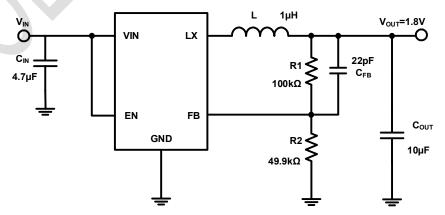
2.3MHz, 6V, 1.0A Synchronous Step-Down Converter

FEATURES

- . High Efficiency: Up to 96%
- . 2.3MHz Constance Frequency Operation
- . 1.0A Output Current
- . No Schottky Diode Required
- . 2.5V to 6V Input Voltage Range
- Output Voltage as Low as 0.6V
- . 100% Duty Cycle in Dropout
- . Low Quiescent Current: 40µA
- Slope Compensated Current Mode Control for Excellent Line and Load Transient Response
- . Short Circuit Protection
- . Thermal Fault Protection
- . Inrush Current Limit and Soft Start
- . <1µA Shutdown Current
- . DFN2 x 2-6 Package


GENERAL DESCRIPTION

The TMI3101D is a constant frequency, current mode PWM step-down converter. The device integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. It is ideal for powering portable equipment that runs from a single cell Lithium-lon (Li+) battery. The output voltage can be regulated as low as 0.6V. The TMI3101D can also run at 100% duty cycle for low dropout operation, extending battery life in portable system. This device offers two operation modes, PWM control and PFM Mode switching control, which allows a high efficiency over the wider range of the load.

APPLICATIONS

- Cellular and Smart Phones
- . Wireless and DSL Modems
- . PDA/MID/PAD
- . Digital Still and Video Cameras

TYPICAL APPILCATION

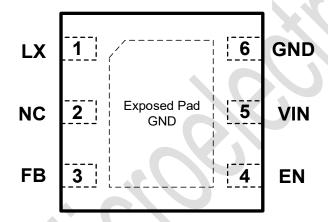


Figure 1. Basic Application Circuit

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Min	Max	Unit
Input Supply Voltage	-0.3	7	V
LX Voltages	-0.3	7	V
EN, FB Voltage	-0.3	7	V
LX Voltages (<10ns transient)	-2.5	7	V
LX Voltage (<5ns transient)	-3.5	7.5	V
Storage Temperature Range	-65	150	°C
Junction Temperature (Note2)	160		°C
Power Dissipation	·		mW
Lead Temperature (Soldering, 10s)			°C

PACKAGE/ORDER INFORMATION

DFN2x2-6 (Top View)

Top Mark: T0AX/XX (T0A: Device Code, X/XX: Inside Code)

Part Number	Package	Top mark	Quantity/ Reel
TMI3101D	DFN2x2-6	T0AX XX	3000

PIN DESCRIPTION

Pin	Name	Function		
1	LX	Power Switch Output. It is the switch node connection to Inductor.		
2	NC	Not connected		
3	FB	Output Voltage Feedback Pin.		
4	EN	Chip Enable Pin. Drive EN above 1.5V to turn on the part. Drive EN below 0.3V to turn it off. Do not leave EN floating.		
5	VIN	VIN Power Supply Input. Must be closely decoupled to GND with a 10µF or greate ceramic capacitor.		
6	GND	Ground Pin		

ESD RATING

Items	Description	Value	Unit
V _{ESD_HBM}	Human Body Model for all pins	±2000	V
V _{ESD_CDM}	Charger Device Model for all pins	±500	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	2.5	6.0	V
TA	Operating Temperature Range	-40	85	°C

THERMAL RESISITANCE(NOTE3)

Items	Description	Value	Unit
θ_{JA}	Junction-to-ambient thermal resistance	100	°C/W
θ_{JC}	Junction-to-case thermal resistance	25	°C/W

ELECTRICAL CHARACTERISTICS (Note 4)

(V_{IN}=V_{EN}=3.6V, V_{OUT}=1.8V, T_A = 25°C, unless otherwise noted.)

Parameter	Conditions	Min	Тур	Max	Unit
Input Voltage Range		2.5		6.0	V
OVP Threshold			6.0		V
UVLO Threshold			2.5		V
Quiescent Current	V _{EN} =2.0V, I _{OUT} =0, V _{FB} =V _{REF} *105%		20	35	μA
Shutdown Current	V _{EN} =0V		0.1	1	μA
	T _A = 25°C	0.588	0.600	0.612	V
Regulated Feedback Voltage	$T_A = 0^{\circ}C \le T_A \le 85^{\circ}C$	0.586	0.600	0.613	V
	$T_A = -40^{\circ}C \le T_A \le 85^{\circ}C$	0.585	0.600	0.615	V
Reference Voltage Line Regulation	V _{IN} =2.5V to 6.0V		0.04	0.40	%/V
Output Voltage Line Regulation	V _{IN} = 2.5V to 6.0V		0.04	0.4	%
Output Voltage Load Regulation			0.5		%
Oscillation Frequency	V _{OUT} =100% V _{OUT} =0V		2.3 500		MHz kHz
On Resistance of PMOS	I _{LX} =100mA		0.3		Ω
ON Resistance of NMOS	I _{LX} =-100mA		0.15		Ω
Peak Current Limit	V _{IN} =5V, V _{OUT} =1.2V, L=4.7μH/2A	1.2			А
RUN Threshold		0.30	1.0	1.50	V
RUN Leakage Current			±0.01	±1.0	μΑ
LX Leakage Current	V _{EN} =0V, V _{IN} =V _{LX} =5V		±0.01	±1.0	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D \times \theta_{JA}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D (MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$.

Note 3: Measured on JESD51-7, 4-layer PCB.

Note 4: 100% production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

FUNCTIONAL DESCRIPTION

The TMI3101D is a high performance 1.0A, 2.3MHz step-down converter. The TMI3101D requires only three external power components (Cin, Cout and L). The adjustable version can be programmed with external feedback divider to any voltage, ranging from 0.6V to the input voltage. At dropout condition, the converter duty cycle increases to 100% and the output voltage tracks the input voltage minus the RDS(on) drop of the high-side MOSFET.

The internal error amplifier and compensation provides excellent transient response, load, and line regulation. Soft start function prevents input inrush current and output overshoot during start up.

FUNCTIONAL BLOCK DIAGRAM

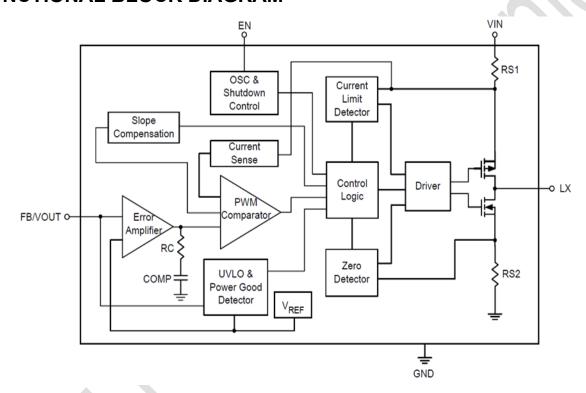


Figure 2. TMI3101D Block Diagram

APPLICATION INFORMATION

Setting the Output Voltage

Figure 1 shows the basic application circuit for the TMI3101D. The output voltage of TMI3101D can be externally programmed. Resistors R1 and R2 in Figure 1 program the output to regulate at a voltage higher than 0.6V. Choose R1 to be around $100k\Omega$ for optimal transient response. R2 is then given by:

$$V_{OUT} = 0.6 \times (1 + \frac{R_1}{R_2})$$

$$R_2 = \frac{R_1}{V_{out} / V_{FB} - 1}$$
 vout

Inductor Selection

For most designs, the TMI3101D operates with inductors of 0.47µH to 4.7µH. Low inductance values are physically smaller but require faster switching, which results in some efficiency loss. The inductor value can be derived from the following equation:

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_{L} \times f_{OSC}}$$

Where ΔI_L is inductor Ripple Current. Large value inductors result in lower ripple current and small value inductors result in high ripple current. For optimum voltage-positioning load transients, choose an inductor with DC series resistance in the $50 \text{m}\Omega$ to $150 \text{m}\Omega$ range.

Input Capacitor Selection

The input capacitor reduces the surge current drawn from the input and switching noise from the device.

The input capacitor impedance at the switching frequency should be less than input source impedance to prevent high frequency switching current passing to the input.

A low ESR input capacitor sized for maximum RMS current must be used. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients.

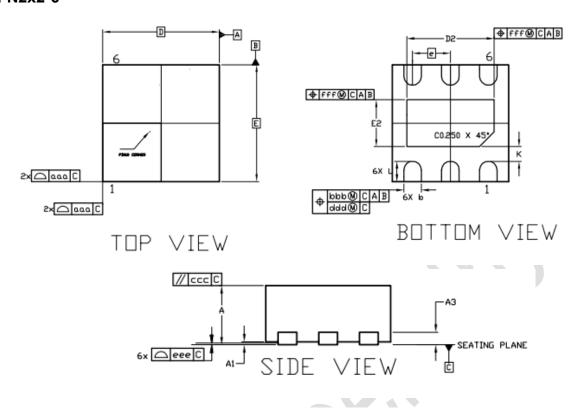
A 4.7µF ceramic capacitor for most applications is sufficient. A large value may be used for improved input voltage filtering.

Output Capacitor Selection

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and high ripple current ratings. The output ripple V_{OUT} is determined by:

$$\Delta V_{OUT} \leq \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{OSC} \times L} \times \left(ESR + \frac{1}{8 \times f_{osc} \times C3}\right)$$

A 10µF ceramic can satisfy most applications.

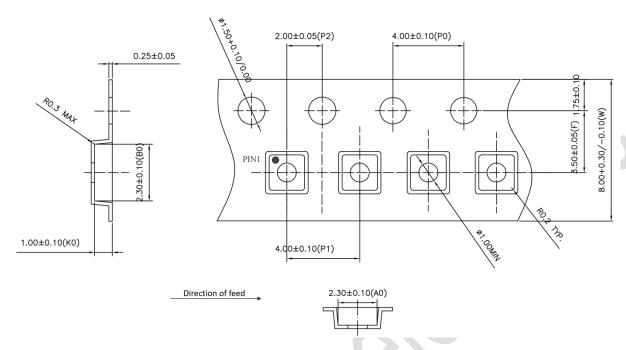

Layout Consideration

When laying out the printed circuit board, the following checking should be used to ensure proper operation of the TMI3101D. Check the following in your layout:

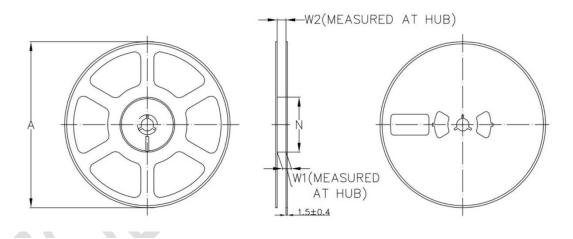
- 1. The power traces, consisting of the GND trace, the LX trace and the VIN trace should be kept short, direct and wide.
- 2. Does the (+) plates of Cin connect to Vin as closely as possible. This capacitor provides the AC current to the internal power MOSFETs.
- 3. Keep the switching node, LX, away from the sensitive VOUT node.
- 4. Keep the (-) plates of Cin and Cout as close as possible.

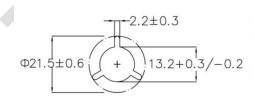
PACKAGE INFORMATION

DFN2x2-6


DIM SYMBOL	MIN. NDM.		MAX.
	0.70 0.75		0.80
Α	0.80	0.85	0.90
A1	0	0.02	0.05
A3	_	0.20 REF	-
b	0.25	0.30	0.35
D	2.00BSC		
E	2.00BSC		
DS	1.45	1.55	
E2	0.75 0.80		0.85
е		0.65BSC	
L	0.30	0.35	0.40
K	0.20	_	-
aaa		0.15	
bbb	0.10		
CCC	0.10		
ddd	0.05		
666	0.08		
fff	0.10		

Note:


1) All dimensions are in millimeters. Angles are in degree.


TAPE AND REEL INFORMATION

TAPE DIMENSIONS: DFN2x2-6L

REEL DIMENSIONS: DFN2x2-6L

Customer Specifications (Unit: mm)					
TAPE WIDTH	A (±1.0)	N (±2.0)	W1 (+1.5/- 0)	W2 (Max)	
8	178.0	54.0	8.4	14.4	

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.

www.toll-semi.com

Important Notification

This document only provides product information. TOLL Microelectronic Inc. reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

TOLL Microelectronic Inc. cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TOLL Microelectronic Inc. product. No circuit patent licenses are implied.

All rights are reserved by TOLL Microelectronic Inc. http://www.toll-semi.com