

Microprocessor Reset Circuit

www.sot23.com.tw

FEATURES

- High Accurate ±2%
- Precision monitoring of +3V, +3.3V, and +5V
 Power supply voltage
- Fully specified over temperature
- Available in three output configurations
- Push-Pull <u>RESET</u> low output (MAX809)
- Push-Pull (RESET) high output (MAX810)
- 200ms typ. Power-on reset pulse width
- 25µs supply current
- Guaranteed reset valid to V_{CC}=+1V
- Power supply transient immunity

The MAX809/810 series are used for microprocessor (μ P) supervisory circuits to monitor the power supplies in μ P and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, +3.0V, +2.5V powered circuits.

These circuits perform a single function: they assert a reset signal whenever the $V_{\rm CC}$ supply voltage declines below a preset threshold, keeping it asserted for at least 200ms after $V_{\rm CC}$ has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available. MAX809/810 series have push pull outputs. MAX809 series has an active low

APPLICATION Battery-operated sy

- Battery-operated systems and controllers
- Intelligent instruments
- Critical μP and μC power monitoring
- Portable / Battery powered equipment
- Automotive

RESET output, while the MAX810 has an active high RESET output The reset comparator is designed to ignore fast transients on $V_{\rm CC}$, and the outputs are guaranteed to be in the correct logic state for $V_{\rm CC}$ down to 1.0V. Low supply current makes MAX809/810 serie s ideal for use in portable equipment.

Ordering Information

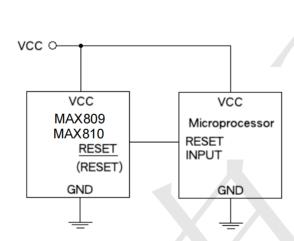
MAX810R

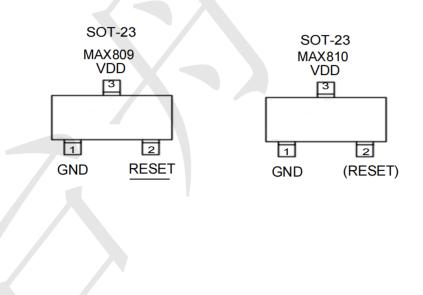
RESET VOLTAGE: L=4.63V

M=4.38V J=4.00V T=3.08V S=2.93V

R=2.63V

Marking:


MAX809L: AAAA MAX810L: AGAA MAX809M: ABAA MAX810M: AHAA MAX809J: CWAA MAX809T: ACAA MAX810T: AJAA MAX809S: ADAA MAX810S: AKAA MAX810S: AFAA MAX810R: ALAA


Microprocessor Reset Circuit

www.sot23.com.tw

TYPICAL APPLICATIN CIRCUIT

Pin Definition

Microprocessor Reset Circuit

www.sot23.com.tw

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Terminal Voltage (with respect to GND)	V _{cc}	GND - 0.3 to GND +6.5	V
RESET & (RESET) push-pull	V _{RESET}	GND - 0.3 to V _{CC} +0.3	V
Input Current, V _{CC}	I _{cc}	20	mA
Output Current, RESET, (RESET)	Io	5	mA
Power Dissipation	P _D	$(T_J-T_A)/R_{\theta JA}$	mW
Operating Junction Temperature Range	T _{J.OPR}	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C
Lead Soldering Temperature (260°C)	T _{LEAD}	10	S

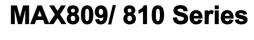
THERMAL PERFORMANCE

PARAMETER	SYMBOL	MAXIMUM	UNIT
Thermal Resistance from Junction to Case	$R_{ heta JC}$	110	°C/W
Thermal Resistance from Junction to Ambient (Note 1)	$R_{\theta JA}$	250	°C/W

Microprocessor Reset Circuit

www.sot23.com.tw

ELECTRICAL CHARACTERISTICS (V_{CC} = 5V, T_A = 25°C unless otherwise noted)

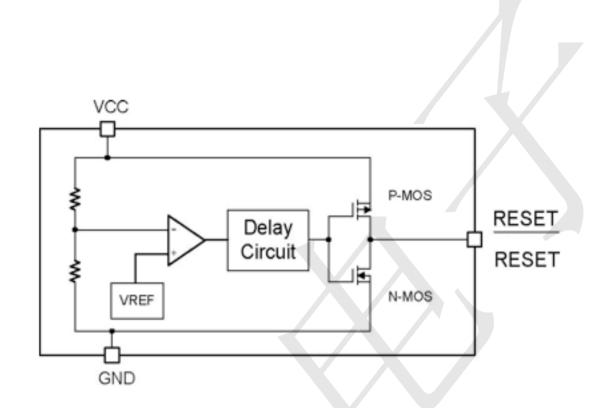

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Input Supply Voltage	T _A =-40°C~+85°C	V _{CC}	1.0		6	V
Supply Current	V _{CC} =V _{TH} + 1V	I _{cc}	/	25	35	μA
	MAX809/810L		4.54	4.63	4.71	
	MAX809/810M		4.29	4.38	4.46	
	MAX809/810J		3.92	4.00	4.08	
Reset Threshold	MAX809/810T	V_{TH}	3.02	3.08	3.15	V
	MAX809/810S		2.87	2.93	3.00	
	MAX809/810R		2.57	2.63	2.69	
Reset Threshold Temperature Coefficient	T _A =0~+85°C	V _{THT}		50		ppm/°C
Set-up Time	$V_{CC} = 0 \sim (V_{TH} - 100 mV)$	T _{SET}	1			μs
V _{CC} to Reset Delay	$V_{CC} = V_{TH} \sim (V_{TH} - 100 \text{mV})$	T_RD		20		μs
Reset Active Timeout Period	T _A =0~+85°C	T _{DELAY}	140	200	260	ms
RESET Output (MAX809) Voltage Low	1.8V <v<sub>CC<v<sub>TH(MAX), I_{SINK} =1.2mA 1.2V<v<sub>CC<1.8V, I_{SINK} =50µA</v<sub></v<sub></v<sub>	V _{OL}			0.3	V
RESET Output (MAX809) Voltage High	$V_{CC} > V_{TH(MAX)},$ $I_{SOURCE} = 500\mu A$	V _{OH}	0.8 V _{CC}			V
(RESET) Output (MAX810) Voltage Low	V _{CC} > V _{TH(MAX)} , I _{SINK} =1.2mA	V _{OL}			0.3	V

ELECTRICAL CHARACTERISTICS (V_{CC} = 5V, T_A = 25°C unless otherwise noted)

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
(RESET) Output (MAX810)	$1.8V < V_{CC} < V_{TH(MAX)}$					
Voltage High	I _{SOURCE} =500μA	V	0.01/			\
	1.2V <v<sub>CC<1.8V,</v<sub>	V _{OH}	0.8 V _{CC}			V
	I _{SOURCE} =150µA					
Hysteresis at V _{CC}	Input Voltage	V _{HVS}		40		mV

Note:

^{1.} $R_{\theta JA}$ is measured the PCB copper area of approximately 1in^2 (Multi-layer). Needs to connect to V_{SS} pin.



Microprocessor Reset Circuit

www.sot23.com.tw

BLOCK DIAGRAM

Microprocessor Reset Circuit

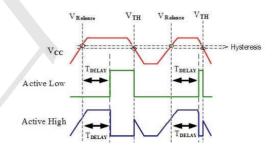
www.sot23.com.tw

APPLICATION INFORMATION

Negative-Going V_{CC} transients in addition to issuing a reset to the μP during power-up, power-down, and brownout conditions, the MAX809/810 are relatively immune to short-duration negative-going V_{CC} transients (glitches). The MAX809/810 does not generate a reset pulse. The graph was generated using a negative going pulse applied to V_{CC} , starting 0.5V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative going V_{CC} transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 20 μ S or less will not cause a reset pulse. A 0.1 μ F bypass capacitor mounted as close as possible to the V_{CC} pin provides additional transient immunity.

FUNCTION DESCRIPTION

A microprocessor's reset input starts the μP in a known state. The MAX809/810 assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V_{CC} has risen above the reset threshold. The MAX809/810 have a push-pull output stage.


ENSURING A VALID RESET OUTPUT DOWN TO V_{CC}=0

RESET is guaranteed to be a logic low for $V_{CC} > 1.0V$. Once V_{CC} exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high. If a brownout condition occurs (V_{CC} dips below the reset threshold), RESET goes low. Any time V_{CC} goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer starts after V_{CC} returns above the reset threshold, and RESET remains low for the reset timeout period. When V_{CC} falls below 1V, the MAX809/810 reset output no lo nger sinks current - it becomes an open circuit. Therefore, high impedance CMOS logic input connected to reset can drift to undetermined voltages. This present no problem in most applications since most μ P and other circuitry is inoperative with V_{CC} below 1V.However, in applications where reset must be valid down to 0V, adding a pull down resistor to reset causes and stray leakage currents to flow to ground, holding reset low (Figure 2.) R1's value is not critical; 100K is large enough not to load reset and small enough to pull RESET to ground. For the MAX809/810 if reset is required to remain valid for V_{CC} <1V.

BENEFITS OF HIGHLY ACCURATE RESET THRESHOLD

Most μP supervisor ICs has reset threshold voltages between 5% and 10% below the value of nominal supply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply $\pm 5\%$, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset many or may not be asserted.

TIMMING DIAGRAM

Microprocessor Reset Circuit

Package informantion

www.sot23.com.tw

Symbol	Dimensions In Millimeters		
Зушьог	Min	Max	
A1	0.02	0.1	
A2	1.0Typical		
b	0.4Typical		
C	0.1Typical		
D	2.70	3.10	
E	1.10	1.50	
E1	2.20	2.60	
e1	1.80	2.00	
L	0.35	0.48	