

深圳市华昕电子有限公司 SHENZHEN HUAXIN ELECTRONICS CO., LTD.

STANDARD SPECIFICATION

产品规格书

客户 Customer:			
客户料号 Customer	P/N NO.:		
产品描述 Product	Description:	2520-4P 26.000MHZ 9PF	±10PPM
HX 料号	P/N. NO. :_	2TS026000AP	

客户批准 Customer Approval:

审 核	批准
Checked	APPROVED

(请批准后回签一份 PLEASE RETURN A COPY WITH APPROVAL)

拟制	审 核	批 准	
DESIGNER	CHECK	APPROVED	
万为阳	察勤	和建年	

地址:深圳市龙华区龙胜路融创智汇大厦0座1401-1402室

Office add:Room 1401-1402, Building C, Rongchuang, Longhua District, shenzhen

TEL: 0755-21044642

深圳市华昕电子有限公司 华昕电子 SHENZHEN HUAXIN ELECTRONICS CO., LTD.

REVISION RECORD

NO.	PAGE	REVISE CONTENT	DATE	MODIFIER	AUDITOR
1	1	For the first time	2021. 04. 09	万力阳	蔡勤

SPEC SHEET CONTENTS

No.	Content	page
1	PRODUCT DESCRIPION	3
2	ELECTRICAL SPECIFICATIONS	3~5
3	DIMENSIONS	6
4	MARKING	6
5	SUGGESTED REFLOW PROFILE	7
6	STRUCTURE ILLUSTRATION	7
7	EMBOSS CARRIER TAPE & REEL	8~9
8	RELIABILITY SPECIFICATIONS	10~11

PRODUCT DESCRIPION

1. Standard atmospheric conditions

Unless otherwise specified. The standard range of atmospheric conditions for making measurement and tests are as follow:

Ambient temperature : $25\pm10^{\circ}$ C Relative humidity : $40\%\sim70\%$

If there is any doubt bout the results, measurement shall be made within the following limit:

Ambient temperature : 25±2°C

Relative humidity : 40%~70%

2. Measure equipment

Electrical characteristics measured by S&A 250B or equivalent.

ELECTRICAL SPECIFICATIONS

1. Quartz Crystal Unit Specification

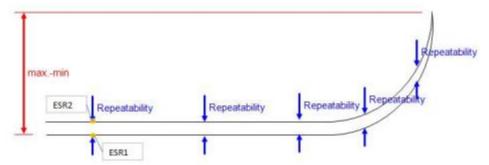
NO.	Parameters	Symbol		Specifications			Notes
110.	i didilieters	Cymbol	Min	Туре	Max	Units	Notes
1	Nominal frequency	FL	2	26.000		MHz	
2	Mode of Oscillation	ı	Fui	ndamen	tal		AT-CUT
3	Load Capacitance	CL		9		pF	
4	Frequency Tolerance	FL		±10		ppm	at 25±2℃
5	Frequency Stability	TC		±12		ppm	at -30 ℃ ~+85 ℃
6	Operating Temperature	ı	-30	?	+105	$^{\circ}$	
7	Drive Level	DL	10		100	uW	
8	Effective Resistance	RR			80	Ω	
9	Shunt Capacitance	C0	0.3		1.3	pF	
10	Motional Capacitance	C1	1.8		3.1	fF	
11	Tuning sensitivity	TS	12			ppm/ pF	at CL
12	Spurious mode series resistance	SPUR	1100			Ω	±1MHz
13	Q Factor	Q	75			K	
14	Insulation Resistance	IR		≥500		МΩ	at DC 100V
15	Aging	1		±0.7		ppm	1st year max
16	Reflow			±2		ppm	Two reflows
17	Inflection Point	Ti	30.5		33.5	$^{\circ}\!\mathbb{C}$	T=T0-C2/(3*C3)
18	Storage Temperature Range	-	-40	~	+105	°C	

2. Curve Fitting Parameters

The FT curve of an AT-cut crystal can be modeled as a third-order polynomial. $F(T)=C3(T-T0)^3 + C2(T-T0)^2 + C1(T-T0) + C0$

C0: ±10 ppm

C1 : -0.4 ~ -0.1 ppm/℃


C2 : -4.5 x 10^{-4} ~ 4.5 x 10^{-4} ppm/°C² C3 : 8.5 x 10_{-5} ~ 11.5 x 10_{-5} ppm/°C³

3. Drive level dependency(DLD)

Item		MAX-MIN	Repeatability	Conditions
D: 1 1 1 1	Freq	<3ppm	<0.7ppm	0.04.18/45 400.18/45 0.04.18/
Drive level dependency	ESR	<20%	<10%	0.01uW to 100uW to 0.01uW

Notes:

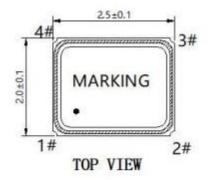
- 1) Number of points: 15 points up and 15 points down=29 total data points.
- 2) Max-Min: Difference between the maximum and minimum in a two-way measurement. For ESR, The change rate is (max-min)/min<20%.
- 3) Repeatability: Repeatability of two-way measurement in the above condition. For ESR, The change rate is (ESR2-ESR1)/ESR1<10%.
- 4) ESR1: First measurement on each drive level.
- 5) ESR2: Second measurement on each drive level;

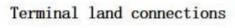
4. Gps Quality Specifications

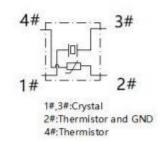
Crystal perturbation specification 1 (residual fre quency stability slope)

Item	Condition	Specificatio n	Unit
Residual frequency stability slope (residual = difference from fifth-order curve fit)*	Ta = -30°C to +85°C	±50 (Max.)	ppb/℃
5 °C small orbit hysteresis 1*	Ta = −30°C to +85°C	±50 (Max.)	ppb/℃

- * Must meet the 1A and 1B conditions:
- Condition 1A -Test condition (continuous temperature rate change of ~1.0 °C/min):
 - ☐ Measure FT points every 1 °C , heating up from -30 °C to +85 °C , subtract a fifth-order polynomial best fit and then calculate the slope of the residual.
 - \Box The residual slope should be within ± 50 ppb/°C.

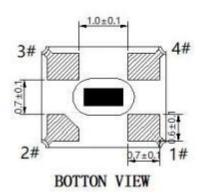

 ~1.0 °C/min): ☐ Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30°C to +35°C to +30°C. ☐ During every individual heating/cooling cycle there should be 11 points; Discard the First point of each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle. Subtract the fifth-order polynomial best fit from 1 A for each of the 		
temperature orbit; an example 5 °C small orbit temperature cycle is +30°C to +35°C to +30°C. During every individual heating/cooling cycle there should be 11 points; Discard the First point of each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle. Subtract the fifth-order polynomial best fit from 1 A for each of the 10 points, and then calculate the slope of the residual for each of these heating and cooling 10 point curves. The residual slope should be within ±50 ppb/°C. Crystal perturbation specification 2 (small orbit hysteresis 2) Item Condition Specification Unit To small orbit hysteresis 2* Ta = -30°C to +85°C 100 (magnitude) ppb pk-pk * Must meet condition 2: Condition 2 - Hysteresis 2 test condition (continuous temperature rate change of ~1.0 °C/min): Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30 °C to +35 °C to +30 °C. During every individual heating/cooling cycle there should be 11 points; Discard the first and last point of each heating and cooling cycle, which results in nine temperature points. Calculate the average measured peak-to-peak frequency difference for these nine temperature points.		■ Condition 1B-Hysteresis 1 test condition (continuous temperature rate change of ~1.0 °C/min):
First point of each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle. Subtract the fifth-order polynomial best fit from 1 A for each of the 10 points, and then calculate the slope of the residual for each of these heating and cooling 10 point curves. The residual slope should be within ±50 ppb/°C. Crystal perturbation specification 2 (small orbit hysteresis 2) Item Condition Specification Unit To small orbit hysteresis 2* Ta = -30°C to +85°C To (magnitude) Ppb pk-pk * Must meet condition 2: Condition 2 - Hysteresis 2 test condition (continuous temperature rate change of ~1.0 °C/min): Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30 °C to +35 °C to +30 °C. During every individual heating/cooling cycle there should be 11 points; Discard the first and last point of each heating and cooling cycle, which results in nine temperature points. Calculate the average measured peak-to-peak frequency difference for these nine temperature points.		temperature orbit; an example 5 °C small orbit temperature cycle is +30°C to +35°C
Item Condition Specification Unit 5 °C small orbit hysteresis 2* Ta = -30 °C to +85 °C 100 (magnitude) ppb pk-pk * Must meet condition 2: ■ Condition 2 - Hysteresis 2 test condition (continuous temperature rate change of ~1.0 °C/min): □ Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30 °C to +35 °C to +30 °C. □ During every individual heating/cooling cycle there should be 11 points; Discard the first and last point of each heating and cooling cycle, which results in nine temperature points. Calculate the average measured peak-to-peak frequency difference for these nine temperature points.		First point of each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle. Subtract the fifth-order polynomial best fit from 1 A for each of the 10 points, and then calculate the slope of the residual for each of these heating and cooling 10 point curves. The residual slope should be within ±50 ppb/°C.
 5 ℃ small orbit hysteresis 2* Ta = -30℃ to +85℃ 100 (magnitude) ppb pk-pk * Must meet condition 2: ■ Condition 2 - Hysteresis 2 test condition (continuous temperature rate change of ~1.0 °C/min): □ Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30 °C to +35 °C to +30 °C. □ During every individual heating/cooling cycle there should be 11 points; Discard the first and last point of each heating and cooling cycle, which results in nine temperature points. Calculate the average measured peak-to-peak frequency difference for these nine temperature points. 	_	
* Must meet condition 2: Condition 2 - Hysteresis 2 test condition (continuous temperature rate change of ~1.0 °C/min): Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30 °C to +35 °C to +30 °C. During every individual heating/cooling cycle there should be 11 points; Discard the first and last point of each heating and cooling cycle, which results in nine temperature points. Calculate the average measured peak-to-peak frequency difference for these nine temperature points.		
 ■ Condition 2 - Hysteresis 2 test condition (continuous temperature rate change of ~1.0 °C/min): □ Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30 °C to +35 °C to +30 °C. □ During every individual heating/cooling cycle there should be 11 points; Discard the first and last point of each heating and cooling cycle, which results in nine temperature points. Calculate the average measured peak-to-peak frequency difference for these nine temperature points. 		
		 ■ Condition 2 - Hysteresis 2 test condition (continuous temperature rate change of ~1.0 °C/min): □ Measure FT points every 0.5 °C while cycling temperature over a 5 °C small temperature orbit; an example 5 °C small orbit temperature cycle is +30 °C to +35 °C to +30 °C. □ During every individual heating/cooling cycle there should be 11 points; Discard the first and last point of each heating and cooling cycle, which results in nine temperature points. Calculate the average measured peak-to-peak frequency

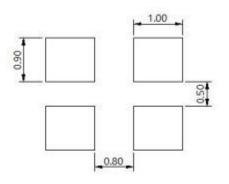

5.Thermistor Specification


	Parameter	Electi			
	Farameter	Min	Mon	Max	Units
1	Operating	-30	-	+105	$^{\circ}$
	temperature				
2	Storage temperature	-40	-	+105	${\mathbb C}$
3	Resistance(25℃)		100		kΩ
4	B-constant(25~50°C)		4250		K
5	Tolerance			1.0	%

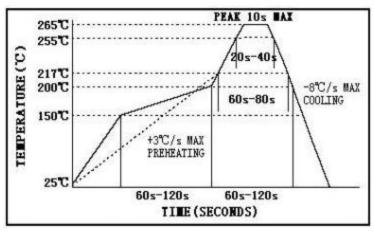
DIMENSIONS

(unit: mm)



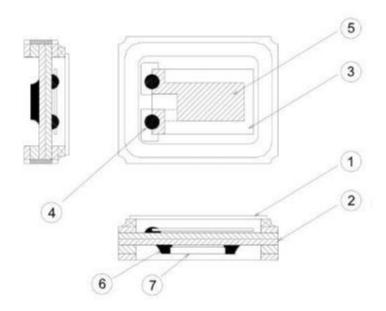


Land pattern (Recommended)



MARKING

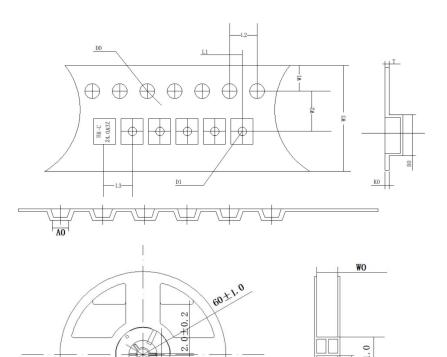
26.000 ------ Frequency(26.0M)
C9 ------ 9PF
** ** ------- 周期
• --------- Pin 1


SUGGESTED REFLOW PROFILE

Solder melting point : 217 $\,^{\circ}$ C , 60 sec. Min.

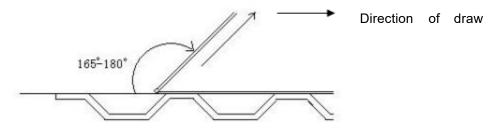
Peak Temperature: 260 \pm 5 $^{\circ}$ C, 10 sec. Max. (lead free)

STRUCTURE ILLUSTRATION

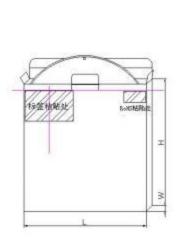

NO.	COMPONENTS	MATERIALS	QTY
1	Lid	Metal(Fe+Co+Ni)	1
2	Base(Package)	Al ₂ O ₃	1
3	Crystal blank	SiO ₂	1
4	Conductive adhesive	Ag+ Silicone resin	4
5	Electrode	Noble metal	2
6	Solder	Sn	2
7	Thermistor	Al ₂ O ₃ ,Ag ,Ni	1

● EMBOSS CARRIER TAPE & REEL

(unit: mm)


1. Dimension of taping and reel

 -178 ± 1.0


L1	2.00 ± 0.1
L2	4.00±0.1
L3	4.00±0.1
DO	1.50 ± 0.1
D1	1.00±0.1
WO	8.30±0.2
W1	1.75 ± 0.1
W2	3.50 ± 0.1
W3	8.00±0.1
A0	2.25 ± 0.1
ВО	2.70 ± 0.1
КО	1.45±0.1
T	0.25 ± 0.05

2. peel force of top cover tape shall be 0.2N to 1.0N

 $13.0\pm0.$

3. Packing

H W

1 Reel/Inner Box

10 In-Boxer/Catton(Standard)

Package & Quantity

Туре	Size (L*W*H)	Quantity
Inner Box	80*20*80	3000pcs
Catton 240*200*200		30000pcs

Standard Reel Quantity is 3000pcs per reel.

4. Contents of Packaging Labels

- * CUSTOMER No.
- * NOMINAL FREQUENCY
- * LOAD CAPA.
- * FREQ.TOLERANCE
- * ESR
- * DATE
- * LOT.
- * P/N

- * HOLDER TYPE
- * QUANTITY
- * MARKING

★ Remark

Customer specified requirements for marking, Labels, packaging, please provide the operation procedure.

RELIABILITY SPECIFICATIONS

1. MECHANICAL ENDURANCE

No.	Test Item	Test Methods	Test Criteria
1	Drop Test	Electrical characteristics shall be satisfied after dropping three times from the height of 150cm onto the board of the 3cm thickness.	A、C
2	Mechanical Shock	Device are shocked to half sine wave (1000 G), duration time :0.5ms, and three mutually perpendicular axes each 3 times	A, C
3	Vibration	Frequency range 10 ~ 2000Hz Amplitude 1.52mm Sweep Time 20 min Direction x,y,z Test time 2hours/Each Direction	A、C
4	Solder ability	Temperature 245 $^{\circ}$ C +/- 5 $^{\circ}$ C Immersing depth 0.5 mm minimum 1mmersion time 3 +/- 0.5 seconds Rosin resin methyl alcohol solvent (1 : 4)	E

2. ENVIRONMENTAL ENDURANCE

No.	Test Item	Test Methods	Test Criteria
5	Resistance To Soldering Heat	Pre-heat temperature $180 ^{\circ}\mathbb{C}$ Pre-heat time $60 \sim 120 \text{sec.}$ Test temperature $260 + / - 5 ^{\circ}\mathbb{C}$ Test time $10 + / - 1 \text{sec.}$	A、C、D
6	High Temp. Storage	+ 125 °C +/- 2 °C for 500 +/- 12 hours	A、C、D
7	Low Temp. Storage	-40 °C +/- 2 °C for 500 +/- 12 hours	A、C、D
8	Thermal Shock	Total 10 cycles of the following temperature cycle 1 cycle 1 cycle 25 °C -55 +/- 3 °C 30 min. 10 min. max.	A、C、D
9	High Temp & Humidity	85℃+/- 3℃, RH 85%,500Hrs	A、C、D

3. RELIABILITY SPECIFICATIONS

Specifications			
А	Frequency change: Within ±5ppm or in customer's specification.		
В	Frequency change: Within ±10ppm or in customer's specification.		
С	Effective resistance (RR) change: Within $\pm 20\%$ or 5Ω (larger value).		
D	After conditioning, quartz crystal units shall be subjected to standard atmospheric conductions for 2 hour, and measured.		
E	Minimum 95% of immersed terminal shall be covered with new uniform solder.		