

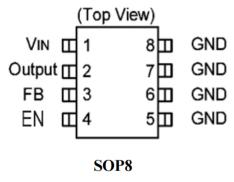
General Description

The SXL1509 is a monolithic IC designed for a step-down DC/DC converter, and own the ability of driving a 3A load without additional transistor. It saves board space. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control having good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. If current limit function occurs and V_{FB} is down below 0.5V, the switching frequency will be reduced.

The SXL1509 operates at a switching frequency of 150KHz thus allow smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed $\pm 4\%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15\%$ on the oscillator frequency.

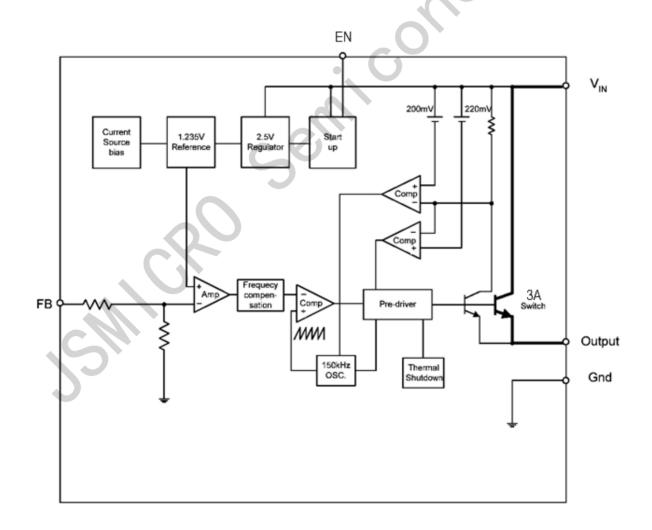
The chips are available in a standard 8-lead SOP8 package.

Features


- 3.3V, 5V, 12V and Adjustable Output Version
- Output Adjustable Voltage From 1.23V to 37V
- Fixed 150KHz Switching Frequency
- Voltage Mode Non-synchronous PWM Control
- ON/OFF Shutdown Control Input
- Wide 4.5V to 40V Input Voltage Range
- Output Load Current: 3A
- Low Power Standby Mode
- Built-in Switching Transistor on Chip

Application

- Simple High-Efficiency Step-down Regulator
- On-card Switching Regulators
- Positive to Negative Converter


Pin Configuration

Pin Descriptions

Name	Description
$V_{\rm IN}$	Supply Voltage Input
Output	Power Switching Output
GND	Ground
FB	Output Voltage Feedback Control
EN	ON/OFF Shutdown

Block Diagram

Absolute Maximum Ratings

Characteristics	Symbol	Value	Unit
Supply Voltage	Vin	+40	V
ON/OFF pin input voltage	Vsd	-0.3 ∼ Vin	V
Feedback pin voltage	VfB	-0.3 ~ Vin	V
Output voltage to ground	Vout	-1	V
Power dissipation	PD	Internally limited	W
Storage temperature	Tstg	- 65 ∼ +150	°C
Operating temperature	Topr	-40 ~ +125	°C
Operating voltage	Vop	+4.5 ~ +40	V

Electrical Characteristics

(Refer to the test circuit, V_{IN} =12V for 3.3V, 5V, adjustable version and V_{IN} =24V for the 12V version, I_{LOAD} =0.5A)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Feedback Bias Current	I_{FB}	V _{FB} =1.3V (Adjustable version only)		50	100	nA
Oscillator Frequency	Fosc	. 0	127	150	173	kHz
Saturation Voltage	V_{SAT}	I _{OUT} =2A, No outside circuit V _{FB} =0V force driver on		1.2	1.5	V
Max. Duty Cycle(ON)	DC	V _{FB} =0V force driver on	93	98		%
Min. Duty Cycle(OFF)	DC .	V _{FB} =12V force driver off		0		/ 0
Current Limit	I_{CL}	Peak current, No outside circuit V _{FB} =0V force driver on	3.0	4.0		A
Output Leakage Current (Output=0)		No outside circuit V _{FB} =12V force driver off			2	mA
Output Leakage Current (Output=-1)	$I_{\rm L}$	V _{IN} =40V		5	20	mA
Quiescent Current	I_Q	V _{FB} =12V force driver off		5	10	mA
Standby Quiescent Current	I _{STBY}	ON/OFF pin=5V V _{IN} =40V		50	200	μА
ON/OFF pin Logic Input	$V_{ m IL}$	Low(regulator ON)			0.6	.,,
Threshold Voltage	V_{IH}	High(regulator OFF)	2.0			V
ON/OFF pin Logic Input Current	I_{H}	V _{LOGIC} =5.0V(OFF)		12	30	μA
ON/OFF pin Input Current	I_{L}	V _{LOGIC} =0.5V(ON)		0	10	μΑ
Thermal Resistance	$\Theta_{ m JC}$	Junction to case		15		°C/W
Thermal Resistance with Copper Area of Aapproximately 3 in ²	Θ_{JA}	Junction to ambient		70		°C/W

SXL1509-ADJE1 150KHz 3A PWM Buck DC/DC Converter

Continue:

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
SXL1509-ADJ						
Output Feedback	V_{FB}	$\begin{array}{c} 4.5\text{V}{\leq}\text{V}_{\text{IN}}{\leq}40\text{V} \\ 0.2\text{A}{\leq}\text{I}_{\text{LOAD}}{\leq}3\text{A} \\ \text{V}_{\text{OUT}} \text{ programmed for 3V} \end{array}$	1.230	1.267	V	
Efficiency	η	$V_{IN}=12V$, $I_{LOAD}=3A$		74		%
SXL1509-3. 3V	'		'	'		
Output Voltage	V _{OUT}	4.75V≤V _{IN} ≤40V 0.2A≤I _{LOAD} ≤3A	3.168	3.300	3.432	V
Efficiency	η	V_{IN} =12V, I_{LOAD} =3A	76		%	
SXL1509-5V	·					
Output Voltage	V _{OUT}	$ 7V < V_{IN} < 40V 0.2A \le I_{LOAD} \le 3A $	4.80	5.00	5.20	V
Efficiency	η	$V_{IN}=12V$, $I_{LOAD}=3A$		83		%
SXL1509-12V						
Output Voltage	V _{OUT}	$ \begin{array}{c} 15V \le V_{IN} \le 40V \\ 0.2A \le I_{LOAD} \le 3A \end{array} $	11.52	12.00	12.48	V
Efficiency	η	V_{IN} =25V, I_{LOAD} =3A		90		%

Function Description

Pin Function +V_{IN}

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between $(+V_{IN}-V_{SAT})$ and approximately -0.5V, with a duty cycle of approximately V_{OUT}/V_{IN} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

Feedback

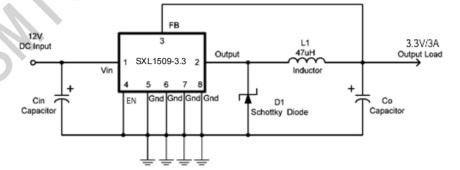
Senses the regulated output voltage to complete the feedback loop.

EN

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V shuts the regulator down. If this shutdown feature is not needed, the EN pin can be wired to the ground pin.

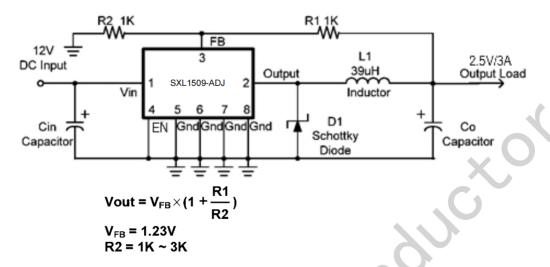
Thermal Considerations

The SOP8 package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The SXL1509 junction temperature rises above ambient temperature for a 3A load and different input and output voltages. The data for these curves was taken with the SXL1509 (SOP8 package) operating as a buck-switching regulator in an ambient temperature of 25°C (still air). These temperature increments are all approximate and are affected by many factors. Higher ambient temperatures requires more heat sinker.

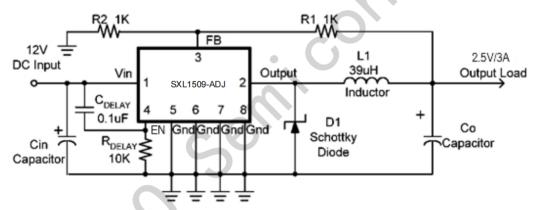

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (One exception is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat(lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature increments are all approximate. The increments are affected by a lot of factors. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board.

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.


Application Circuit

Fixed Type Circuit



Adjustable Type Circuit

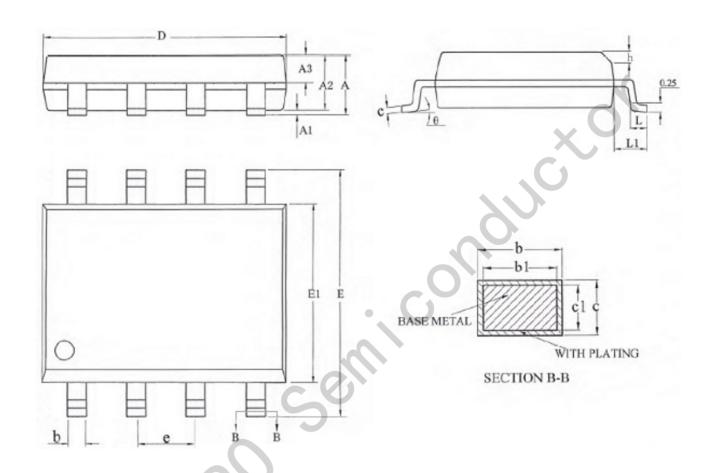
Delay Start Circuit

Schottky Diode Selection Table

Current	Surface	Through	VR (The san	VR (The same as system maximum input voltage)						
	Mount	Hole		•		-				
			20V	30V	40V	50V	60V			
1A		√	1N5817	1N5818	1N5819					
			•	•	•		•			
		√	1N5820	1N5821	1N5822					
		√	MBR320	MBR330	MBR340	MBR350	MBR360			
3A	√		SK32	SK33	SK34	SK35	SK36			
3A	√			30WQ03	30WQ04	30WQ05				
		√		31DQ03	31DQ04	31DQ05				
		√	SR302	SR303	SR304	SR305	SR306			

SXL1509 Series Buck Regulator Design Procedure (Fixed Output)

Conditions			Inductor	Output Capacitor (COUT)					
			(L1)	Through Hole El	lectrolytic	Surface Mount Tantalum			
Output	Load	Max Input	Inductance	Panasonic	Nichicon	AVX TPS	Sprague		
Voltage	Current	Voltage (V)	(uh)	HFQ Series	PL Series	Series	595D Series		
(V)	(A)			(uf/V)	(uf/V)	(uf/V)	(uf/V)		
3.3	3	6	22	470/25	470/35	330/6.3	390/6.3		
		10	33	330/35	330/35	330/6.3	390/6.3		
		40	47	330/35	270/50	220/10	330/10		
5	3	9	22	470/25	560/16	220/10	330/10		
		20	68	180/35	180/35	100/10	270/10		
		40	68	180/35	180/35	100/10	270/10		
12	3	15	33	330/25	330/25	100/16	180/16		
		20	68	180/25	180/25	100/16	120/20		
		40	150	82/25	82/25	68/20	68/25		


SXL1509 Series Buck Regulator Design Procedure (Adjustable Output)

Output	Through Hole	Output Electrol	ytic	Surface Mount Output Capacitor			
Voltage	Panasonic	Nichicon	Feedforward	AVX TPS	Sprague	Feedforward	
(V)	HFQ Series	PL Series	Capacitor	Series	595D Series	Capacitor	
	(uf/V)	(uf/V)		(uf/V)	(uf/V)		
2	820/35	820/35	33nf	330/6.3	470/4	33nf	
4	560/35	470/35	10nf	330/6.3	390/6.3	10nf	
6	470/25	470/35	3.3nf	220/10	330/10	3.3nf	
9	330/25	330/25	1.5nf	100/16	180/16	1.5nf	
12	330/25	330/25	1nf	100/16	180/16	1nf	
15	220/25	220/35	680pf	68/20	120/20	680pf	
24	220/35	150/35	560pf	33/25	33/25	220pf	
28	100/50	100/50	390pf	10/35	15/50	220pf	

Outline Drawing

SOIC-8 Package Outlines

SOIC-8 Package Dimensions

Size Symbol	MIN(mm)	TYP(mm)	MAX(mm)	Size Symbol	MIN(mm)	TYP(mm)	MAX(mm)
Α	-	-	1.75	D	4.70	4.90	5.10
A1	0.10	-	0.225	Е	5.80	6.00	6.20
A2	1.30	1.40	1.50	E1	3.70	3.90	4.10
A3	0.60	0.65	0.70	е	1.27BSC		
b	0.39	-	0.48	h	0.25	1	0.50
b1	0.38	0.41	0.43	L	0.50		
С	0.21	-	0.26	L1	1.05BSC		
c1	0.19	0.20	0.21	θ	0	-	8°

Statements

- > JSMSMEI reserves the right to make changes without further notice to any products or specifications herein. Before customers place an order, customers need to confirm whether datasheet obtained is the latest version, and to verify the integrity of the relevant information.
- Failure or malfunction of any semiconductor products may occur under particular conditions, customers shall have obligation to comply with safety standards when customers use JSMSMEI products to do their system design and machine manufacturing, and take corresponding safety measures in order to avoid potential risk of failure that may cause personal injury or property damage.
- > The product upgrades without end, JSMSMEI will wholeheartedly provide customers integrated circuits that have better performance and better quality.