

Overvoltage protected AC switch

Datasheet - production data

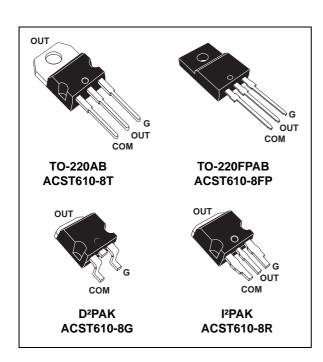
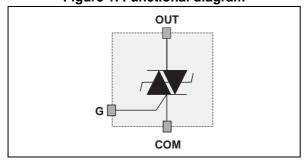



Figure 1. Functional diagram

Features

- Triac with overvoltage protection
- Low I_{GT} (< 10 mA)
- TO-220FPAB insulated package:
 - complies with UL standards (file ref: E81734)
 - insulation voltage: 2000 V_{RMS}

Benefits

- Enables equipment to meet IEC 61000-4-5
- High off-state reliability with planar technology
- Needs no external overvoltage protection
- Reduces the power passive component count
- High immunity against fast transients described in IEC 61000-4-4 standards

Applications

- AC mains static switching in appliance and industrial control systems
- Drive of medium power AC loads such as:
 - Universal motor of washing machine drum
 - Compressor for fridge or air conditioner

Description

The ACST6 series belongs to the ACS/ACST power switch family built with A.S.D. (application specific discrete) technology. This high performance device is suited to home appliances or industrial systems, and drives loads up to 6 A.

This ACST6 switch embeds a Triac structure and a high voltage clamping device able to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC 61000-4-5 standards. The ACST610 needs only low gate current to be activated ($I_{\rm GT}$ < 10 mA) and still shows a high noise immunity complying with IEC standards such as IEC 61000-4-4 (fast transient burst test).

Table 1. Device summary

-					
Symbol	Value	Unit			
I _{T(RMS)}	6	Α			
V _{DRM} /V _{RRM}	800	V			
I _{GT}	10	mA			

Characteristics ACST6

1 Characteristics

Table 2. Absolute ratings (limiting values)

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	On-state rms current (full sine wave)	TO-220FPAB	T _c = 92 °C	6	A
		TO-220AB/ D ² PAK / I ² PAK	T _c = 106 °C		
		D ² PAK with 1 cm ² copper	T _{amb} = 62 °C	1.5	
	Non repetitive surge peak on-state current T _i	F = 60 Hz	$t_p = 16.7 \text{ ms}$	47	Α
	initial = 25 °C, (full cycle sine wave)	F = 50 Hz	t _p = 20 ms	45	Α
l ² t	I ² t for fuse selection	t _p = 10 ms	13	A^2s	
dI/dt	Critical rate of rise on-state current $I_G = 2 \times I_{GT}$, $(t_r \le 100 \text{ ns})$	F = 120 Hz	T _j = 125 °C	100	A/µs
V _{PP}	Non repetitive line peak pulse voltage $^{(1)}$ $T_j = 25 ^{\circ}C$			2	kV
P _{G(AV)}	Average gate power dissipation		T _j = 125 °C	0.1	W
P_{GM}	Peak gate power dissipation ($t_p = 20 \mu s$) $T_j = 125 ^{\circ}C$			10	W
I _{GM}	Peak gate current ($t_p = 20 \mu s$) $T_j = 125 ^{\circ}C$			1.6	Α
T _{stg}	Storage temperature range			-40 to +150	°C
T _j	Operating junction temperature range				°C
T _I	Maximum lead solder temperature during 10 ms (at 3 mm from plastic case)				°C
V _{INS(RMS)}	Insulation RMS voltage (60 seconds) TO-220FPAB			2000	V

^{1.} According to test described in IEC 61000-4-5 standard and Figure 18.

Table 3. Electrical characteristics

Symbol	Test conditions	Quadrant	Tj		Value	Unit
I _{GT} ⁽¹⁾	V_{OUT} = 12 V, R_L = 33 Ω	1 - 11 - 111	25 °C	MAX.	10	mA
V _{GT}	V_{OUT} = 12 V, R_L = 33 Ω	1 - 11 - 111	25 °C	MAX.	1.0	V
V_{GD}	$V_{OUT} = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	1 - 11 - 111	125 °C	MIN.	0.2	V
I _H ⁽²⁾	I _{OUT} = 500 mA		25 °C	MAX.	25	mA
ΙL	$I_{G} = 1.2 \text{ x } I_{GT}$	I - III	25 °C	MAX.	30	mA
IL	$I_{G} = 1.2 \text{ x } I_{GT}$	II	25 °C	MAX.	40	mA
dV/dt ⁽²⁾	V _{OUT} = 67 % V _{DRM} , gate open		125 °C	MIN.	500	V/µs
$(dI/dt)_c^{(2)}$	$(dV/dt)_{c} = 15 V/\mu s$		125 °C	MIN.	3.5	A/ms
V _{CL}	$I_{CL} = 0.1 \text{ mA}, t_p = 1 \text{ ms}$		25 °C	MIN.	850	V

^{1.} Minimum I_{GT} is guaranteed at 5% of I_{GT} max

^{2.} For both polarities of OUT pin referenced to COM pin