MSKSEMI美森科

ESD

TVS

TSS

MOV

GDT

PLED

XC6206PXXXMR-MS

Product specification

General Description

XC6206PXXXMR-MS series are a highly precise, lower consumption, 3 terminal, positive voltage regulators man ufactured using CMOS and laser trimming technologies. The series provides large currents with a significantly small dropout voltage.

The XC6206PXXXMR-MS consists of a current limiter circuit, adriver transistor, a precision reference voltage a nd an error correction circuit. The series is compatible with low ESR ceramic capacitors. The current limiter's foldback circuit operates as a short circuit protection as well as the output current limiter for the output pi n. Output voltages are internally by laser trimming technologies. It is selectable in 0.1V increments within a r ange of 1.2V to 3.6V. XC6206PXXXMR-MS series are available in SOT-23 packages.

Features

- Low power consumption
- Low voltage drop
- Low temperature coefficient
- Low Quiescent Current: 8uA at 6V
- Output voltage accuracy: tolerance ±2.5%

Applications

- Battery-powered equipment
- Reference voltage sources
- Cameras,video cameras
- Portable AV systems
- Mobile phones
- Portable games

Pin Description AND MARKING

XC6206P122MR-MS	XC6206P152MR-MS	XC6206P182MR-MS	XC6206P212MR-MS	XC6206P252MR-MS
65BP	65E9	65K5	65N5	65T5
XC6206P272MR-MS	XC6206P282MR-MS	XC6206P302MR-MS	XC6206P332MR-MS	
65V5	65X5	65Z5	662K	

Package/Order Information

ORDERING NUMBER	utput voltage	Package	Packing Option	
XC6206P122MR-MS	1.2V			
XC6206P152MR-MS	1.5V			
XC6206P182MR-MS	1.8V			
XC6206P212MR-MS	2.1V			
XC6206P252MR-MS	2.5V	SOT-23	3000	
XC6206P272MR-MS	2.7V			
XC6206P282MR-MS	2.8V			
XC6206P302MR-MS	3.0V			
XC6206P332MR-MS	3.3V			

Typical Application

BlockDiagram

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Input Voltage	Vin	6.5	V
Output Current	Ιουτ	250*	mA
Output Voltage	Vout	V _{SS} -0.3~V _{IN} +0.3	V
Power Dissipation	Pd	0.20	W
Operating Temperature Range	Topr	-20~+85	°C
Storage Temperature Range	T _{stg}	-55~+125	°C

*Iout=Pd/(VIN-Vout)

Electrical Characteristics

XC6206PXXXMR-MS for any output voltage				(Ta=25	°C)	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Voltage	Vout	Vin=Vout+1V 1.0mA≤lout≤30mA	Vout×0.98		Vout× 1.02	V
Output Current*1	lout	Vin-Vout=1V		250		mA
Low dropout*2	Vdrop	Refer to the next table				
Line Regulation	∆Vout1/(Vin·Vout)	1.6V≤Vin≤8V Iout=40mA		0.05	0.2	%/V
Load Regulation	$ riangle$ Vout / Δ lout	Vin= Vout+1V 1.0mA≤lout≤80mA		12	30	mV
Output voltage Temperature Coefficiency	∆Vout/(Ta·Vout)	lout=30mA 0°C≤Ta≤70°C		±100		Ppm/° C
Supply Current	lss			3	5	uA
Input Voltage	Vin			5	6.5	V
PSRR	PSRR	F=1KHz Vin=Vout+1V		50		dB
Output Noise	EN	BW=10Hz~100KHz		30		uVrms

Electrical Characteristics by Output Voltage:

Output Voltage Vout(V)	Dropo	out Voltage Vdif (V)	
	Conditions	Тур.	Max.
Vout≤1.5V		0.35	0.57
1.8 ≤ Vout ≤ 2	lout=100 mA	0.28	0.42
2.8 ≤ Vout ≤ 5.0		0.19	0.35

Typical Performance Characteristics

(1) Output Voltage vs Input voltage and Output Voltage vs.Output Current and Input Transient Response

(2) Output Voltage vs. Ambient Temperature

PACKAGE MECHANICAL DATA

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950) TYP	0.037 TYP		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF		0.022	0.022 REF	
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Suggested Pad Layout

Note:

1.Controlling dimension: in millimeters.

2.General tolerance:± 0.05mm.

3. The pad layout is for reference purposes only.

Attention

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.

Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to

product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.