

LGS5524 数据手册

同步升压型 4 节 2A 锂电池充电管理器

LGS5524

棱晶半导体(南京)有限公司 | 江苏省南京市浦口区江浦街道江淼路 88 号腾飞大厦 C座 14 层

特性

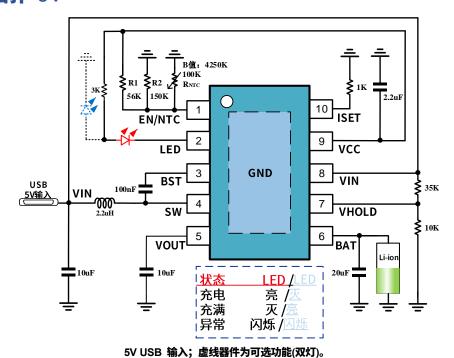
- 最大 2A 的可调充电电流(散热和输入功率限制)
- 支持 16.8V 的充满电压(其他电池电压需定制)
- 高达 28V 的输入端耐压
- 高达 28V 的电池端耐压
- 宽输入工作电压范围: 3.0V~12.3V
- 峰值效率可达 93%、重载效率高达 90%
- 外部关断 EN 功能
- 支持最大 110°C温度墙, 充电电流热调节
- 完整的充电状态 LED 指示,单双灯选择
- 超低热阻的 ESSOP10 封装(θ_{JC}=3.9°C/W)
- 可编程的自适应输入限流,自适应适配器负载能力
- 保护: 输入过压、电池过压、电池短路、过温保护、 NTC 电池温度监测
- 支持电池包充电热插拔
- 功率 MOS 全部内置

应用

- 双节锂电池包充电
- 智能门锁

描述

LGS5524 是一款升压型 4 节同步升压充电器,适用于 4 节串联的锂离子电池。充电电流可通过外部电阻进行 设置。


LGS5524 具有短路(SC)、涓流(TC)、恒流(CC)和恒压(CV)四种充电过程:短路充电(SC)可对 0V的电池充电;涓流充电(TC)可涓流充电恢复完全放电的电池;恒流充电(CC)可快速的对电池充满;恒压充电(CV)可确保安全充满电池。支持唤醒深度放电的电池。LGS5524 充满到 16.8V,会关闭充电并持续检测电池电压,下降到 16.4V 自动再充电。当输入电压(USB源或 AC 适配器)拿掉后,电池端漏电在 35uA。LGS5524 集成充电和充满提示,以及异常指示。

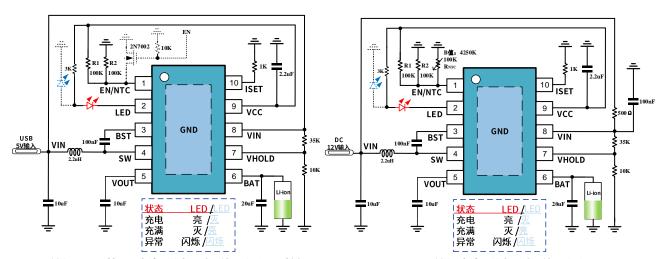
选购指南

Part	Package	Top Mark
LGS5524	ESSOP10	5524 YYWWD

YY:生产年代码. WW:生产周代码.D:固定版本号

典型应用拓扑-5\

楼晶半导体(南京)有限公司 www.Legend-Si.com



NOTE:

- 升压输出 VOUT 和 BAT 的电容需尽量靠近芯片,并且回路尽量短,此电容优先级最高,可参考 PCB 布局举例。
- NTC 和 EN 引脚为复用,EN 1.1V 为高,0.7V 为低,NTC 使能充电只能在 25%~65%VCC 电压(1.25V~3.25V)。
- NTC 典型应用中需使用 <u>B 值为 4250K 的 100K 阻值</u>的 NTC 电阻与 R2(150K)电阻器并联再与 R1(57.6K)电阻器串联接于 VCC 引脚,这种搭配可保证电池在 0°C~60°C区间正常充电。如使用其他搭配,请参照第 11 页 NTC 功能解释中的给出的各温度阈值区间进行设计或可咨询我司 FAE。
- 底部 ePad GND 引脚,应使用覆铜连接到地平面,有助于最大限度的减小 PCB 传导损耗和热应力,防止因芯片温度过高导致的充电电流下降。
- LED 指示灯使用时需接限流电阻到 VCC,推荐 3K。如需使用双灯方案,必须按照图中 LED 灯颜色配置,请购买对应颜色 LED 灯进行实验,保证两个灯导通电压不在一个电压下,充电时红灯亮,蓝灯灭;充满时蓝灯亮,红灯灭;异常时红灯蓝灯交替闪烁。

元器件选型推荐

符号	含义	推荐值	备注		
C _{VIN}	USB 充电输入稳压电容	10μF, 25V, 0805, 10%	陶瓷电容,耐压值大于 16V		
C _{VCC}	系统供电稳压电容	2.2μF, 16V, 0603, 10%	陶瓷电容,耐压值大于 10V		
C _{VOUT}	升压输出稳压电容	10μF, 25V, 1206, 10%	陶瓷电容,耐压值大于 25V		
C _{BAT}	充电输出稳压电容,电池端	20μF, 25V, 0805, 10%	陶瓷电容,耐压值大于 25V		
C _{BST}	自举电容	100nF, 16V, 0603, 10%	陶瓷电容		
C _{TIM}	充电计时电容	330nF, 6.3V, 0402, 10%	陶瓷电容		
L	功率电感	2.2µH 即可	饱和电流大于 5A,		
R _{ISET}	设置电池恒流充电电流	精度 1%			
D4 D2	たまりも NTO もみぶり	R1=56K,R2=150K 0°C~60°C _o	如果禁用 NTC, R1=R2=100K。		
R1,R2	辅助 NTC 检测	此配置保证 0°C~60°C正常充电。	引脚低于 0.7V,使能关闭。		
R _{NTC}	NTC 热敏电阻	100K,B 值: 4250K 精度 1%	根据设计选择		
25K 10K	设置自适应输入限流的 VIN	将 VHOLD 引脚连接到从 VIN 到 GND 的电阻器网络的中点。	不使用此功能短接工 VCC 即可		
35K,10K	电压	当 VHOLD 电压降至 1V 时,充电器会降低充电电流。	不使用此功能短接于 VCC 即可		

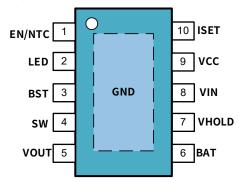
5V USB 输入; NTC 禁用,虚线器件为可选功能(双灯和 EN 控制)

12V DC 输入;虚线器件为可选功能(双灯和)

目录

特性	2
描述	2
选购指南	2
典型应用拓扑-5V	2
元器件选型推荐	3
目录	4
功能框图和引脚描述	5
技术规格	
功能描述	8
典型应用特征	9
器件推荐	10
NTC 器件选型	11
参考 PCB 布局	12
封装外形描述(ESSOP10)	
包装信息	14
重要声明和免责声明	15
历史修订记录 ^(†)	15

绝对最大值 (†)


Table 4.1

参数	范围	
引脚至 GND 电压	-0.3V~28V	
(VIN,BAT,VOUT,SW)	-0.3 V~26 V	
引脚至 GND 电压	0.21/.01/	
(ISET,VHOLD ,NTC,VCC)	-0.3V~6V	
引脚到 SW 电压(BST)	-0.3V~6V	
引脚最大电流(SW)	5A	
储存温度	-65°C to 150°C	
工作温度	-40°C to 125°C	
ESD 额定值(HBM)	±2KV	

† 注: 如果器件工作条件超过上述 "绝对最大值",可能引起器件永久性损坏。这仅是极限参数,不建议器件在极限值或超过上述极限值的条件下工作。器件长时间工作在极限条件下可能会影响其可靠性。

引脚排列

图 4. 引脚排列

ESD 警告

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量 ESD时,器件可能会损坏。因此,应当采取适当的 ESD 防范措施,以避免器件性能下降或功能丧失。

功能框图和引脚描述

表 3.2 引脚功能描述

PC C. = 310-1-75	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
引脚编号	引脚名称	描述					
ESSOP10	うりからか	打倒足					
1 (1)	EN/NTC	NTC 和 EN 引脚为复用。EN 1.1V 为高,0.7V 为低;NTC 使能充电只能在 25%~65%VCC					
1 (7)	EN/NTC	电压(1.25V~3.25V)。					
2	LED	充电指示。开漏输出,通过限流电阻接 LED 灯至 VDD,充电,灯亮;充满,灯灭。					
3	BST	自举电路引脚。需要在 BST 和 SW 之间连接 100nF 自举电容。					
4	SW	内部功率开关节点。外部连接电感和 Свят 电容。					
5	VOUT	升压输出 VOUGHT 端,同步升压中间节点。10uF 必须紧靠引脚,否则不正常。					
6	BAT	接电池正极。将 20uF 陶瓷电容旁路至 GND。					
7 ⁽²⁾	\(\(\) \(\) \(\)	自适应输入电流限制设置引脚。在 VIN 和 GND 之间连接一个电阻分压网络以配置最小					
/ (2)	VHOLD	输入电压限制阈值。VHOLD 小于 1V,认为适配器限流。					
8	VIN	输入供电和检测 Pin。					
9	VCC	内部供电引脚。至少接 2.2uF 陶瓷电容至 GND。					
		设置恒流充电电流。外部连接 1%精度电阻器到地来设置充电电流。在恒流充电(CC)					
10	ISET	下,此管脚的电压固定在 1V。充电过程的所有模式下,都可以通过测量此管脚的电压来					
		估算充电电流,公式: $I_{BAT}=\left(V_{ICHG}/R_{ICHG}\right) \times 1000$ 。					
EP	EP	GND,系统地。					

- (1) 不使用自适应限流技术,可以将 VHOLD 引脚短接到 VCC。
- (2) NTC 此引脚不支持悬空和接地。(如果禁用 NTC 功能,可以选用两个 100K 电阻从 VIN 分压至 NTC, NTC 会一直处于 50%VCC 阈值)

技术规格

除非另有规定,所有电压均相对于 GND。

表 5.

参数		测试条件	最小值	典型值	最大值	单位
电源输入			•			
V _{VIN}	输入电源工作电压		3	5	12	V
	*A \	V _{VIN} 上升沿	2.6	2.8	3.0	V
V_{UVLO}	输入欠压锁定	V _{VIN} 下降沿	2.5	2.6	2.9	V
$\Delta V_{\sf UVLO}$	输入欠压锁定迟滞		50	150	300	mV
	+A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{VIN} 上升沿		12.8		V
V_{OVP}	输入过压保护	V _{VIN} 下降沿		12.5		V
$\Delta V_{\sf OVP}$	输入过压保护迟滞		200		350	mV
静态电流			-1			l
I _{BAT}	电池端漏电	EN=0,VIN=0,BAT=12.6V	30	35	40	μΑ
	输入静态电流	EN=1,BAT 悬空	150	250	350	μΑ
I _{VIN}	 关机电流	EN=0	20	26	30	μΑ
功率管			-			l
$f_{\sf SW}$	Boost 开关频率			750		kHz
充电电压			-			l
V _{CV}	电池充满电压设置	12.6V 版本(默认)	16.63	16.8	16.97	V
ΔV_RCH	电池充满后再充电阈值		16.2	16.4	16.6	V
		大于此阈值恒流充电	10.6	11.2	11.6	.,
Vcc	恒流充电开启阈值	小于此阈值涓流充电				V
\ /	沿济充电开户海体	大于此阈值涓流充电,	1.6	2	2.4	V
V_{TC}	涓流充电开启阈值	小于此阈值短路充电				V
充电电流						
Icc (1)	恒流充电(CC)电流	I _{ISET} =1K	900	1000	1100	mA
Itc (1)	涓流充电(TC)电流	I _{ISET} =1K	90	120	150	mA
Isc (1)	短路充电(SC)电流	I _{ISET} =1K	30	60	90	mA
I _{TERM}	恒压充电(CV)截止充电电流	I _{ISET} =1K		120		mA
BAT OVP			•			
V _{OVP}	Output voltage OVP threshold	上升沿		1.2		Vcv
		下降沿		1.1		Vcv
控制逻辑信号	₹EN	1	_1			
V _{ENH}	EN 高电平输入电压	EN Rising		1.1		V
V _{ENL}	EN 低电平输入电压	EN Falling		0.7		V
电池温度检测			_1			I .

LGS5524---升压型 4 节锂电池充电管理器

· ·						
UTP (2)	欠温保护	Rising edge	62%	65%	68%	VCC
	迟滞		4%	5%	7%	VCC
OTP (2)	过温保护	Falling edge	22%	25%	27%	VCC
	迟滞		2%	2.6%	3%	VCC
Thermal Reg	gulation and Thermal shutdown					
T _{REG}	热调节阈值			110		°C
OTP	热保护温度	上升阈值		160		°C
OTPHYS	热保护温度迟滞			30		°C

⁽¹⁾ 在充电过程中为了保护电池,芯片会检测电池电压执行四个不同的充电阶段,短路充电(Short Charge)→涓流充电(trickle charge)→恒流充电(Const Current Charge)→恒压充电(Const Voltage Charge)→充电停止。

⁽²⁾ 电池温度控制,芯片会检测 NTC 引脚电压来判断电池的温度。其中使用的 NTC 电阻一般位于电池内部。可根据 NTC 冷热阈值使用其他搭配,请参照 NTC 电压温度阈值的进行设计(第 11 页)。

功能描述

概述

LGS5524 是一款面向 5V、9V 、12V 适配器的升压型 4 节锂离子电池升压充电器,宽输入范围 3V~12V,最大持续充电电流可达 2A,开关频率 750KHz。

正常充电循环(BAT)

LGS5524 提供四个主要充电阶段:短路充电、涓流充电、 恒流充电、恒压充电。

短路模式: 当 VBAT 低于涓流充电开启阈值 VTC(2V)时,Boost 工作在轻载,阻塞 FET 工作在线性模式,电池将通过 HS FET 的体二极管充电。充电电流为 Icc 的6%。

涓流充电模式: 当 V_{BAT} 到达 V_{TC} 时,Boost 工作在轻载,调节 VOUT 为 12.4V,阻断 FET 工作在线性模式。 充电电流为 I_{CC} 的 12%。

恒流充电模式:当 VBAT 高于恒流充电开启阈值 Vcc 时,阻断场效应管完全导通,Boost 工作在恒流模式,充电电流为 Icc。

恒压充电模式: 当 VBAT 接近调节电压时,充电电流开始下降。电流下降到 1/10 lcc 时,关闭充电模式。充电周期就完成了。

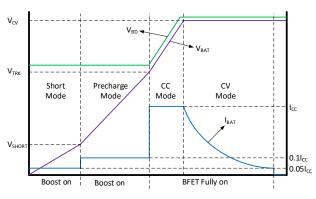


图 7.电池充电循环

自适应输入限流 (VHOLD)

自适应输入电流限制设置功能,VHOLD 引脚在 VIN 和 GND 之间连接一个电阻分压网络以配置输入限流时最小 VIN 限制阈值。LGS5524 具有 VIN 输入稳压环路,在检

测到 VHOLD 引脚小于 1V,芯片会自动调整降低充电电流,保证输入电压稳定在设置好输入阈值附近,自适应适配器负载能力。

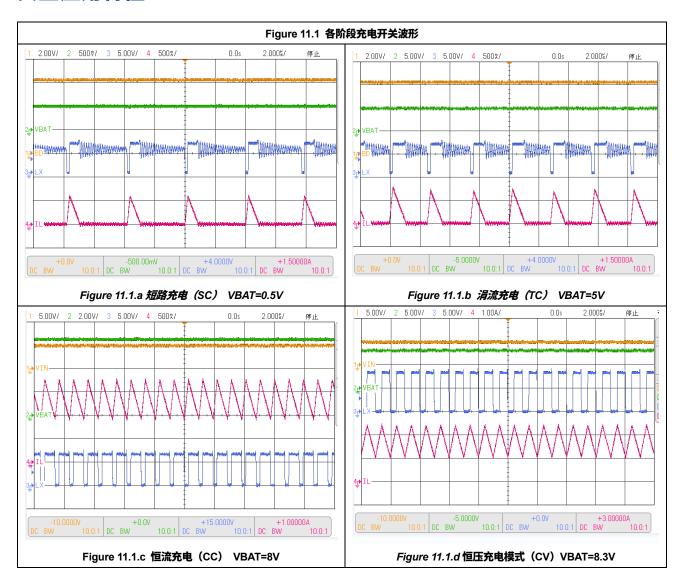
恒流充电电流设置(ISET)

LGS5524 充电电流可通过连接在 ISET 引脚与地之间的电阻器来设定的。根据需要的充电电流来确定电阻器的阻值。充电过程的所有模式下,都可以通过测量此管脚的电压来估算充电电流。VISET电压恒流充电为 1V.

公式: $I_{RAT} = (V_{ICHG}/R_{ICHG}) \times 1000$ 。

R _{ISET}	短路充电	涓流充电	恒流充电	截止电流
2K	30mA	60mA	500mA	60mA
1K	60mA	120mA	1000mA	120mA
0.5K	120mA	240mA	2000mA	240mA

充电状态指示灯(LED)


LED 引脚接 LED 灯串接限流电阻 RLED 到 VCC 高电平上。

- 1、充电过程中:LED 引脚会拉低电平并保持,LED 长亮;
- 2、充电完成时: LED 引脚会拉高电平并保持, LED 灭;
- 3、故障模式: LED 引脚会以 1Hz 的频率进行高低电平交替输出,LED 闪烁。

充电状态	LED	单灯
正在充电	Low	亮
充电完成	High	灭
输入限流保护	Blinking at 6Hz	约 6Hz 闪烁
电池温度过热	Blinking at 1Hz	约 1Hz 闪烁
电池温度过冷		
充电超时保护		
输入过压保护		
电池过压保护		
芯片过热保护		

典型应用特征

器件推荐

自举电容 Crst

LGS5524 的 BST 引脚是自举门驱动引脚,提供整流 FET 的栅极驱动器。使用 0.1μ F 陶瓷电容连接到 SW。 C_{BST} 推荐使用 0.1μ F 电容器,耐压值高于 10~16V。

输入电容 Cvin

LGS5524 要求使用去耦电容来滤除输入端的噪声干扰。 去耦电容典型推荐值为 10µF,额定电压必须大于 IC 所 要求的最大输入电压,最好应为最大输入电压的两倍。 该电容的增加可以减小输入电压纹波,并且在负载瞬变 时保持输入端电压的稳定。推荐 10µF 以上的 X5R 或 X7R 陶瓷电容器。

升压输出电容 Cvout

选择输出电容来处理输出纹波噪声要求。纹波电压与电容及其等效串联电阻(ESR)有关。为了获得最佳性能,建议使用 X5R 或更好等级的低 ESR 陶瓷电容器。输出电容的额定电压应高于最大输出电压。

最小所需电容可计算为:

$$C_{OUT} = \frac{I_{CC} \times (V_{OUT} - V_{IN})}{F_{SW} \times V_{OUT} \times V_{RIPPLE}}$$

最 VRIPPLE 是峰峰值的输出纹波,Icc 是设定充电电流 推荐使用大于 10uF 的电容。并且要靠近引脚。

功率电感 L

在选择电感时需要考虑几个因素:

选择电感以提供所需的纹波电流。建议选择纹波电流为平均输入电流的40%左右。电感的计算公式为:

$$L = \left(\frac{V_{IN}}{V_{OUT}}\right)^{2} \frac{(V_{OUT} - V_{IN})}{I_{CC} \times F_{SW} \times 40\%}$$

Fsw 为开关频率; lcc 为设定的 充电电流。 LGS5524 对不同的纹波电流幅值具有相当的容忍度。 因此,最终选择的电感可以在不显著影响性能的情况下 稍微偏离计算值。

2、 电感的饱和电流额定值必须选择大于满载条件下的峰值电感电流。

$$I_{SAT,MIN} > \left(\frac{V_{OUT}}{V_{IN}}\right) \times I_{CC} + \left(\frac{V_{IN}}{V_{OUT}}\right)^2 \frac{(V_{OUT} - V_{IN})}{2 \times F_{SW} \times L}$$

3、电感的 DCR 和开关频率处的磁芯损耗必须足够低, 以达到所需的效率要求。最好选择 DCR<20mΩ的电感, 以实现良好的效率。

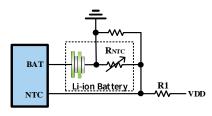
BAT 稳压电容 CBAT

选择输出电容来处理输出纹波噪声要求。纹波电压与电容及其等效串联电阻(ESR)有关。为了获得最佳性能,建议使用 X5R 或更好等级的低 ESR 陶瓷电容器。输出电容的额定电压应高于最大输出电压。

最小所需电容可计算为:

$$C_{OUT} = \frac{I_{CC} \times (V_{OUT} - V_{IN})}{F_{SW} \times V_{OUT} \times V_{RIPPLE}}$$

最 VRIPPLE 是输出纹波的峰峰值,Icc 是设定充电电流 推荐使用大于 20uF 的电容。并且要靠近引脚。



NTC 器件选型

NTC 电阻

为防止温度过高或过低对电池造成的伤害,LGS5524 通过测量 NTC 电压来监测电池温度。当速率 K (K= VNTC/VCC)达到 UTP (Kut)或 OTP (Kot)阈值时,控制器触发 UTP 或 OTP。如果 NTC 管脚的电压小于 VCC 电压的 25%或者大于 VCC 电压的 65%,意味着电池温度过低或过高,则充电被暂停。温度传感网络如下图所示。

选择 R2 和 R1 来编程合适的 UTP 和 OTP 温度阈值点。

计算步骤:

- 1、定义 Kut, Kut=62%~68%, 典型值 65%
- 2、定义 K_{OT},K_{OT}=22%~27%,典型值 25%
- 3、假设电池 NTC 热敏电阻在 UTP 阈值处为 Rut, 在 OTP 阈值处为 Roto
- 4、计算 R1

$$R_1 = \frac{R_{OT}R_{UT}(K_{UT} - K_{OT})}{(R_{UT} - R_{OT})K_{UT}K_{OT}}$$

5、计算 R2

$$R_{2} = \frac{R_{OT}R_{UT}(K_{UT} - K_{OT})}{R_{OT}(K_{OT} - K_{OT}K_{UT}) - R_{UT}(K_{UT} - K_{OT}K_{UT})}$$

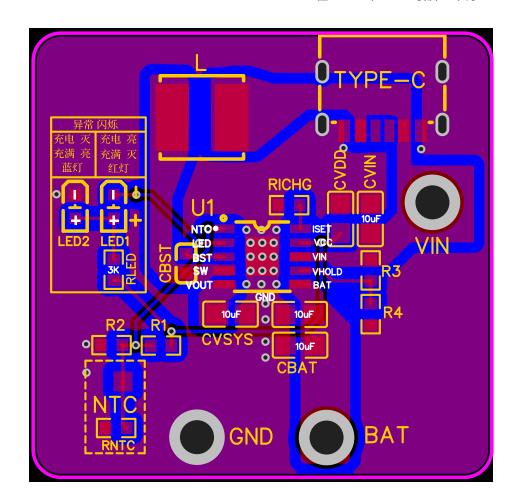
如果选择典型值 KuT=65%和 KoT=25%,则

$$R_1 = \frac{2.46R_{OT}R_{UT}}{R_{UT} - R_{OT}}$$

$$R_2 = \frac{0.4R_{UT}R_{OT}}{0.0875R_{UT} - 0.4875R_{OT}}$$

我们选择市面上常用的 100K,B 值为 4250K 的 NTC 电阻,计算电池温度在 0° C \sim 60 $^{\circ}$ C下可以充电的 R1,R2 分别为 R1=56K,R2=150K。

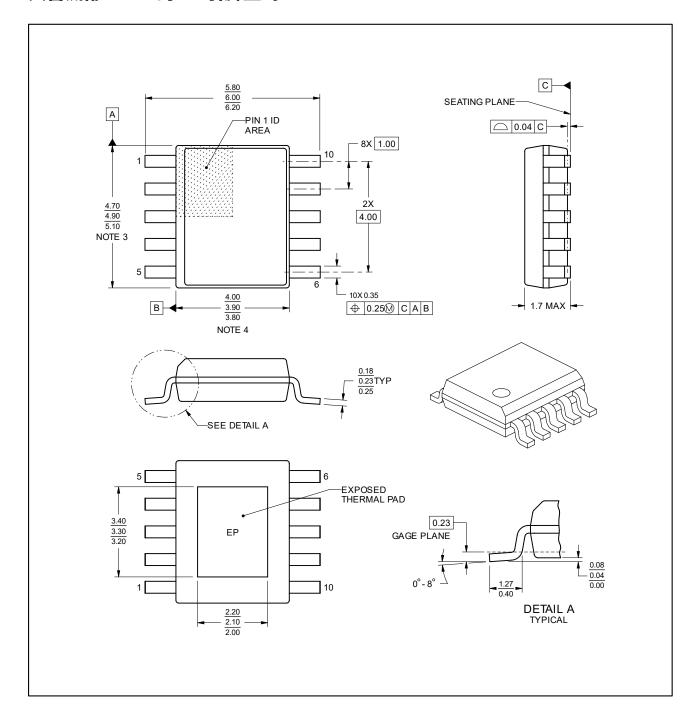
温度	R _{NTC}	电阻 B 值	R1	R2	模型
0°C~60°C	10K,精度 1%	3380K	8.2K	36K	0.65
0°C~60°C	100K,精度 1%	4250K	56K	150K	0.45
-10°C~60°C	10K,精度 1%	3380K	7.87K	22K	0.25 10 20 30 40 50 60 Temp.[degC]
0°C~45°C	10K,精度 1%	3380K	14.3K	820K	0.65
0°C~45°C	100K,精度 1%	4250K	110K	470K	0.45
0°C~45°C	10K,精度 1%	3380K	15K	不需要	0.25 10 15 20 25 30 35 40 45 Temp.[degC]



参考 PCB 布局

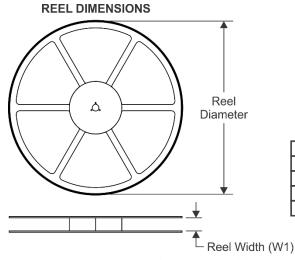
概述

LGS5524 升压锂离子电池充电器的布局设计相对简单。为了获得最佳的效率和最小的噪声问题,我们应该将以下组件放置在 IC 附近: CVIN、L、CVOUT(CVOUT 电容必须靠近引脚优先级最高)。:


- 功率回路必须尽可能短。
- 输出回路 Cvout 电容靠近芯片 VOUT 和 PGND 引脚; CBST 电容是自举电容需要靠近芯片引脚 BST; CBAT 电容尽量靠近芯片引脚 BAT 和 PGND 引脚。
- NTC 要远离 SW 信号减少噪声干扰。
- 对高电流路径应使用较大 PCB 覆铜区域,包括 SW, PGND 引脚和底部散热焊盘。这有助于最 大限度地减少 PCB 传导损耗和热应力。
- 为使过孔传导损耗最小并降低模块热应力,应使用 多个过孔来实现顶层和其他电源层或地层之间的 互连(芯片底部焊盘加过孔开窗有助于芯片散热提 高性能)。
- RNTC 是热敏电阻,用于检测电池的温度,一般位于电池内部,如果在 PCB 板上,建议远离芯片和电感等发热元件。
- VOUT 电容必须靠近芯片足够近,可使用电容放置在 VOUT 和 GND 引脚上下方

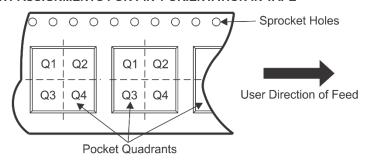
封装外形描述(ESSOP10)

具备底部 ePad 的 10 引脚塑封 SOIC

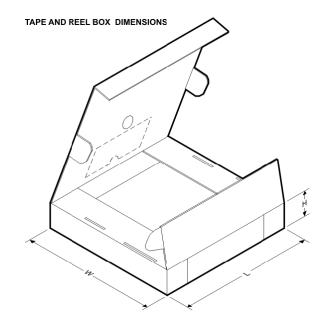


注:

- (1) 所有的数据单位都是亳米,括号内的任何尺寸仅供参考。
- (2) 本图如有更改,恕不另行通知。
- (3) 此尺寸不包括塑模毛边,突起,或水口毛刺。


包装信息

TAPE DIMENSIONS + K0 + P1 + B0 W Cavity + A0 + B0 W


- A0 Dimension designed to accommodate the component width
- B0 Dimension designed to accommodate the component length
- K0 Dimension designed to accommodate the component thickness
- W Overall width of the carrier tape
- P1 Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*ALL dimensions are nominal

	Package	Package			Reel	Reel	40	D0	140	D4	10/	Dina
Device	Туре	Drawing	Pins	SPQ	Diameter	Width	A0	B0	K0	P1	(mm)	Pin1 Quadrant
					(mm)	W1(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrani
LGS5524ES	ESSOP10	ES	10	4000	330	12.4	6.4	5.2	2.1	8.0	12.0	Q1

重要声明和免责声明

Legend-si 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用 Legend-si 产品进行设计使用。您将对以下行为独自承担全部责任: (1) 针对您的应用 选择合适的 Legend-si 产品; (2) 设计、验证并测试您的应用; (3) 确保您的应用满足相应标准以及任何其他安全、安 保或其他要求。所述资源如有变更,恕不另行通知。Legend-si 对您使用所述资源的授权仅限于开发资源所涉及 Legend-si 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它 Legend-si 或任何第三方的知识产权授权许可。 如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,Legend-si 对此概不负责,并且您须赔偿由此对 Legend-si 及其代表造成的损害。

Legend-si 所提供产品均受 Legend-si 的销售条款以及 www.Legend-si.com 上或随附 Legend-si 产品提供的其他可适用条款的约束。Legend-si 提供所述资源并不扩展或以其他方式更改 Legend-si 针对 Legend-si 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 江苏省南京市浦口区江淼路 88 号腾飞大厦 C 座 1403 室 电话: 025-58838327

Copyright ©棱晶半导体(南京)有限公司

历史修订记录 (†)

Rev.D V1.0 08.May.2024 页码

※ D版。本手册相关参数仅对 D版相关指标描述和承认

ALL

↑NOTE:以前版本的页码可能与当前版本的页码不同。