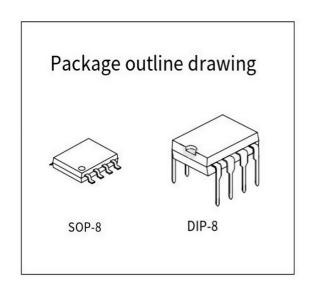


Product Specification

XBLW LM567

General Tone Decoding Circuit

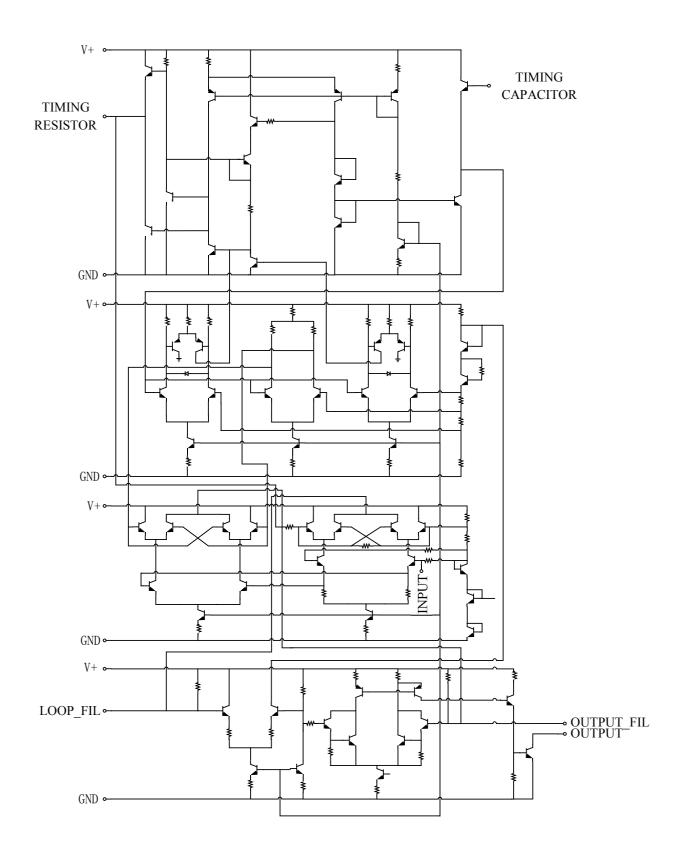


Description

LM567 is a general tone decoding circuit, when the input signal frequency falls within a given passband, the phase-locked loop locks the signal, while controlling the output end output low level, otherwise output high level. This circuit can be used as a generator, modulator and demodulator; Widely used in the communication, remote control, measurement, frequency, monitoring, and other fields.

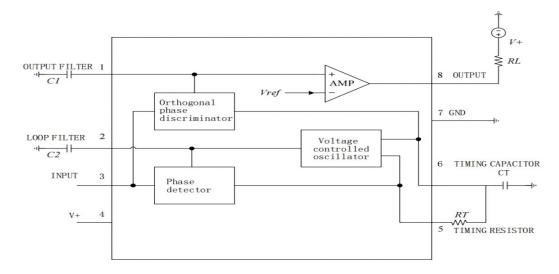
Feature:

- ➤ Frequency bandwidth tunable range: 0 ~ 14%
- > High out-of-band signals and noise suppression
- High central frequency stability
- ➤ Center frequency adjustment range: 0.01 Hz ~ 500 KHZ
- Frequency can be adjusted in the 20:1 range by using an external resistance
- Output compatible with logic circuit, the current irrigation can bear 100 ma
- Packaging format DIP-8 / SOP-8



Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty		
XBLW LM567CN	DIP-8	LM567CN	Tube	2000Pcs/Reel		
XBLW LM567CM	LM567CM SOP-8 LM567CM		Tape	2500Pcs/Reel		



Functional block diagram

Pin arrangement diagram

Pin descriptions and structure schematic diagram

Pin	Symbols	Features	Pin	Symbols	Features
1	OUTPUT FILTER	Output filter	8	OUTPUT	Logic output
2	LOOP FILTER	Loop filter	7	GND	Ground to earth
3	INPUT	Input signal	6	TIMING CAPACITOR	Timing capacitor
4	V+	Power supply	5	TIMING RESISTOR	Timing resistor

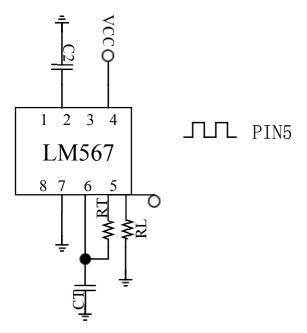
And the parameters of the limit

Tamb=25°C unless otherwise specified

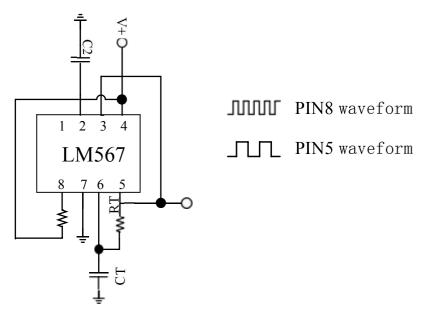
Parameter name	symbol	conditions		rating	Units	
Supply voltage	VCC			9	V	
PIN8 voltage	V8			15	V	
PIN3 voltage	V3			-10 ~V4+0.5	V	
Working environment temperature	Tamb			0 ~ 70	$^{\circ}$	
Storage temperature	Tstg			- 65 ~ 150	$^{\circ}$	
Thermal resistance	Theta	DIP8 SOP8		110	°C/W	
THEITIAI TESISCANCE	JA			160		
Wolding tomporature	т.	10 S	DIP	250	${\mathbb C}$	
Welding temperature	TL	10.3	SOP	260	$^{\circ}$ C	

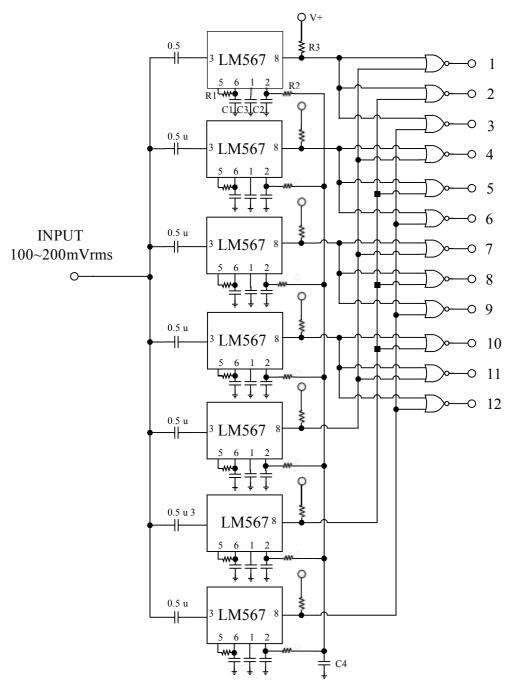
Note: The maximum power consumption is a function of TJ (max), θ JA and Tamb, and the maximum allowable power consumption at any allowable ambient temperature is PD= (TJ (max) – Tamb)/ θ JA. Working at the ultimate maximum junction temperature TJ (150°C) affects the reliability.

Electrical characteristics


Ac parameters

(Unless otherwise specified, Tamb = 25° C and VCC = 5 V)


Parameter name	Symbol	Test conditions	MIN	TYP	MAX	Unit	
Supply voltage range	VCC		4.75	5	9	V	
Static current	IQ	RL=20k		7	10	mA	
Dynamic current	ΙA	RL=20k		12	15	mA	
Input resistor	RIN		15	20		ΚΩ	
Minimum catchable input voltage	VI_L	IL=100mA,fi=fo		20	25	mV	
Max no output input voltage	VI_H	IL=100mA,fi=fo	10	15		mV	
Maxoutofsyncbandsi gnal rati o				6		dB	
Minimum input signal to bandwidth noise ratio		Bn=140kHz		- 6		dB	
Maximum capture bandwidth			10	14	18	% of f	
Maximum capture bandwidth deviation	BW			2	3	% of f	
Temperature coefficient of maximum capture bandwidth				± 0. 1		% / %	
Maximum capture bandwidth voltage factor		4.75 V to 6.75 V		±1		%/V	
Maximum center frequency			100	500		kHz	
Center frequency	fo	0 ℃ ~ 70 ℃		35 ± 60		ppm/°	
temperature coefficient		And 55 $^{\circ}$ C \sim 125 $^{\circ}$ C		35 ± 140			
Center frequency voltage		4.75 V to 6.75 V		0.4	2	%/V	
coefficient		4.75 V ~ 9 V			2	/0/ V	
Maximum switch loop ratio				fo/20			
Output leakage	ILEAK	V8=15V		0.01	25	uA	
Output astruction	saturation VSAT	I8=30mA		0.2	0.4	V	
voltage		I8=100mA		0.6	1		
Output drop time	tF	IL=100mA		30	30	ns	
Output rise time	tR	IL=100mA		150	150	ns	


Apply the circuit

Precision square wave generator

Phase-locked loop dual-frequency precise oscillator

Typical applications

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products are not licensed for life support, military, aerospace and other applications, and XBLW will not be responsible for the consequences of the use of products in these fields.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.