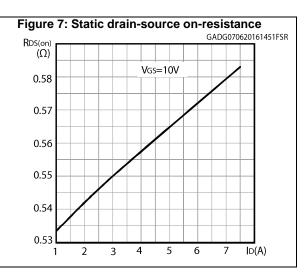





Figure 4: Output characteristics GADG070620161446FSR (A) VGS=7, 8, 9, 10V 14 12 10 8 6 5V 4 2 4V 0 10 15 20 VDS(V)

FH10N60K Electrical characteristics

Figure 8: Capacitance variations

C (pF)

1000

10

10

Coss

Coss

Coss

Crss

O.1

O.1

1 1 10 100 VDS(V)

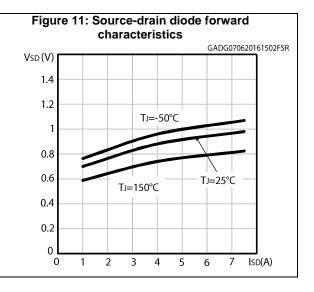
Figure 9: Normalized gate threshold voltage vs. temperature

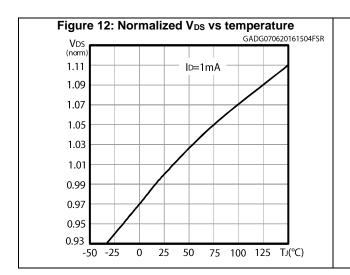
VGS(th) GADG070620161458FSR

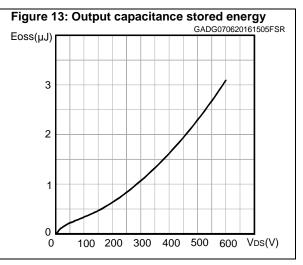
ID=250 μA

1.1

1.0


0.9


0.8

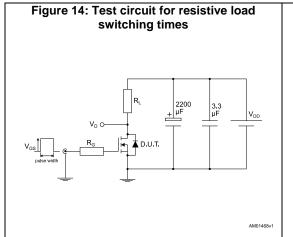

0.7

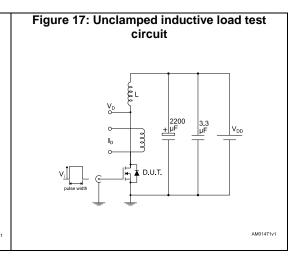
-50 -25 0 25 50 75 100 125 ΤJ(°C)

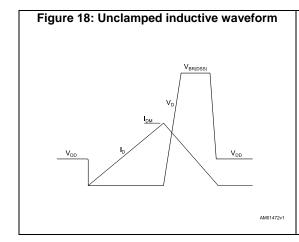
Figure 10: Normalized on-resistance vs temperature GADG070620161500FSR RDS(on) (narm) ID=3 A 2.5 2.3 2.1 1.9 1.7 1.5 1.3 1.1 0.9 0.7 25 50 75 100 125 TJ(°C)

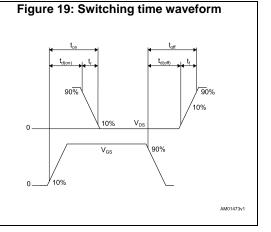
Test circuits FH10N60K

3 Test circuits




Figure 15: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF 1 kΩ


Vos 1 kΩ 1 kΩ

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

FH10N60K Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP wide creepage package information

В 57 D 7 G1 G Ε

Figure 20: TO-220FP wide creepage package outline

Table 9: TO-220FP wide creepage package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.60	4.70	4.80
В	2.50	2.60	2.70
D	2.49	2.59	2.69
Е	0.46		0.59
F	0.76		0.89
F1	0.96		1.25
F2	1.11		1.40
G	8.40	8.50	8.60
G1	4.15	4.25	4.35
Н	10.90	11.00	11.10
L2	15.25	15.40	15.55
L3	28.70	29.00	29.30
L4	10.00	10.20	10.40
L5	2.55	2.70	2.85
L6	16.00	16.10	16.20
L7	9.05	9.15	9.25
Dia	3.00	3.10	3.20

FH10N60K Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
11-Aug-2016	1	First release.
08-May-2017	17 2	Updated datasheet status.
	2	Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

