MSKSEMI 美森科

ESD

TVS

MOV

GDT

PLED

SN74LVC1G86DBVR-MS/SN74LVC1G86DCKR-MS

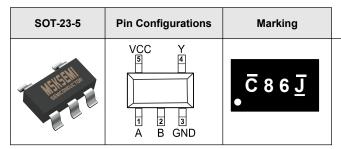
Product specification

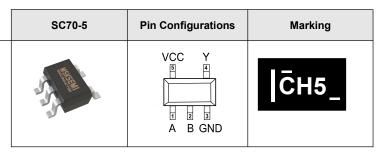
General Description

This single 2-input exclusive-OR gate is designed for 1.65V to 5.5V Vcc operation.

The SN74LVC1G86DBVR-MS/SN74LVC1G86DCKR-MS performs the Boolean function $Y=A \oplus B$ or $Y=\overline{A}B+A\overline{B}$ in positive logic. A common application is as a true/complement element. If the input is low, the other input is reproduced in true fom at the output. If the input is highthe signal on the other input is reproduced inverted at the output.

This device is fully specified for partial-power-down applications using lof. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

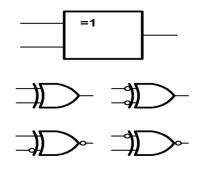

Features


- Operate from 1.65 Vto 5.5V
- Specified from -40 °C to 125 °C
- Inputs accept voltages to 5.5V
- Maxtpa of 3.7ns at 3.3V
- Low powerconsumption,10µA max lcc
- ±24mA output drive at 3.3V
- loffsSupports partial-power-down mode

Applications

- Wireless headsets
- Motor drives andcontrols
- TVs
- Set-top boxes
- Audio

Pinning and Marking


Pin Functions

Pin		Туре	Description		
Name	SOT23-5/SC70-5	туре	Description		
А	1	I	Input A		
В	2	I	Input B		
Υ	4	0	Output Y		
VCC	5	-	Positive Supply		
GND	3	<u>-</u>	Ground		

Order information

Orderable Device	Package	Packing Option
SN74LVC1G86DBVR-MS	SOT23-5	3000PCS
SN74LVC1G86DCKR-MS	SC70-5	3000PCS

Circuit Diagram

Absolute Maximum Ratings

	Parameter	Min	Max.	Unit	
Vcc	Supply volt	age range	-0.5	6.5	٧
Vı	Input volta	ge range	-0.5	6.5	٧
Vo	Voltage range applied to any output in t	the high-impedance or power-off state	-0.5	6.5	V
Vo	Voltage range applied to any o	-0.5	Vcc+0.5	V	
lıĸ	Input clamp current	V < 0		-50	mA
Іок	Output clamp current	Vo<0		-50	mΑ
lo	Continuous o	utput current		±50	mΑ
	Continuous current throu		±100	mA	
TJ	Junction tempera		150	ပ္	
T_{stg}	Storage temper	erature range	- 65	150	Ĉ

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESDRatings

ESD				
\//ECD\		Human-body model (HBM)	8 K	V
V(ESD)	Electrostatic discharge	Charged-device model (CDM)	1.25 K	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parar	neters	Min.	Max.	Unit
Vcc	Supply	1.65	5.5	V	
		V _{CC} =1.65V to1.95V	0.65×V _{CC}		
V	High-Level Input Voltage	V _{CC} =2.3V to 2.7V	1.7		
V _H	nigri-Level Iriput Voltage	V _{CC} =3V to 3.6V	2]
		V _{CC} =4.5V to 5.5V	0.7×Vcc		
		V _{CC} =1.65V to1.95V		0.35×V _{CC}	
M	Lauria valimenti/altana	V _{CC} =2.3V to 2.7V		0.7	
VL	Low-Level Input Voltage	V _{CC} =3V to 3.6V		0.8	- V
		V _{CC} =4.5V to 5.5V		0.3×Vcc	
Vı	Input \	0	5.5	V	
Vo	Output	Voltage	0	Vcc	V
	High-Level Output Current	V _{CC} =1.65V		-4	
		V _{CC} =2.3V		-8	
loн		V -2V		-16	mA
		V _{CC} =3V		-24	
		V _{CC} =4.5V		-32	
		V _{CC} =1.65V		4	
		V _{CC} =2.3V		8	
loL	Low-Level Output Current	V _{CC} =3V		16	mA
		VCC-3V		24	
		V _{CC} =4.5V		32	
		V _{CC} =1.8V±0.15V,2.5V±0.2V		20	
Δt/Δν	Input Transition Rise or Fall Rate	Vcc=3.3V±0.3V		10	ns/V
		V _{CC} =5V±0.5V		5	
TA	Operating Free-air Temperature	A ll Other Packages	40	125	°C

⁽¹⁾ A∎ unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Electrical Characteristics

FULL=—40°C to +125°C, Typical values are at TA=+25°C. (unless otherwise noted)

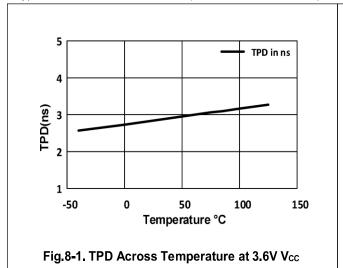
Parameters	Symbol	Conditions	Vcc	TA	Min.	Тур.	Max.	Unit
	•	Output	t				•	•
		I _{OH} =-100μA	1.65V to 5.5V		Vcc-0.1			
		I _{OH} =-4mA	1.65		1.2			1
High Lovel Output Veltage	V	I _{OH} =–8mA	2.3	E1111	1.9] V
High-Level Output Voltage	Voh	I _{он} =–16mА	2	FULL	2 <u>.</u> 4]
		I _{он} =-24mА	3		2.3			
		I _{он} =–32mА	4.5		3.8			
		I _O L=100μA	1.65V to 5.5V				0.1	- V
	Vol	I _{OL} =4mA	1.65	FULL			0.45	
O. to. t \/-!t		I _{OL} =8mA	2.3				0.3	
Low-Level Output Voltage		Iα=16mA	3				0.4	
		I _{OL} =24mA	3				0.55	
		Iα=32mA	4.5				0.55	
Off-State Current	off	V₁ or V₀=5.5V	0V	FULL			±10	μΑ
		Input						
Input Leakage Current	lı	A or B input, V _I =5.5V or GND	0V to 5.5V	FULL			±5	μA
Input Capacitance	G	V _I =V _{CC} or GND	3.3V	FULL		6		pF
Power Supply								
Power Supply Range Vcc			1.65V to 5.5V	FULL	1 <u>.</u> 65		5.5	V
Supply Current	lω	V _I =5.5 V or GND, I₀=0	1.65V to 5.5V	FULL			10	μA
Delta Power Current	Δlcc	One Input at V _{CC} – 0.6 V, Other Inputs at V _{CC} or GND ce must be held at V _{CC} or GND to ens	3V to 5.5V	FULL			500	μΑ

⁽¹⁾ All unused digital inputs of the device must be held at Vcc or GND to ensure proper device operation.

Switching Characteristics

Over recommended operating free-air temperature range, C_L=30pF or 50 pF (unless otherwise noted)

					–40°C to	+125°C			
Parameter	From(Input)	To(Output)	Vcc=1.8V±0.15V		V _{CC} =2.5V±0.2V		V _{CC} =3.3V±0.3V		Units
			Min	Max	Min	Max	Min	Max	
t _{pd}	A or B	Υ	2.1	10	1	4.9	0.6	3.7	ns


Operating Characteristics

TA=-40°C to +125°C

Parameter		Darameter	Test Conditions	V _{CC} =1.8V	V _{CC} =2.5V	Vcc=3.3V	Units
	Parameter		rest Conditions	Тур	Тур	Тур	UIIIIS
	C_{pd}	Power Dissipation Capacitance	f=10Mhz	20	20	20	pF

Typical Characteristics

Typical values are at TA=+25°C (unless otherwise noted)

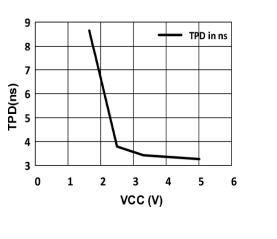
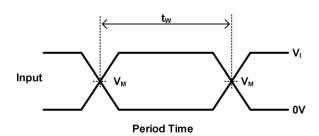
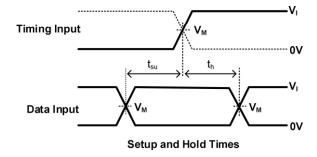
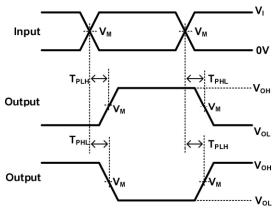


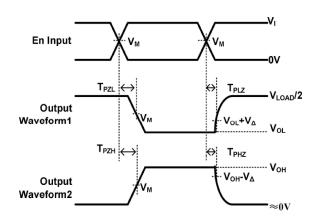
Fig.8-2. TPD Across Vcc at 25°C


Parameter Measurement Information




TEST	S1
T _{PHL} /T _{PLH}	OPEN
T _{PLZ} /T _{PZL}	V_{LOAD}
T _{PHZ} /T _{PZH}	GND

Vcc	Inputs		V _M	V _{LOAD}	CL	R∟	$V_{\!\scriptscriptstyle\Delta}$
VCC	Vı	T _f /T _f	VM VLOAD GL		OL	1.	VΔ
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	15pF	1ΜΩ	0.15V
2.5V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	15pF	1ΜΩ	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	15pF	1ΜΩ	0.3V
5V±0.15V	Vcc	≤2.5ns	Vcc/2	2×V _{CC}	15pF	1ΝΩ	0.3V


Parameter Measurement Information(Continued)

Propagation Delay for Output and Inverted Output

Enable and Disable Times Low-And High-Level Enabling

Notes:A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

Waveform 2 is for an output with internal conditions such that the F. tpz and tpz are the same as ten. output is high, except when disabled by the output control.

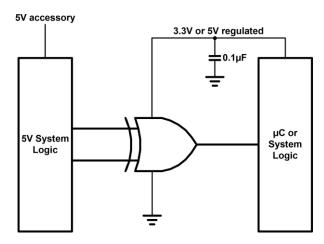
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all device.

Feature Description

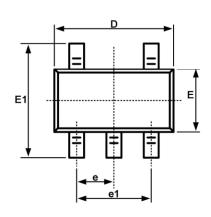
The SN74LVC1G86DBVR-MS/SN74LVC1G86DCKR-MS device performs the Boolean functionY=AB+ABin positive logic. This single 2-input exclusive-OR gate is designed for 1.65V to 5.5V Vcc operation.

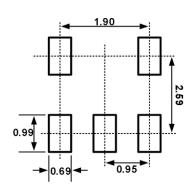
A common application is as a true and complement element. If the input is low, the other input is reproduced in true form at the output. If the input is high, the signal on the other input is reproduced inverted at the output.

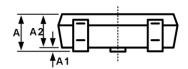
This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

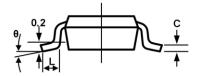

Device Functional Modes

Inputs		Output
Α	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

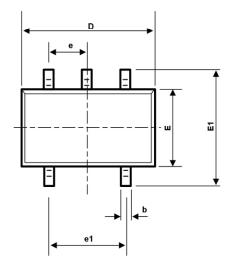

Application Information

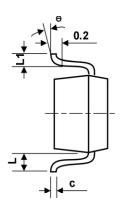

The SN74LVC1G86DBVR-MS/SN74LVC1G86DCKR-MS device can accept input voltages up to 5.5 V at any valid Vcc which makes the device suitable for down translation. This feature of the SN74LVC1G86DB VR-MS/SN74LVC1G86DCKR-MS makes it ideal for various bus interface applications.

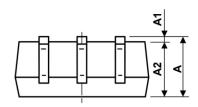

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.


Package Outline SOT23-5

Recommended Land Pattern (Unit: mm)






Currely of	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1,500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1,800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
L1	0.60	REF	F 0.024REF		
θ	0°	8°	0°	8°	

Package Outline SC70-5

symbol	Dimension In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
А	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650TYP		0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.021REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.