

TS01S

1-CH Differential Sensitivity Calibration Capacitive Touch Sensor

General Description

The TS01S is a single channel capacitive touch control switch IC can replace traditional mechanical switches.

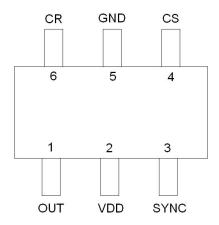
The TS01S is fabricated by CMOS process, with simple structure and stable performance.

TS01S is available in the SOT23-6 package.

Features

- 1-Channel capacitive touch sensor with differential sensitivity calibration
- Uniformly adjustable sensitivity
- Three steps sensitivity available without external component
- Sync function for parallel operation
- Low current consumption
- Embedded common and normal noise elimination circuit
- Open-drain digital output
- Internal power on reset

Package Information


Part NO.	Part NO. Package Description		Package Option	
TS01S SOT23-6		.SXXX	3000/Reel	

S: Part NO. TS01S XXX: LOT NO.

Applications

- · Home appliance
- · Membrane switch replacement
- Sealed control panels, keypads
- Human interface for toys & interactive games
- Mobile application (PMP, Navigation, MP3 etc)

Pin Configuration

TS01S(SOT23-6)

Pin Descriptions

Pin No.	Name	Function Description	I/O	Protection
1	OUT	Touch detect output	Digital Output	VDD/GND
2	VDD	Power (2.5V ~ 5.0V)	Power	GND
3	SYNC	Self operation signal output Peripheral operation signal input Sensitivity selection input [Note1] Analog Input / Output		VDD/GND
4	CS	Capacitive sensor input	Analog Input	VDD/GND
5	GND	GND Supply ground Ground		VDD
6	6 CR Reference capacitive sensor input for differential sensitivity calibration		Analog Input	VDD/GND

Note1 : Refer to chapter 6.4 SYNC implementation for sensitivity selection.

Absolute Maximum Ratings

Parameter Name	Symbol	Value	Unit
Supply Voltage	VDD	5.5	V
Maximum Voltage on Any Pin	I/O	VDD+0.3	V
Continuous Power Dissipation	Ро	200	mW
Storage Temperature	Tst	- 50 ∼ 150	$^{\circ}$
Operating Temperature	Тор	- 20 ∼ 75	$^{\circ}$ C
Junction Temperature	Tj	150	$^{\circ}$

Note2: Unless any other command is noted, all above are operated in normal temperature.

ESD & Latch-up Characteristics

ESD Characteristics

Mode	Polarity	Minimum Level	Referenc e
HDW.	D A	2000V	VDD
H.B.M	Positive/Negative	2000V	VSS
		2000V	P to P
WW	D. W. Al.	200V	VDD
M.M	Positive/Negative	200V	VSS
		200V	P to P

Latch-up Characteristics

Mode	Polarity	Minimum Level	Test Step
I Test	Positive	200mA	25mA
	Negative	-200mA	
V Supply Over 5.0V	Positive	8.0V	1.0V

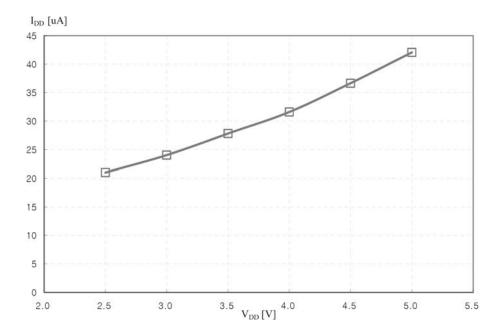
Electrical Characteristics (unless otherwise specified: VDD=3.3V, Ta=25°C)

Parameter Name	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	V_{DD}		2.5	3.3	5.0	V
Current Consumption	T	$V_{DD} = 3.3 V$		25	40	μА
Current Consumption	I_{DD}	$V_{DD} = 5.0 V$		40	70	μА
Output Maximum Sink Current	I _{OU T}	Ta=25°C			4.0	mA
Internal Reset Criterion V _{DD} Voltage	V_{DD_RST}	Ta=25°C			0.3 *V _{DD}	V
Sense Input Capacitance Range [Note3]	C_{S}			10	100	pF
Reference Input Capacitance Range [Note4]	C_R			12	100	pF
Sense Input Resistance Range	R_{S}			200	1000	Ω
Minimum Detectable Capacitance Variation	ΔC_{S}	$C_S = 10 pF$	0.2			pF
	7	$\Delta C_{\rm S} > 0.2 \rm pF$		12		Ω
Output Impedance (Open Drain)	Zo	$\Delta C_S < 0.2 pF$		30		ΜΩ
Self Calibration time after V _{DD} Setting	T_{CAL}			200		ms
Maximum Supply Voltage Rising Time	T_{R_VDD}				100	ms
Recommended Sync Resistance Range	R_{SYNC}		1	2	20	ΜΩ

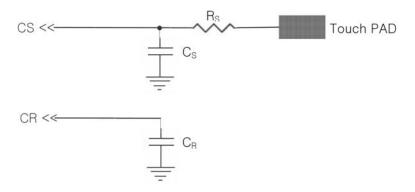
Note 3: The sensitivity can be increased with lower C_S value.

The recommended value of C_S is 10pF when using 3T PC (Poly Carbonate) cover and 10mm x 7mm touch pattern and middle normal(middle) sensitivity selection.

Note 4: C_R value is recommended as same that of C_{S_TOT} as possible for effective differential Sensitivity calibration. $C_{S_TOT} = C_S + C_{PARA}$ (C_{PARA} is parasitic capacitance of CS pin)

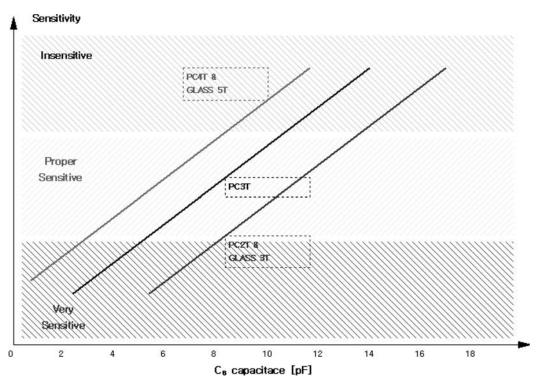

If proper CR capacitor value is used, CR pin has almost same frequency as that of CS pin.

Application Summary

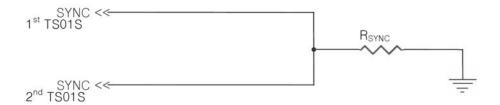

Current consumption

TS01S uses internal bias circuit, so internal clock frequency and current consumption is not adjusted. Only the VDD voltage affects internal clock frequency and current consumption. The current consumption curve of TS01S is represented in accordance with VDD voltage as below. The higher VDD requires more current consumption. Internal clock frequency deviation is within $\pm 20\%$ range from typical value.

Internal bias circuit can make the circuit design simple and reduce external components.



CS and **CR** Implementation


The parallel capacitor C_S is added to C_S and C_R to C_S to adjust the sensitivity. The major factor of the sensitivity is C_S . The sensitivity would be increased when smaller C_S value is used. (Ref. below Sensitivity Example Figure) The C_R value should be almost the same as the total C_S capacitance (C_{S_TOT}) for effective differential sensitivity calibration. The total C_S capacitance is composed of C_S which is set for optimal sensitivity and parasitic capacitance of C_S pattern (C_{PARA}). The parasitic capacitance of C_S pattern is about C_S if normal touch pattern size is used. But in the case of using larger touch pattern, C_{PARA} is bigger than normal value. The C_S is serial connection resistor to avoid malfunction from external surge and C_S (It might be optional.) From C_S to C_S is recommended for C_S . The size and shape of touch C_S might have influence on the sensitivity. The sensitivity will be optimal when the size of C_S approximately an half of the first knuckle (it's about C_S).

The connection line of CS to the touch PAD is recommended to be routed as short as possible to prevent from abnormal touch detection caused by connection line.

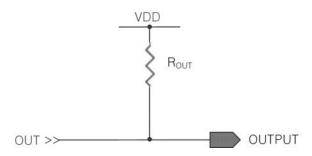
Normal sensitivity selection selected

SYNC Implementation

From two TS01S to ten TS01S can work on the one application at the same time thanks to the SYNC function in this pin. The SYNC pulse prevents over two sensing signal from interfering with each other. During the sense disenable period and SYNC input high internal clock is suspended. The RSYNC is pull-down resistor of SYNC pin. Too big value of R_{SYNC} makes the SYNC pulse falling delay, and too small value of R_{SYNC} makes rising delay. The typical value of R_{SYNC} is $2M\Omega$. The SYNC pin should be implemented as above.

When SYNC is implemented as above figure (connect R_{SYNC} between SYNC and GND) TS01S has high sensitivity.

SYNC Implementation for Sensitivity Selection



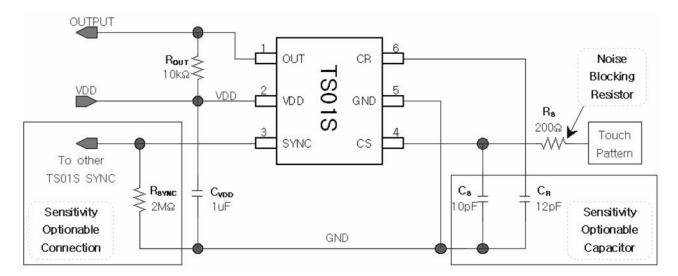
Another function of SYNC pin of TS01S is the selection of sensitivity without any additional external component. Except using R_{SYNC} case (has high sensitivity), TS01S can't operate with SYNC function.

SYNC implementation for sensitivity selection is informed as below chart.

SYNC Connection Using R _{SYNC} Connection		Connection to VDD	Connection to GND	
Sensitivity High		Middle	Low	

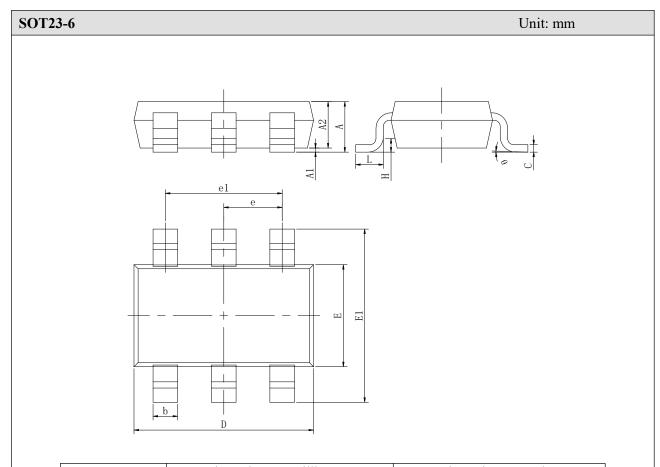
OUTPUT Implementation

The OUT is an open drain structure. For this reason, the connection of pull-up resistor R_{OUT} is required between OUT and VDD or another lower voltage node. When R_{OUT} is connected to higher voltage node than VDD, the output current passes through protection diode to VDD and abnormal operation may be occurred. The OUT pin may be used as D/A (Digital to Analog) output port of multi-key application thanks to open drain structure.


The maximum output sink current is 4mA, so over a few $k\Omega$ must be used as R_{OUT} . Normally $10k\Omega$ is used as R_{OUT} . The OUT is high in normal situation, and the value is low when a touch is detected on CS.

Internal Reset Operation

The TS01S has stable internal reset circuit that offers reset pulse to digital block. The supply voltage for a system start or restart should be under 0.3·VDD of normal operation VDD. No external components required for TS01S power reset, thus it helps simple circuit design and minimize the cost of application.


(Note: The VDD rising time should be less then 100ms for proper power on reset.)

Application Example

- The capacitor and resistor might be connected with CS (pin4) for getting a stable sensitivity.
- The capacitor value which is connected to CR pin (C_R) should be almost the same as the total CS capacitance (C_{S TOT}) for an effective differential sensitivity calibration.
- TS01S is reset by internal reset circuit. VDD voltage rising time should be shorter than 100msec for proper operation.
- The sensitivity can be adjusted through a connection of SYNC pin.
- From two TS01S to ten TS01S can work on the one application at the same time thanks to SYNC function.
- TS01S OUT port has an open drain structure. The pull-up resistor should therefore be needed as above figure.
- VDD periodic voltage ripples over 50mV or the ripple frequency which is lower than 10 kHz it can cause
 wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be
 separated from the other circuit. Especially the LED driver power line or digital switching circuit power line
 should be certainly treated to be separated from touch circuit.
- The C_S pattern should be routed as short as possible and the width of the line should be around 0.25mm.
- The C_S pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- The capacitor which is between VDD and GND is an obligation. It should be placed as close as possible from TS01S.
- The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise that causes interference with the sensing frequency.

Outline Dimensions

Cymh al	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.130	0.000	0.005
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.95 (BSC)		0.037(BSC)	
e1	1.90 (B	SC)	0.075(BSC)	
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Statements

- Silicore Technology reserves the right to make changes without further notice to any products or specifications herein. Before customers place an order, customers need to confirm whether datasheet obtained is the latest version, and to verify the integrity of the relevant information.
- Failure or malfunction of any semiconductor products may occur under particular conditions, customers shall have obligation to comply with safety standards when customers use Silicore Technology products to do their system design and machine manufacturing, and take corresponding safety measures in order to avoid potential risk of failure that may cause personal injury or property damage.
- > The product upgrades without end, Silicore Technology will wholeheartedly provide customers integrated circuits that have better performance and better quality.