NSM-U1 模组 硬件设计手册 V1.1

目 录

— ′	概述.		2
	1. 1.	关于文档	2
	1. 2.	产品外观	2
=,	产品简	筍介	3
	2. 1.	基本参数	3
	2. 2.	模组应用框图	4
	2. 3.	引脚定义	4
三、	典型區	如用参考	6
	3. 1.	典型应用外围电路框架	6
	3. 2.	典型应用电路参考原理图	7
	3. 3.	电源设计	7
	3. 4.	UART 串口	8
	3. 5.	复位模组	9
	3. 6.	低功耗唤醒引脚	9
	3. 7.	射频天线接口	9
	3. 8.	射频信号线 Layout 参考指导	9
	3. 9.	天线要求1	1
四、	电气性	生能和可靠性1	2
	4. 1.	输入电源1	
	4. 2.	工作与存储温度 1	2
	4. 3.	射频特性1	2
	4. 4.	功耗特性1	
五、	机械厂	ਰ寸1	3
	5. 1.	模组机械尺寸1	3
	5. 2.	推荐 PCB 封装1	4
六、	存储、	生产和包装1	5
	6. 1.	存储	5
	6.2	生产焊接 1	5

一、概述

1.1. 关于文档

本文档阐述了技象科技 TPUNB 物联网无线通信模组 NSM-U1 的基本规格参数、硬件接口、结构特性等指标。用户通过查阅本文档,可以了解产品的规格参数,把握将模组嵌入各种终端中的硬件设计要点。

1.2. 产品外观

图 2 模组底视图

备注:图1、2为模组的效果图,实际请参照模组实物。

二、产品简介

2.1. 基本参数

表 1 参数列表

类别	参数	取值
	工作频段	470~510MHz(可配置)
	发射功率	-30dBm∼+19dBm@2.6V∼3.6V
	接收灵敏度	-111dbm@19.2kbps 470MHz
	1女以火蚁/文	-107dbm@76.8kbps 470MHz
无线参数	调制方式	FSK
	工作带宽	<200kHz 单载波(可配置)
	下行符号速率	19. 2kbps/76. 8kbps
	上行符号速率	2. 4kbps/76. 8kbps
	天线接口	LCC 焊盘
	工作电压	2. 6V ~ 3. 6V 典型应用 3. 3V
		1. AT 串口: TTL 电平,波特率 9600bps
		2. 调试串口: TTL 电平,波特率 115200bps
		3. RI 信号;
		4. Wake 信号
	应用接口	5. RST_OUT 信号
	(<u>11)</u>	6. LED 指示网络状态
		7. SWD 烧录调试
		8. SPI: 1路(选配)
硬件参数		9. ADC: 1路(可选配为 DAC 或 GPIO)
		10. GPIO: 6路(选配)
		发射电流 88.2mA@3V3 470 MHz +19dBm
	工作电流(典型值)	接收电流 15.8mA@3V3 470 MHz
		休眠电流 4. 4uA@3V3 RTC 开启
	工作温度	-40°C∼ +85°C
	存储温度	-40°C∼ +90°C
	尺寸	17. $7(\pm 0.15 \text{mm}) \times 15.8(\pm 0.15 \text{mm}) \times 2.0 \text{mm} (\pm 0.2 \text{mm})$
	管脚数	44
	封装接口	LCC SMT 表贴

2.2. 模组应用框图

模组开放典型应用接口:电源、串口、LED、GPIO、天线接口。

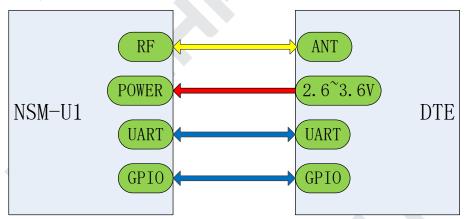


图 3 模组最小应用框图

备注: DTE Data Terminal Equipment 为应用模组终端

2.3. 引脚定义

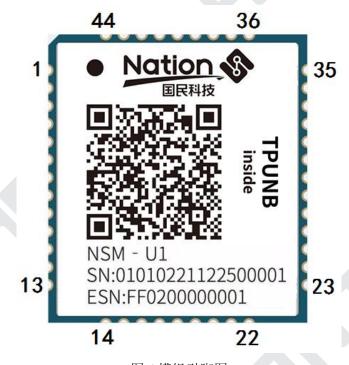


图 4 模组引脚图

表 2 LCC 封装引脚定义

管脚	名称	类 型	功能说明
9	ADC	ΑI	ADC, 检测最大电压应小于电源输入电压,不用则悬空。
11	SWDIO	10	SW 数据,建议预留接口便于升级、调试
13	SWCLK	10	SW时钟,建议预留接口便于升级、调试
15	RESET_N	Ι	模组复位,低电平有效,拉低至少 5ms(模组 内部有上拉及滤波电容)
16	LED_NET	0	网络状态指示,LED 驱动
17	AT_RXD	Ι	AT 串口接收,从 DTE 设备 TXD 端接 收数据
18	AT_TXD	0	AT 串口发送,发送数据到 DTE 设备的 RXD 端
20	RI	0	振铃提示,有数据通信模组唤醒 DTE,下降沿/ 低电平有效
24	VDD_EXT	Р	VDD 输出电源,可用于外部 IO 上拉,并联一个 2. 2uF 的旁路电容,不用则可悬空
28	GPI05/RST_OUT	10	GPI05,默认作为模组模组复位信号输出(如复位 DTE MCU),可用通过网络配置或者下发指令输出复位信号,默认可输出 100mS 的低电平复位信号。应用电路的复位输入信号需有外部上拉。不用 RST_OUT 功能,管脚则悬空。
32	GPI03	10	GPI03,系统保留,不用则悬空
33	GPIO4/WAKE	Ι	GPI04/模组休眠用法时的被 DTE 唤醒管脚,高电平被唤醒。(模组可支持 AT 串口唤醒,但要求硬件设计连接该唤醒管脚。)
35	RF_ANT	ΑI	射频天线焊盘, 50Ω 特性阻抗
38	DEG_RXD	Ι	调试串口接收,预留接口便于调试
39	DEG_TXD	0	调试串口发送,预留接口便于调试
42	VDD	Р	电源输入,电压范围: 2.6V-3.6V, 典型 3.3V
43	VDD	Р	1日25/101/101/101/101日 2:01 0:01 9代主 0:01
1, 10, 27, 34, 36, 37, 40, 41	GND	Р	GND 信号
2, 3, 4, 5, 6, 7, 8, 12, 14, 19, 21, 22, 23, 25, 26, 29, 30, 31, 44	NC	NC	NC, 未定义,悬空

备注:

- NC 未使用引脚客户需悬空处理
- P 电源类引脚
- I 输入引脚
- AI 模拟输入
- 0 输出引脚
- I/0 双向引脚

需将未使用引脚全部 NC 悬空处理

三、典型应用参考

3.1. 典型应用外围电路框架

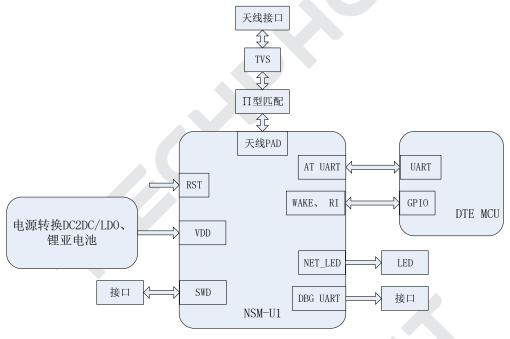


图 5 模组外围电路框架

3.2. 典型应用电路参考原理图

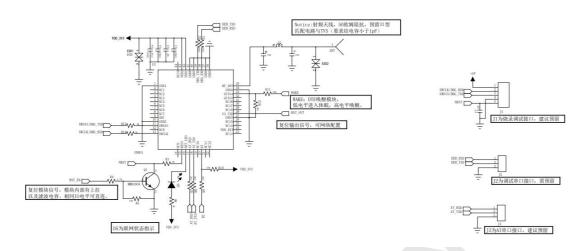


图 6 参考原理图

3.3. 电源设计

模组可使用低静态电流、输出电流能力达到 0.3A 的 LDO 作为供电电源。

电源输入范围为 2.6V~3.6V(若给模组供电电压高于 3.6V,需增加降压稳压电路),推荐电压为 3.3V, 峰值供电电流 100mA。为了确保更好的电源供电性能,在靠近模组 VBAT 输入端,建议并联一个 47uF 的陶瓷电容,防止外部电源在脉冲电流时间段内出现电压跌落,以及增加滤波电容组合: 100nF、1nF 和 100pF。如果应用环境比较恶劣,经常受到 ESD 干扰或者对 EMC 要求比较高,建议串联磁珠和并联 TVS 管,以增加模组的稳定性。

- 1、推荐使用直流对模组进行供电,电源纹波系数尽量小,模组需可靠接地; 请注意电源正负极的正确连接,如反接可能会导致模组永久性损坏;
- 2、请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模组 永久性损坏;请检查电源稳定性,电压不能大幅频繁波动;
- 3、在针对模组设计供电电路时,往往推荐保留 30%以上余量,有利于整机 长期稳定地工作;模组应尽量远离电源、变压器、高频走线等电磁干扰较大的 部分;
 - 4、高频数字走线、高频模拟走线、电源走线必须避开模组下方, 若实在不

得已需要经过模组下方,假设模组焊接在 Top Layer, 在模组接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模组数字部分并走线在 Bottom Layer;

- 5、假设模组焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走也是错误的,会在不同程度影响模组的杂散以及接收灵敏度;
- 6、假设模组周围有存在较大电磁干扰的器件也会极大影响模组的性能,跟据干扰的强度建议适当远离模组,若情况允许可以做适当的隔离与屏蔽;
- 7、假设模组周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源 走线)也会极大影响模组的性能,跟据干扰的强度建议适当远离模组,若情况 允许可以做适当的隔离与屏蔽;
 - 8、通信线若使用 5V 电平, 必须使用电平转换电路。

3.4. UART 串口

模组设有2个固定串口: AT 串口、调试串口。

1. AT 串口

模组作为 DCE(Data Communication Equipment),通过 AT 串口按照传统的 DCE-DTE(Data Terminal Equipment)方式连接。AT 串口可用于 AT 命令传送和数据传输,支持的波特率为 9600bps。如果模组采用 3.3V 供电,跟 MCU (3.3V 电平)直接通信,只需要将模组的 TXD 加到 MCU 的 RXD,将模组的RXD 接到 MCU 的 TXD 上即可。当模组电平与 MCU 电平不匹配时,如 MCU 是5V 电平,中间需要加电平转换电路,电平转换电路可用专用芯片或者三极管搭建。如参考原理图,AT 串口需设计有 2.54 排针座,作为 AT 调试口,如果板面空间不够,则用测试点替代。

2. 调试串口

调试串口可用于查看日志信息以进行软件调试,其波特率为 115200bps。如参考原理图,调试串口要求按照参考原理图设置 2.54 排针孔接口,如果板面空间不够,则用测试点替代。

3.5. 复位模组

模组提供复位功能。

RESET_N: 模组复位信号,输入低电平有效,模组内部有 10K 电阻上拉到 VDD。当模组上电时或者出现故障时,DTE 的 MCU 需要对模组做复位操作,引脚 拉低至少 5ms,然后拉高或悬空复位。

RST_OUT:模组模组复位信号输出(如复位 DTE MCU),可用通过网络配置或者下发指令输出复位信号,默认可输出 100mS 的低电平复位信号。应用电路的复位输入信号需有外部上拉。不用 RST OUT 功能,管脚则悬空。

3.6. 低功耗唤醒引脚

WAKE:模组的第 33 引脚为上位机 MCU 唤醒 NSM-U1 引脚。低电平进入休眠,高电平唤醒。应用电路建议增加 100K 下拉电阻,建议增加串联电阻,连接于上位机 MCU 的 GPIO,该上位机 MCU 的 GPIO 输出高/低电平控制 NSM-U1 唤醒/休眠。

RI: 模组的第 21 引脚为 NSM-U1 唤醒上位机 MCU 引脚,低电平有效。应用电路建议增加 10K 电阻上拉到 VDD。建议增加串联电阻,连接于上位机 MCU 的中断 GPIO 管脚。

3.7. 射频天线接口

射频接口采用外置引脚焊盘的方式。用户 PCB 上需要预留 π 型匹配,保证 50ohm 阻抗匹配,同时射频走线尽量短,减小对信号的衰减。见参考原理图, 默认情况下,C5、C6 不贴,只在 R3 贴 0Ω 电阻。

另外考虑到对射频接口更好的 ESD 及 EMI 防护,建议增加一个 TVS,该 TVS 要求其结电容小于 0.5pF(推荐型号: ESD5V0B03-523,封装为 S0D523,台舟)。

3.8. 射频信号线 Layout 参考指导

在板面空间条件足够的情况下,匹配器件放置原则是使得馈线路径为一条 最短的直线,最好无分叉,如果馈线必须有拐角,需走 135 度,器件放置参考 如图 7:

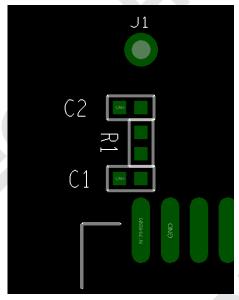


图 7 Layout 器件放置图

如果应用模组设计的 PCB 的板层为 2 层,则射频馈线应该采用共面波导微波传输形式,并进行特性 50 Ω 阻抗控制,设计参数见图 8:

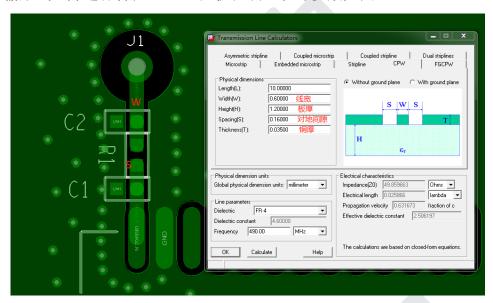


图 8 Layout 参数图

影响共面波导特性阻抗的主要因素有,基材介电常数(通常为 4.2~4.6,这里取 4.4)、信号层与参考地间距 H、线宽 W、对地间隙 S、铜皮厚度 T。根据仿真结果,建议取值如下,H=1.2mm,W=0.6mm,S=0.16mm,T=0.035mm。另外,PCB LAYOUT 注意事项:

- 1. 模组上的天线焊盘旁的接地焊盘不做热焊盘,要和地充分接触;
- 2. 天线连接器上的天线信号焊盘周围稍微禁铺,使得信号脚离地要保持一定

TP 技規技

距离;

3. 保证射频线对应的参考地完整,增加地孔帮助射频回流,地孔和信号线至少保持 2 倍线宽的距离。保证射频线同层地的接地面积尽量大,其对应的另一面参考地尽量完整,并保证一定量的地孔连接两层地。

3.9. 天线要求

若采用外接天线,建议所采用天线的指标不低于表 3 所示的要求,若采用定制 天线,天线指标尽量接近表 3 要求。

表 3 参考天线指标要求

参数	要求
频率	470MHz~510MHz
VSWR	≤2
增益(dBi)	≥2
最大输入功率 (W)	10
输入阻抗(Ω)	50
极化类型	垂直极化

四、电气性能和可靠性

4.1. 输入电源

表 4 供电范围

参数	最小值	典型值	最大值	单位
输入电压	2.6	3. 3	3. 6	V

4.2. 工作与存储温度

表 5 温度参数

参数	最小值	典型值	最大值	单位
工作温度	-40	+25	85	$^{\circ}$ C
存储温度	-40		90	$^{\circ}$ C

4.3. 射频特性

表 6 射频特性

符号	描述	条件	最小值	典型值	最大值	单位
TxPwr	发射功率	晶体振荡器开启	-30	+17	+19	dBm
FR	频率范围		470	470	510	MHz

4.4. 功耗特性

表 7 功耗特性

符号	描述	条件	最小值	典型值	最大值	单位
IDD-SL	睡眠模式下功耗	晶体振荡器开启	4.2	4.4	4.6	uA
IDD_RX	接收模式下功耗		15.4	15.8	16	mA
IDD_TX	发送模式下功耗	Pout=+20dBm	87.5	88.2	89	mA

五、机械尺寸

该章节描述了模组的机械尺寸,所有的尺寸单位为毫米,所有未标注公差的尺寸,公差为±0.05mm。

5.1. 模组机械尺寸

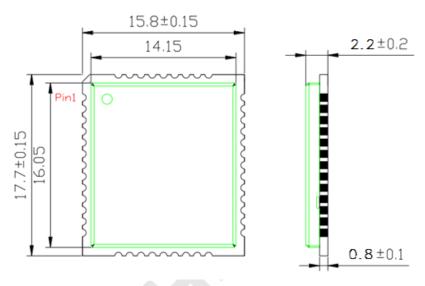


图 9 俯视及侧视尺寸图

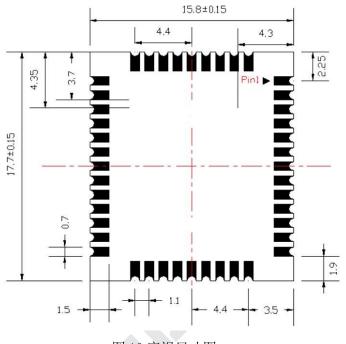


图 10 底视尺寸图

5.2. 推荐 PCB 封装

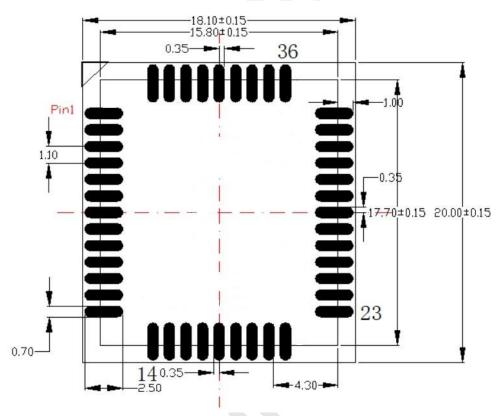


图 11 推荐封装

六、存储、生产和包装

6.1. 存储

NSM-U1 以真空密封袋的形式出货。模组的湿度敏感等级为 3 (MSL 3), 其存储需遵循如下条件:

- 1. 环境温度低于 40°C, 空气湿度小于 90%的情况下, 模组可在真空密封袋中 存放 12 个月;
- 2. 当真空密封袋打开后,若满足以下条件,模组可直接进行回流焊或其它高温流程:
 - 1) 模组存储空气湿度小于 10%;
 - 2) 模组环境温度低于 30°C, 空气湿度小于 60%, 工厂在 168 小时以内完成贴片;
- 3. 若模组处于如下条件,需要在贴片前进行烘烤:
 - 1) 当环境温度为 23°C(允许上下 5°C 的波动)时,湿度指示卡显示湿度大于 10%;
 - 2) 当真空密封袋打开后,模组环境温度低于 30°C, 空气湿度小于 60%, 但工厂未能在 168 小时以内完成贴片:
- 4. 如果模组需要烘烤,请在120°C下(允许上下5°C的波动)烘烤8小时。

6.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适。为保证模组印膏质量,NSM-U1 模组焊盘部分对应的钢网厚度推荐为 0.18mm~0.20mm。

推荐的回流焊温度为 238°C~245°C, 最高不能超过 245°C。为避免模组因 反复受热而损坏, 应完成 PCB 板第一面的回流焊之后再贴模组。

推荐的炉温曲线图 (无铅 SMT 回流焊)和相关参数如下图表所示:

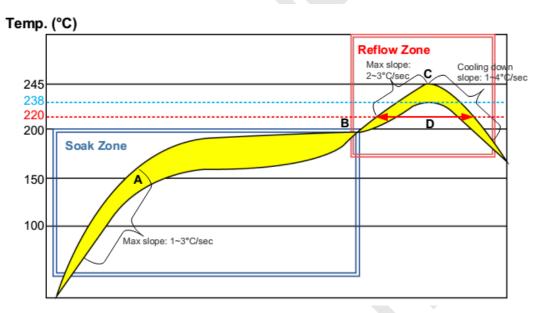


图 12 推荐的回流焊温度曲线

表 8 推荐的炉温测试控制要求

项目	推荐值
吸热区(Soak Zone)	
最大升温斜	1° C/sec ∼3° C/sec
恒温时间(150° C~200° C期间, A和 B之间)	60 sec ∼120 sec
回流焊区(Reflow Zone)	
最大升温斜	2° C/sec ∼3° C/sec
回流时间 (D: 超过 220° C 的期间)	$60~{ m sec}~\sim~120~{ m sec}$
最高温度	238° C ∼ 245° C
冷却降温斜率	1° C/sec \sim 4° C/se
回流次数	
最大回流次数	1 次

修订历史记录

版本	发布日期	更 改 内 容
V1.0	2022/10/28	文档创建
V1.1	2022/3/2	修正参数表格式

官方微信公众号

联系电话: 020-32640281-815

联系邮箱: jx@techphant.net

官方网站: www.techphant.cn

公司地址:广州市海珠区新港东路 1378 号自编号 1 号楼 2 层

广州市海珠区新港中路 381 号