

S1D030120D

Silicon Carbide Schottky Diode

 $V_{RRM} \quad = \quad 1200 \ V$

 $I_{F (TC=135^{\circ}C)} = 22 \text{ A (per leg)}$

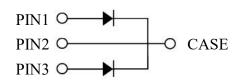
 $Q_C = 86 \text{ nC}$

Feature Package

- 1.2kv schottky Rectifier
- Zero Reverse Recovery Current / Zero forward recovery
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Low forward voltage

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- High Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway


Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Free Wheeling Diodes in Inverter stages
- AC/DC converters

Part Number	Packge	Marking	
S1D030120D	TO-247-3L	S1D030120D	

Maximum Ratings (Tc = 25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{RRM}	Repetitive Peak Reverse Voltage	1200	V		
V _{RSM}	Surge Peak Reverse Voltage	1300	V		
V_R	DC Peak Reverse Voltage	1200	V		
I_{F}	Continuous Forward Current	47/94 21/42 15/30	A	Tc = 25°C Tc = 135°C Tc = 152°C	Fig.7
I _{FRM}	Repetitive Peak Forward Surge Current (Per Leg)	70 50	A	$T_C = 25^{\circ}\text{C}$, tp = 10 ms, Half Sine Pulse $T_C = 110^{\circ}\text{C}$, tp = 10 ms, Half Sine Pulse	
I _{FSM}	Non-Repetitive Peak Forward Surge Current	140 95	A	$T_C = 25^{\circ}C$, tp = 10 ms, Half Sine Pulse $T_C = 110^{\circ}C$, tp = 10 ms, Half Sine Pulse	
P _{tot}	Power Dissipation (Device/Per Leg)	455/197 192/83	W	Tc = 25°C Tc = 110°C	
dV/dt	Diode dV/dt ruggedness	200	V/ns	$V_R = 0 \sim 960 V$	
∫i²dt	∫i²dt	88	A ² S	$T_C = 25^{\circ}\text{C}, t_P = 10 \text{ ms}, (Per Leg)$	
T_{stg} , T_{J}	Operating Junction Range	-55 to +175	°C		

Electrical Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.4 1.9	1.8	V	$\begin{array}{c} I_F = 15 \; A , T_J = 25 ^{\circ} C \\ I_F = 15 \; A , T_J = 175 ^{\circ} C \end{array}$	Fig.1
I_R	Reverse Current	1 7	100 200			Fig.2
Qc	Total Capacitive Charge	86		пC	$\begin{array}{c} V_R = 800 V, \;\; I_F = 15 A \\ di/dt = 200 A/\mu s, \;\; T_J = 25 ^{\circ} C \end{array}$	Fig.4
С	Total Capacitance	1500 80 60		pF	$\begin{array}{c} V_R = 0V, \ T_J = 25^{\circ}C, \ f = 1MH_Z \\ V_R = 400V, \ T_J = 25^{\circ}C, \ f = 1MH_Z \\ V_R = 800V, \ T_J = 25^{\circ}C, \ f = 1MH_Z \end{array}$	Fig.3
Ec	Capacitance Stored Energy	43		μЈ	$V_R = 800V$	Fig.5

Thermal Characteristics

symbol	parameter	Тур	Unit	Note
$R_{ heta JC}$	Thermal Resistance from Junction to Case	0.39 0.78	°C/W	Fig. 8

Typical Performance

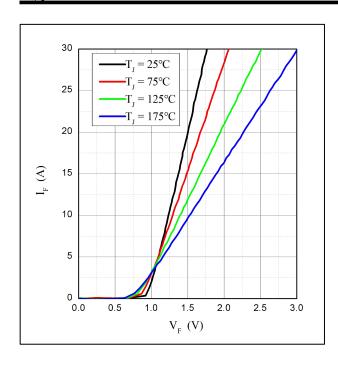


Figure 1: Forward Characteristics

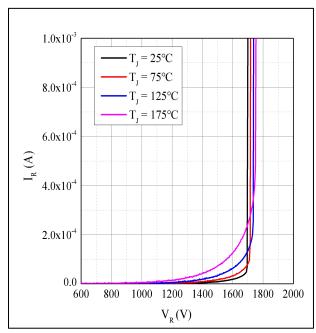
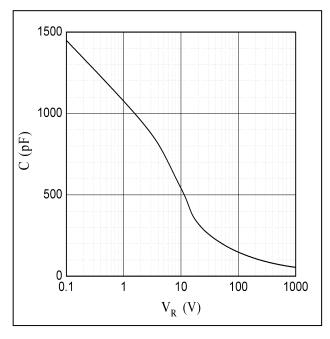
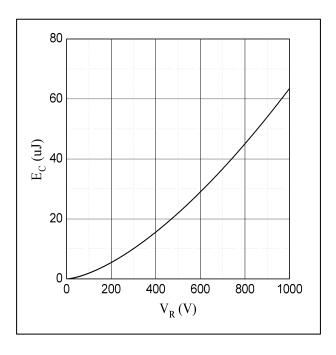



Figure 2: Reverse Characteristics



V_R (V)

Figure 3: Capacitance vs. Reverse Voltage

Figure 4: Recovery Charge vs. Reverse Voltage

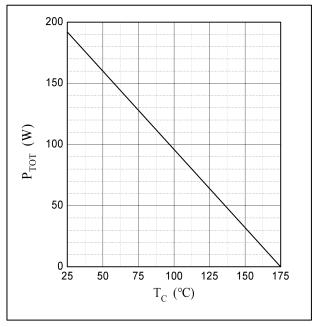
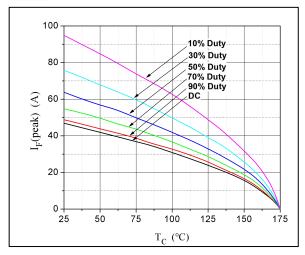



Figure 5: Typical Capacitance Stored Energy

Figure 6: Power Derating

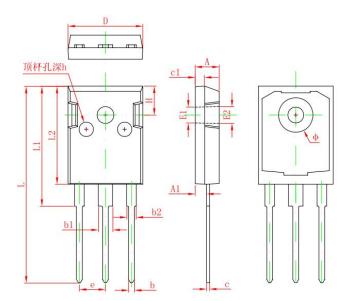

-0.5 -0.3 0.1 0.1 $Z_{\theta jc(t)}$ *Notes: 0.05 1.Тj-Tc=PDм*Zθ jc(t) 0.02 2.Duty Factor D=T1/T2 0.01 0.01 Pom -T2 1E-3 — 1E-6 1E-5 1E-4 1E-3 0.01 0.1 T (Sec)

Figure 7: Current Derating

Figure 8: Transient Thermal Impedance

Package Dimensions

Package TO-247-3L

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	4.850	5.150	0.191	0.200	
A1	2.200	2.600	0.087	0.102	
b	1.000	1.400	0.039	0.055	
b1	2.800 3.200		0.110	0.126	
b2	1.800	2.200	0.071	0.087	
С	0.500	0.700	0.020	0.028	
c1	1.900	2.100	0.075	0.083	
D	15.450	15.750	0.608	0.620	
E1	3.500	REF	0.138 REF		
E2	3.600) REF	0.142 REF		
L	40.900	41.300	1.610	1.626	
L1	24.800	25.100	0.976	0.988	
L2	20.300	20.600	0.799	0.811	
Ф	7.100	7.300	0.280	0.287	
е	5.450	TYP	0.215 TYP		
Н	5.980 REF		0.235	REF	
h	0.000	0.300	0.000	0.012	

Attention

1. Rohs compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013.

2. REACH compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Sichain representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

- 3. With respect to information regarding the application of the product, Sichain hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
- 4. Any information given in this documents subject to customer's compliance with its obligations and any applicable legal requirements, norms and standards concerning any use of the product of Sichain in any customer's applications.
- 5. Specifications of any and all products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment.
- 6. Due to technical requirements products may contain dangerous substances. For information on the types in question please contact Sichain office.
- 7. Except as otherwise explicitly approved by Sichain in a written document signed by authorized representatives of Sichain, Sichain' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
- 8. For use of our products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a Sichain representatives, for example but not limited to: transportation equipment, primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.