MSKSEMI 美森科

ESD

TV

TSS

MOV

GDT

PIFD

MS20N65F

Product specification

Description

The MS20N65F uses advanced trench technology and design to provide excellent RDS(ON) with low gat e charge. It can be used in a wide variety of applications.

General Features

- VDS=650V,ID=20A
- RDS(ON)< 0.47 Ω @ VGS=10V

Application

- High efficiency switch mode power supplies
- Power factor correction
- Electronic lamp ballast

Reference News

PACKAGE OUTLINE	N-Channel MOSFET	Marking
	PIN2 D PIN1 G PIN3 S	MSKSEMI 20N65 MS ***
TO-220F		MS20N65F

Note: ****Representative production cycle

Absolute Maximum Ratings@Tj=25℃ (unless otherwise specified)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	650	V
VGS	Gate-Source Voltage	+30	V
b@Tc=25°C	Drain Current, Vgs @ 4.5V	20	Α
IDM	Pulsed Drain Current ¹	80	Α
P _D @Tc=25°C	Total Power Dissipation	32	W
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	℃

Electrical Characteristics(Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		•					
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} =0V, I _D =250μA	650			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =650V, V _{GS} =0V			1	μΑ
Coto Course I colvere Current	Forward		V _G =30V, V _{DS} =0V			100	nA
Gate- Source Leakage Current	Reverse	Igss	V _{GS} =-30V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS						•	
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250μA	2.0		4.0	V
Static Drain-Source On-State Resis	tance	R _{DS(ON)}	V _{GS} =10V, I _D =6A		0.4	0.47	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		Ciss			3234		pF
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0 MHz		266		pF
Reverse Transfer Capacitance		Crss			34		pF
SWITCHING CHARACTERISTICS	3				•		
Turn-On Delay Time		t _{D(ON)}	V_{DD} =325V, I_{D} =20A, R_{G} =25 Ω (Note 1, 2)		45		ns
Turn-On Rise Time		t _R			64		ns
Turn-Off Delay Time		t _{D(OFF)}			218		ns
Turn-Off Fall Time		t _F	(Note 1, 2)		84		ns
Total Gate Charge		Q _G	V _{DS} =480V,		73		nC
Gate-Source Charge		Q _{GS}	I _D =20A,		17		nC
Gate-Drain Charge		Q_GD	V _{GS} =10V (Note 1, 2)		29		nC
DRAIN-SOURCE DIODE CHARA	CTERISTI	CS AND MAXI	MUM RATINGS				
Drain-Source Diode Forward Voltag	е	V _{SD}	V _{GS} = 0 V, I _S = 12A			1.2	V
Maximum Continuous Drain-Source Forward Current	Diode	ls				20	Α
Maximum Pulsed Drain-Source Dio Forward Current	de	I _{SM}				80	Α
Reverse Recovery Time		t _{rr}	V _{GS} =0V, I _S =12A,		494		ns
Reverse Recovery Charge		Q _{RR}	dl _F /dt = 100 A/μs (Note 1)		7.9		μC

Notes: 1. Pulse Test: Pulse width $\leq 300 \mu s$, Duty cycle $\leq 2\%$.

^{2.} Essentially independent of operating temperature.

Typical Characteristics

Figure 1: Output Characteristics

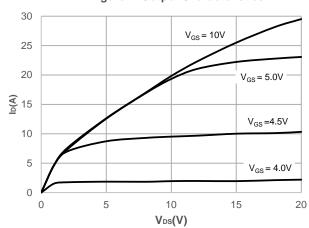
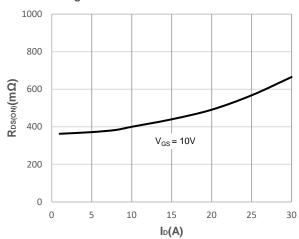



Figure 2: Typical Transfer Characteristics 20 $V_{DS} = 20V$ 16 12 $T_J = -55$ °C 8 $T_J = 125$ °C $T_J = 25^{\circ}C$ 4 0 2 0 3 5 6 8

Vgs(V)

Figure 3: On-resistance vs. Drain Current

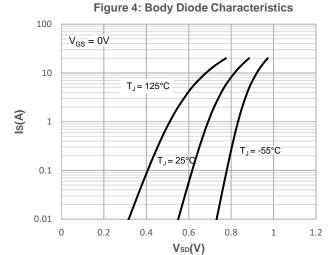


Figure 5: Gate Charge Characteristics

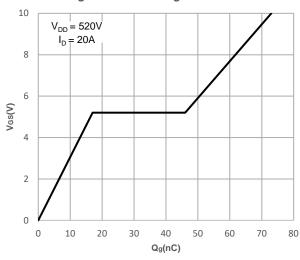


Figure 6: Capacitance Characteristics

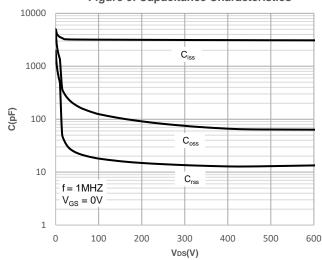


Figure 7: Normalized Breakdown voltage vs. **Junction Temperature**

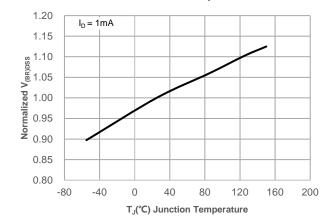


Figure 9: Maximum Safe Operating Area

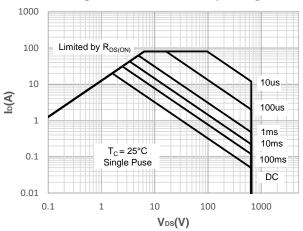


Figure 11: Normalized Maximum Transient Thermal Impedance

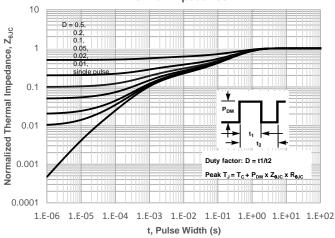


Figure 8: Normalized on Resistance vs. **Junction Temperature**

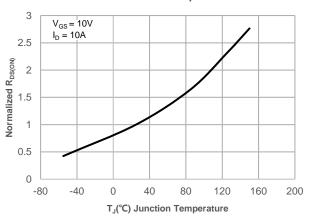


Figure 10: Maximum Continuous Drian Current vs. Case Temperature

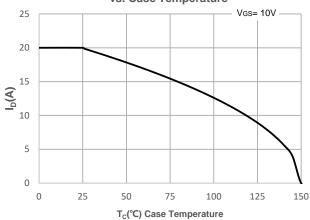
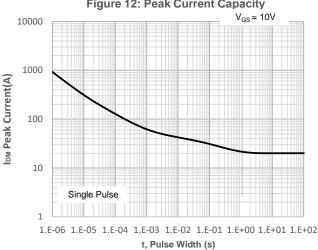



Figure 12: Peak Current Capacity

Test Circuit

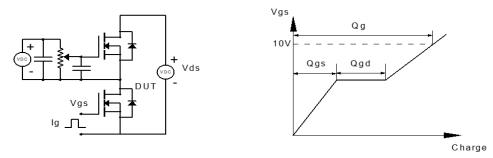


Figure 1: Gate Charge Test Circuit & Waveform

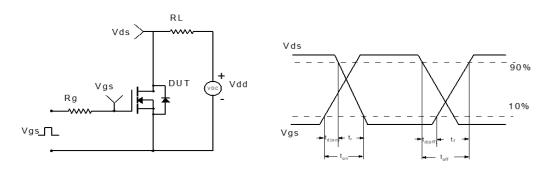


Figure 2: Resistive Switching Test Circuit & Waveform

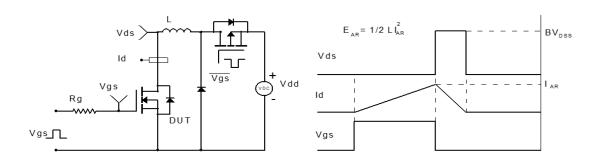


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

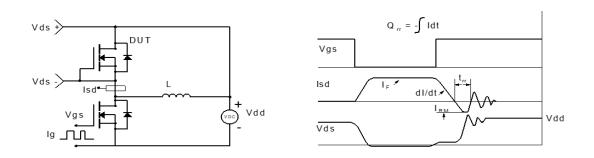
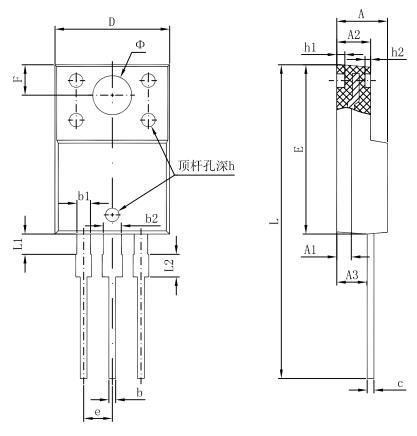



Figure 4: Diode Recovery Test Circuit & Waveform

Package Dimension TO-220F

Cymbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	4.300	4.700	0.169	0.185	
A1	1.300	REF.	0.051 REF.		
A2	2.800	3.200	0.110	0.126	
A3	2.500	2.900	0.098	0.114	
b	0.500	0.750	0.020	0.030	
b1	1.100	1.350	0.043	0.053	
b2	1.500	1.750	0.059	0.069	
С	0.500	0.750	0.020	0.030	
D	9.960	10.360	0.392	0.408	
Е	14.800	15.200	0.583	0.598	
е	2.540 TYP.		0.100 TYP.		
F	2.700 REF.		0.106 REF.		
Φ	3.500 REF.		0.138 REF.		
h	0.000	0.300	0.000	0.012	
h1	0.800 REF.		0.031 REF.		
h2	0.500 REF.		0.020 REF.		
L	28.000	28.400	1.102	1.118	
L1	1.700	1.900	0.067	0.075	
L2	1.900	2.100	0.075	0.083	

REEL SPECIFICATION

P/N	PKG	QTY
MS20N65F	TO-220F	1 tube of 50pcs/1 box of 1000pcs

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.