

Single Phase 25.0 AMP Low VF Glass Passivated Bridge Rectifier

Features

· Glass passivated die construction

Low forward voltage drop

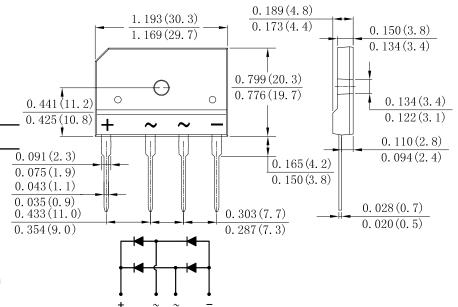
· High current capability

· High surge current capability

• Plastic material-UL flammability 94V-0

Mechanical Data

· Case: GBJ, molded plastic


 Terminals: Plated Leads Solderable per MIL-STD-202, Method 208

· Polarity: As Marked on Case

Mounting Position: Any

Marking: Type Number

Lead Free: For RoHS / Lead Free Version

Case: GBJ

dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified. Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Type Number	SYMBOL	GBJ2508L	UNIT
Maximum Recurrent Peak Reverse Voltage	VRRM	800	V
Maximum RMS Voltage	VRMS	560	V
Maximum DC Blocking Voltage	VDC	800	V
Maximum Average Forward (with heatsink Note 1) Rectified Current @ Tc= 90 °C (without heatsink)	IF(AV)	25.0 3.6	А
Peak Forward Surge Current 8.3ms Single Half Sine-Wave Super Imposed on Rated Load (JEDEC Method)	IFSM	450	А
Forward Voltage @IF=12.5A	VF	0.92	V
Maximum DC Reverse Current @ T $_J$ =25 $^{\circ}$ C at Rated DC Blocking Voltage @ T $_J$ =125 $^{\circ}$ C	IR	5.0 200	μА
I ² t Rating for Fusing (t<8.3ms)	l ² t	840.375	A ² s
Typical Junction Capacitance Per Element (Note2)	Cl	200	pF
Typical Thermal Resistance	Re JC	2.2	°C ∖W
Operating Temperature Range	TJ	-55 to +150	$^{\circ}$ C
Storage Temperature Range	Тѕтс	-55 to +150	$^{\circ}$ C
Dielectric Strength	Vids	2500	V
The proposed installation torque Max torque	Tor	Typ. 5.0 Max 8.0	Kgf.cm

Note: 1. Unit case mounted on aluminum piate heatsink.

2.Measured at 1.0MHz and applied reverse voltage of 4.0V DC.

version:00 1 of 3

Average Forward Current (A)

IFSM, Peak Forward Surge Current (A)

Instantaneous Reverse Current(uA)

Fig. 1 Forward Current Derating Curve

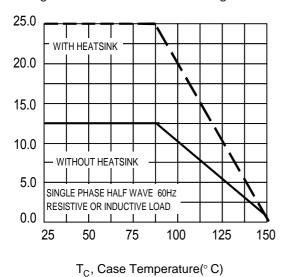
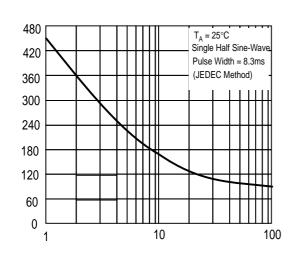
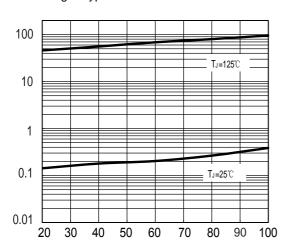
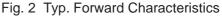
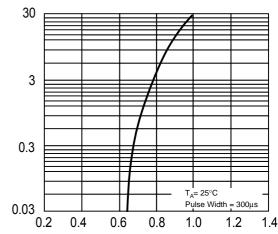
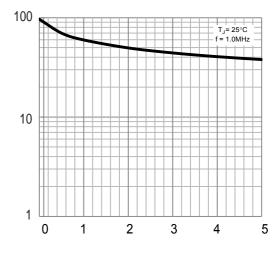




Fig.3 Maximum Peak Forward Surge Current


Number Of Cycles At 60HZ


Fig.5 Typical Reverse Characteristics

Percent Of Rated Peak Reverse Voltage(%)



V_F, Instantaneous Forward Voltage (V)

Fig . 4 Typical Junction Capacitance

V_R, Reverse Voltage (V)

version:00

Important Notice and Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from XINNUO
- XINNUO reserves the right to make changes to this document and its products and specifications
- XINNUO disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- XINNUO does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the here in document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications.
 - XINNUO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown here in are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own ris k andagree to fully indemnify XINNUO for any damages resulting from such improper use or sale.
- Since XINNUO uses lot number as the tracking base, please provide the lot number for tracking when complaining.

version:00 3 of 3