

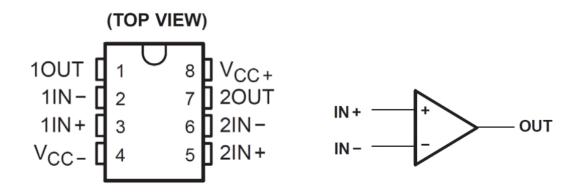
通用 J-FET 输入双运算放大器

主要特点

- 较低功耗
- 宽的共模和差模输入电压范围
- 低的输入偏置电流和失调电流
- 输出短路电流保护
- 高输入阻抗
- 高转换速率
- 高增益带宽积,高达 4MHz

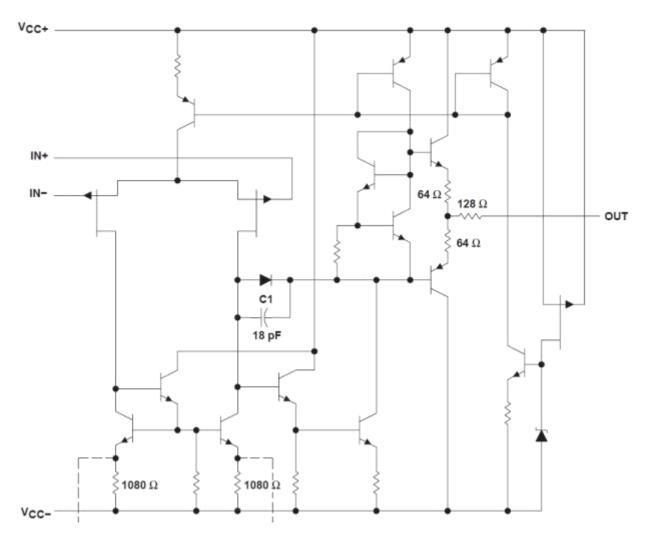
产品订购信息

产品名称	封装	打印名称	包装	包装数量
TL072CN	DIP-8	TL072C	管装	2000 只/盒
TL072CM/TR	SOP-8	TL072C	编带	2500 只/盘
TL072CMM/TR	MSOP-8	T072C	编带	3000 只/盘
TL072IN	DIP-8	TL072I	管装	2000 只/盒
TL072IM/TR	SOP-8	TL072I	编带	2500 只/盘
TL072IMM/TR	MSOP-8	T072I	编带	3000 只/盘



概述

TL072 是一款高速 J-FET 输入的双运算放大器,由高压 J-FET 和双极晶体管构成。具有高的转换速率、低的输入偏置电流和失调电流以及具有很低的失调电压温度系数。工作温度范围 TL072C 的 0° --70 $^{\circ}$ 和 TL072I 的 -40° --85 $^{\circ}$ 。


TL072 提供了 DIP-8 和 SOP-8、MSOP-8 封装形式

引脚图及符号(每路运放)

内部框图(每路运放)

极限参数

符号	描述	极限值	单位
Vcc	电源电压	±18	V
Vi	输入电压	±14	V
Vid	差模输入电	±28	V
Tonor	工作温度:TL072C	0~70	$^{\circ}$
Toper	工作温度:TL072I	-40~85	$^{\circ}$
Tstg	储藏温度	-65~150	$^{\circ}$
TLEAD	引脚温度 (焊接 10s)	245	$^{\circ}$

注: 极限参数是指无论在任何条件下都不能超过的极限值。万一超过此极限值,将有可能造成产品劣化等物理性损伤;同时在接近极限参数下,不能保证芯片可以正常工作。

电特性 (Vcc=±15, Tamp=25℃ 特殊情况另外说明)

かっ		参数名称		测试值			
付与 参数台	多 数石柳	测风余 件	Min	Тур	Max	単位	
Vio	失调电压	Vo=0V		3	10	mV	
lio	输入失调电流	Vo=0V			1.5	nA	
lib	输入偏置电流	Vo=0V			2.5	nA	
Vicr	输入共模电压		-12	±11	15	V	
Vom	输出电压峰值	RL = 10 kΩ RL ≥ 2 kΩ	±11 ±10	±13.5 ±12.5		V	
AVD	大信号电压增益	$RL \ge 2 k\Omega$, $VO = \pm 10 V$	80	95		dB	
B1	增益带宽积			3		MHz	
CMRR	共模抑制比		70	85		dB	
kSVR	电源抑制比	$VCC = \pm 15 \text{ V to } \pm 9 \text{ V}$ $Vo=0V$	70	86		dB	
ICC	静态电流-每通道			1.4	2.8	mA	
SR	转换速率	VI = 10 V,	8	10		V/us	
tr	上升时间			0.1		us	
Ri	输入阻抗			10 ¹²			

应用电路图典型 (其中一路运算放大器)

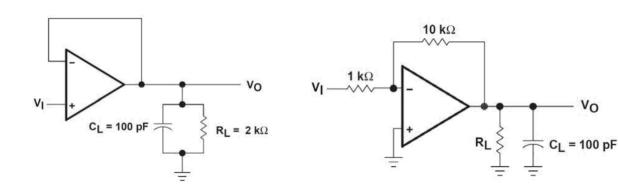


图 1. 单位增益电路

图 2. 10 倍增益电路

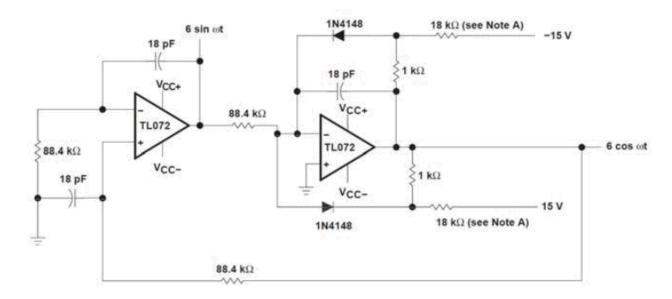
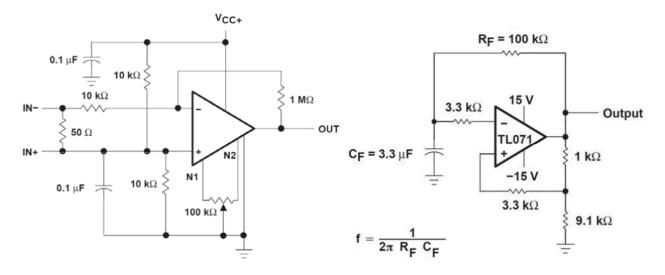


图 3. 100KHz 振荡器



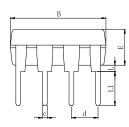
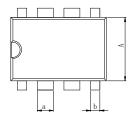
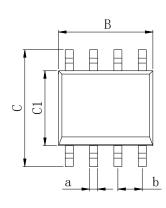

图 4. 交流放大器

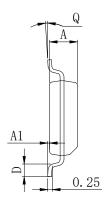
图 5. 0.5Hz 方波振荡器



封装外型尺寸

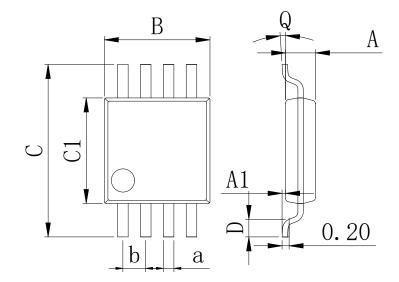
DIP-8





Dimensions In Millimeters(DIP-8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.04 650

SOP-8 (150mil)



Dimensions In Millimeters(SOP-8)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1 27 DCC
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC

MSOP-8

Dimensions In Millimeters(MSOP-8)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.00 BSC

修订历史

日期	修改内容	页码
2018-8-16	新修订	1-9
2023-9-14	更新封装、更新引脚焊接温度、更新 DIP-8 尺寸、增加极限参数注释	1、3、6

重要声明:

华冠半导体保留未经通知更改所提供的产品和服务。客户在订货前应获取最新的相关信息,并核实这些信息是否最新且完整的。华冠半导体对篡改过的文件不承担任何责任或义务。

客户在使用华冠半导体产品进行系统设计和整机制造时有责任遵守安全标准并采取安全措施。您将自行承担以下全部责任: 针对您的应用选择合适的华冠半导体产品; 设计、验证并测试您的应用;确保您的应用满足相应标准以及任何其他安全、安保或其他要求。以避免潜在风险可能导致人身伤害或财产损失情况的发生。

华冠半导体产品未获得生命支持、军事、航空航天等领域应用之许可,华冠半导体将不承担产品在这些领域应用造成的后果。因使用方超出该产品适用领域使用所产生的一切问题和责任、损失由使用方自行承担,与华冠半导体无关,使用方不得以本协议条款向华冠半导体主张任何赔偿责任.

华冠半导体所生产半导体产品的性能提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,测试和其他质量控制技术的使用只限于华冠半导体的质量保证范围内。每个器件并非所有参数均需要检测。

华冠半导体的文档资料,授权您仅可将这些资源用于研发本资料所述的产品的应用。您无权使用任何其他华冠半导体知识产权或任何第三方知识产权。严禁对这些资源进行其他复制或展示,您应全额赔偿因在这些资源的使用中对华冠半导体及其代理造成的任何索赔、损害、成本、损失和债务,华冠半导体对此概不负责。